EP0265797B1 - Synchrotron - Google Patents

Synchrotron Download PDF

Info

Publication number
EP0265797B1
EP0265797B1 EP87115175A EP87115175A EP0265797B1 EP 0265797 B1 EP0265797 B1 EP 0265797B1 EP 87115175 A EP87115175 A EP 87115175A EP 87115175 A EP87115175 A EP 87115175A EP 0265797 B1 EP0265797 B1 EP 0265797B1
Authority
EP
European Patent Office
Prior art keywords
synchrotron
absorber
curved
path
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87115175A
Other languages
German (de)
French (fr)
Other versions
EP0265797A3 (en
EP0265797A2 (en
Inventor
Helmut Marsing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0265797A2 publication Critical patent/EP0265797A2/en
Publication of EP0265797A3 publication Critical patent/EP0265797A3/en
Application granted granted Critical
Publication of EP0265797B1 publication Critical patent/EP0265797B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • the invention relates to a synchrotron for the acceleration of charged particles on a path with straight areas, to which means for electron injection and acceleration and focusing are assigned.
  • the path also contains curved areas, to which superconducting curved flat coils are assigned, which are arranged in a cryogenic vessel.
  • the web is surrounded by a chamber, which is provided radially outwards with at least one outlet opening.
  • electrons or protons can be accelerated to high energy in a synchrotron by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity.
  • the particle always passes the acceleration path when the applied AC voltage has the correct sign for acceleration; the particle thus runs in synchronism with the alternating voltage, ie in the correct phase.
  • the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency.
  • the synchrotron radiation ie the relativistic radiation emission of the electrons, which circulate almost at the speed of light and are kept on a circular path by deflection in a magnetic field of superconducting coils, provides X-rays with parallel radiation characteristics and high intensity.
  • this synchrotron radiation can be used for X-ray lithography, which is used in the production of integrated circuits for producing structures, which are smaller than 0.5 ⁇ m is suitable.
  • a known embodiment of an electron synchrotron contains an orbit in the form of a racetrack with alternating straight and curved track areas.
  • the radius of curvature results from the equilibrium between centrifugal force and Lorentz force of a magnetic field of dipole magnets, which are designed as superconducting curved flat coils.
  • These field coils are arranged with a gradient coil in a cryogenic vessel, which also keeps the evacuated chamber at cryogenic temperature in the curved path region in which the electrons circulate.
  • An electron injector, with which the electrons are introduced into the acceleration path, and means for electron acceleration are assigned to the straight regions of the acceleration path (German Offenlegungsschrift 35 30 446).
  • the chamber is provided with a slot-shaped outlet opening in the entire curved path area of the orbit.
  • the Lorentz forces of the superconducting flat coils must therefore be absorbed by the legs of a C-shaped or U-shaped support structure. Since a change in the position of these flat coils under the action of the Lorentz forces with a corresponding field distortion must be practically excluded, a correspondingly complex support structure is required.
  • absorbers are provided for the emerging synchrotron radiation, which are equipped with a Water cooling are provided.
  • the curved path areas are surrounded by a double chamber, which consists of copper and acts as a resonator and whose inner chamber surrounds the curved path area.
  • This double chamber is surrounded by the vacuum chamber housing which also includes a further chamber which contains cryopumps and on whose outer wall the absorber is arranged in the direction of the emerging jet.
  • the absorber cannot protect any of the outer walls of the double chamber lying in the direction of the emerging synchrotron radiation.
  • These chamber walls are therefore provided with additional water cooling (DE-OS 3 148 100).
  • the invention is therefore based on the object of simplifying and improving, in particular, the support structure for the field coils in the curved region of the track Bending stresses in the legs of the C-shaped support structure can be prevented.
  • the absorber leaves at least one, possibly a plurality of outlet openings, which can preferably be designed as outlet pipes, free for the synchrotron radiation.
  • the space between these tubes in the direction of the tangentially derived synchrotron radiation behind the absorber can now be filled with a support structure, for example from support elements, which can preferably consist of glass fiber reinforced plastic GRP.
  • This support structure which acts practically only as a simple spacer, can also absorb large magnetic forces of the superconducting coils, so that a special supporting structure is no longer required.
  • Additional cooling is expediently provided for the absorber in order to limit the heating of the walls of the electron beam chamber kept at cryogenic temperature and to reduce the desorption of particles from the material of the absorber.
  • FIG. 1 shows a synchrotron as a top view
  • FIG. 2 shows a section through one of the curved regions of the electron path according to FIG. 1.
  • FIGS. 3 and 4 each illustrate a section through an absorber with an outlet opening.
  • an electron path 2 consists of curved ones Path regions 3 and 4 and straight path regions 5 and 6.
  • the path region 5 contains a cavity resonator 8 for a frequency of, for example, 500 MHz for electron acceleration and two quadrupole magnets 10 and 11, one of which is used for focusing and the other for defocusing.
  • the other straight path region 6 is also provided with two quadrupole magnets 12 and 13, one of which is used for focusing and the other for defocusing, and also with an injection device 14 for electrons.
  • the curved areas 3 and 4 are constructed in the same way and therefore provided with the same reference numerals.
  • the two curved path areas are shown schematically as a section.
  • the evacuated chambers 16 surrounding one of the curved path areas 3 or 4 are somewhat expanded radially outward and each contain an absorber 20 in the direction of the synchrotron radiation 18, which can optionally be preceded by a slit diaphragm 21.
  • a beam pipe 19 or, if appropriate, a bore is provided in the absorber 20.
  • Superconducting dipole magnets which are designed as superconducting curved flat coils and of which only one is indicated in the figure and designated by 23, are used to deflect the electrons in the curved path regions 3 and 4.
  • the dipole magnets are assigned gradient coils and correction coils, which are not shown.
  • the curved path region 3 of the path 2 is assigned the group of dipole magnets 22 arranged above the chamber 16, of which only one is indicated in the figure for simplicity, and a group of dipole magnets 23 arranged below the chamber 16.
  • the chamber 16 surrounds the curved path region 3 of the electron path 2 and is provided with the beam tube 19 for deriving the synchrotron radiation 18.
  • the jet pipe 19 is passed through the wall of a helium container 17 in a highly vacuum-tight manner.
  • Correction coils 25 and a gradient coil 24 are also assigned to curved path region 3 of electron path 2.
  • a cover device 26 and 28 which can be designed as cover plates in the case of a plastic version and as cover ribs in the case of a metal version.
  • the cover device 26 is detachably connected to an upper support structure 32 and the lower cover device 28 is connected to a lower support structure 33.
  • simple continuous screw connections 34 and 35 are provided, which are only indicated schematically in the figure.
  • a holder 36 and 37 is provided for the groups of dipole magnets 22 and 23, which essentially consist of a screw bolt 38 and 39 and a bearing bolt 40 and 41, each in two tie rods 42 and 43 or 44 and 45 is mounted.
  • the tie rods 42 and 43 are attached to the support structure 32 and the holding plates 44 and 45 are attached to the lower support structure 33.
  • the curved path region 3 of the electron path 2 is surrounded by the chamber 16, which is provided with at least one outlet opening for the synchrotron radiation 18.
  • a common absorber 20 can expediently be provided for the entire curved path region 3, to which the slit diaphragm 21 is placed and the curvature of which is adapted to the course of the electron path 2 in region 3.
  • the absorber 20 is only provided with a corresponding opening for the synchrotron radiation 18.
  • Liquid cooling is provided for the absorber 20, the cooling medium of which flows through cooling channels 51 and 52, which are connected to a coolant reservoir (not shown in the figure) and for one Circulation cooling is provided.
  • the absorber 20 protects an outer wall 29 of the electron beam chamber 16, which is arranged in the direction of the synchrotron radiation 18 behind the absorber 20, from the action of the synchrotron radiation 18.
  • a support structure 60 can simply fill the space between the radially outer part as a filling material fill in the turns of the dipole magnets 22 and the corresponding part of the turns of the dipole magnets 23.
  • This support structure 60 can expediently consist of glass fiber reinforced plastic and can be fixed in its position solely by the compressive forces of the screw connections 34 and 35. However, the support structure 60 can also consist of individual support elements or spacers, not shown in the figure.
  • the absorber 20 consists of a curved metallic housing 53, for example made of stainless steel, the curvature of which is adapted to the electron path 2 in the curved path region 3 and the housing wall facing the electron path is always at the same distance from this path.
  • the absorber 20 is flowed through by a coolant, preferably liquid LN2.
  • a beam passage tube 48 is arranged in a corresponding opening of the housing 53 in such a way that the synchrotron radiation 18 radiated tangentially in the web area 3 and indicated by dash-dotted lines in the figure can pass through.
  • the passage tube 48 is permanently connected to the housing 53 of the absorber 20, preferably welded in an ultra-high vacuum tight manner.
  • the absorber 20 consists, for example, of a metal profile, preferably of copper or also of brass, with cooling channels 51 and 52, which is provided with an opening 54 for the passage of the synchrotron beam.

Description

Die Erfindung bezieht sich auf ein Synchrotron zur Beschleunigung von geladenen Teilchen auf einer Bahn mit geraden Bereichen, denen Mittel zur Elektroneninjektion und -beschleunigung sowie -fokussierung zugeordnet sind. Die Bahn enthält ferner gekrümmte Bereiche, denen supraleitende gekrümmte Flachspulen zugeordnet sind, die in einem Kryogefäß angeordnet sind. In den gekrümmten Bereichen ist die Bahn jeweils von einer Kammer umgeben, die radial nach außen mit wenigstens einer Austrittsöffnung versehen ist.The invention relates to a synchrotron for the acceleration of charged particles on a path with straight areas, to which means for electron injection and acceleration and focusing are assigned. The path also contains curved areas, to which superconducting curved flat coils are assigned, which are arranged in a cryogenic vessel. In the curved areas, the web is surrounded by a chamber, which is provided radially outwards with at least one outlet opening.

In einem Synchrotron können bekanntlich Elektronen oder auch Protonen dadurch auf hohe Energie beschleunigt werden, daß sie auf einer gekrümmten Bahn in Umlauf gebracht und wiederholt durch einen Hochfrequenz-Beschleunigungshohlraum hindurchgeführt werden. Das Teilchen passiert immer dann die Beschleunigungsstrecke, wenn die anliegende Wechselspannung das zur Beschleunigung richtige Vorzeichen hat; das Teilchen läuft somit synchron zur Wechselspannung, d.h. phasenrichtig um. Beim Elektronen-Synchrotron werden die Elektronen bereits nahezu mit Lichtgeschwindigkeit in die Beschleunigungsstrecke eingeleitet; es ändert sich somit bei fester Umlauffrequenz nur noch ihre Energie. Die Synchrotronstrahlung, d.h. die relativistische Strahlungsemission der Elektronen, die nahezu mit Lichtgeschwindigkeit umlaufen und durch Ablenkung in einem magnetischen Feld supraleitender Spulen auf einer Kreisbahn gehalten werden, liefert eine Röntgenstrahlung mit paralleler Strahlungscharakteristik und großer Intensität. Diese Synchrotronstrahlung kann bekanntlich für die Röntgenstrahl-Lithographie verwendet werden, die bei der Herstellung von integrierten Schaltkreisen zur Erzeugung von Strukturen, die kleiner sind als 0,5 µm, geeignet ist. Dabei trifft die parallele Röntgenstrahlung im nutzbaren Wellenlängenbereich von etwa λ = 0,2 bis 2 nm auf eine abzubildende Maske, hinter der im Proximityabstand die zu belichtende Halbleiterscheibe angeordnet ist.As is well known, electrons or protons can be accelerated to high energy in a synchrotron by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity. The particle always passes the acceleration path when the applied AC voltage has the correct sign for acceleration; the particle thus runs in synchronism with the alternating voltage, ie in the correct phase. In the electron synchrotron, the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency. The synchrotron radiation, ie the relativistic radiation emission of the electrons, which circulate almost at the speed of light and are kept on a circular path by deflection in a magnetic field of superconducting coils, provides X-rays with parallel radiation characteristics and high intensity. As is known, this synchrotron radiation can be used for X-ray lithography, which is used in the production of integrated circuits for producing structures, which are smaller than 0.5 µm is suitable. The parallel x-ray radiation in the usable wavelength range of approximately λ = 0.2 to 2 nm strikes a mask to be imaged, behind which the semiconductor wafer to be exposed is arranged at a proximity distance.

Eine bekannte Ausführungsform eines Elektronen-Synchrotrons enthält eine Umlaufbahn in der Rennbahn-Form mit abwechselnd geraden und gekrümmten Bahnbereichen. Der Krümmungsradius ergibt sich durch das Gleichgewicht zwischen Zentrifugalkraft und Lorentzkraft eines Magnetfeldes von Dipolmagneten, die als supraleitende gekrümmte Flachspulen ausgebildet sind. Diese Feldspulen sind mit einer Gradientenspule in einem Kryogefäß angeordnet, das auch die evakuierte Kammer im gekrümmten Bahnbereich, in welcher die Elektronen umlaufen, auf Kryotemperatur hält. Den geraden Bereichen der Beschleunigungsstrecke ist ein Elektroneninjektor, mit dem die Elektronen in die Beschleunigungsstrecke eingeleitet werden, sowie Mittel zur Elektronenbeschleunigung zugeordnet (deutsche Offenlegungsschrift 35 30 446).A known embodiment of an electron synchrotron contains an orbit in the form of a racetrack with alternating straight and curved track areas. The radius of curvature results from the equilibrium between centrifugal force and Lorentz force of a magnetic field of dipole magnets, which are designed as superconducting curved flat coils. These field coils are arranged with a gradient coil in a cryogenic vessel, which also keeps the evacuated chamber at cryogenic temperature in the curved path region in which the electrons circulate. An electron injector, with which the electrons are introduced into the acceleration path, and means for electron acceleration are assigned to the straight regions of the acceleration path (German Offenlegungsschrift 35 30 446).

Bei dieser Ausführungsform eines Synchrotrons ist die Kammer im gesamten gekrümmten Bahnbereich der Umlaufbahn jeweils mit einer schlitzförmigen Austrittsöffnung versehen. Die Lorentzkräfte der supraleitenden Flachspulen müssen deshalb von den Schenkeln einer C-förmigen oder U-förmigen Tragkonstruktion aufgenommen werden. Da eine Lageveränderung dieser Flachspulen unter der Einwirkung der Lorentzkräfte mit einer entsprechenden Feldverzerrung praktisch ausgeschlossen werden muß, ist eine entsprechend aufwendige Stützkonstruktion erforderlich.In this embodiment of a synchrotron, the chamber is provided with a slot-shaped outlet opening in the entire curved path area of the orbit. The Lorentz forces of the superconducting flat coils must therefore be absorbed by the legs of a C-shaped or U-shaped support structure. Since a change in the position of these flat coils under the action of the Lorentz forces with a corresponding field distortion must be practically excluded, a correspondingly complex support structure is required.

In einer weiteren bekannten Ausführungsform eines Synchrotrons mit einem kreisringförmigen Synchrotronsystem sind für die austretende Synchrotronstrahiung Absorber vorgesehen, die mit einer Wasserkühlung versehen sind. Die gekrümmten Bahnbereiche sind von einer Doppelkammer umgeben, die aus Kupfer besteht und als Resonator wirkt und deren innere Kammer den gekrümmten Bahnbereich umgibt. Diese Doppelkammer ist vom Vakuumkammergehäuse umgeben, das auch eine weitere Kammer einschließt, die Kryopumpen enthält und an deren in der Richtung des austretenden Strahls äußeren Wandung der Absorber angeordnet ist. Der Absorber kann in dieser Ausführungsform somit keine der in der Richtung der austretenden Synchrotronstrahlung liegenden Außenwände der Doppelkammer schützen. Diese Kammerwände sind deshalb mit einer zusätzlichen Wasserkühlung versehen (DE-OS 3 148 100).In a further known embodiment of a synchrotron with an annular synchrotron system, absorbers are provided for the emerging synchrotron radiation, which are equipped with a Water cooling are provided. The curved path areas are surrounded by a double chamber, which consists of copper and acts as a resonator and whose inner chamber surrounds the curved path area. This double chamber is surrounded by the vacuum chamber housing which also includes a further chamber which contains cryopumps and on whose outer wall the absorber is arranged in the direction of the emerging jet. In this embodiment, the absorber cannot protect any of the outer walls of the double chamber lying in the direction of the emerging synchrotron radiation. These chamber walls are therefore provided with additional water cooling (DE-OS 3 148 100).

Der Erfindung liegt deshalb die Aufgabe zugrunde, die Tragkonstruktion für die Feldspulen im gekrümmten Bereich der Bahn zu vereinfachen und zu verbessern, insbesondere sollen Biegespannungen in den Schenkeln der C-förmigen Tragkonstruktion verhindert werden.The invention is therefore based on the object of simplifying and improving, in particular, the support structure for the field coils in the curved region of the track Bending stresses in the legs of the C-shaped support structure can be prevented.

Diese Aufgabe wird erfindungsgemäß gelöst mit den kennzeichnenden Merkmalen des Anspruchs 1. Der Absorber läßt wenigstens eine, gegebenenfalls mehrere Austrittsöffnungen, die vorzugsweise als Austrittsrohre ausgebildet sein können, für die Synchrotronstrahlung frei. Der Raum zwischen diesen Rohren in der Richtung der tangential abgeleiteten Synchrotronstrahlung hinter dem Absorber kann nun mit einer Stützstruktur, beispielsweise aus Stützelementen, ausgefüllt werden, die vorzugsweise aus glasfaserverstärktem Kunststoff GFK bestehen kann. Durch diese praktisch nur als einfache Abstandhalter wirkende Stützstruktur können auch große magnetische Kräfte der supraleitenden Spulen aufgenommen werden, so daß eine besondere Tragkonstruktion nicht mehr erforderlich ist.This object is achieved according to the invention with the characterizing features of claim 1. The absorber leaves at least one, possibly a plurality of outlet openings, which can preferably be designed as outlet pipes, free for the synchrotron radiation. The space between these tubes in the direction of the tangentially derived synchrotron radiation behind the absorber can now be filled with a support structure, for example from support elements, which can preferably consist of glass fiber reinforced plastic GRP. This support structure, which acts practically only as a simple spacer, can also absorb large magnetic forces of the superconducting coils, so that a special supporting structure is no longer required.

Zur Begrenzung der Erwärmung der auf Kryotemperatur gehaltenen Wände der Elektronenstrahlkammer sowie zur Verminderung der Desorption von Teilchen aus dem Material des Absorbers ist für den Absorber zweckmäßig eine zusätzliche Kühlung vorgesehen.Additional cooling is expediently provided for the absorber in order to limit the heating of the walls of the electron beam chamber kept at cryogenic temperature and to reduce the desorption of particles from the material of the absorber.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in der ein Ausführungsbeispiel eines Synchrotrons gemäß der Erfindung schematisch veranschaulicht ist. Figur 1 zeigt ein Synchrotron als Draufsicht und in Figur 2 ist ein Schnitt durch einen der gekrümmten Bereiche der Elektronenbahn gemäß Figur 1 veranschaulicht. In den Figuren 3 und 4 ist jeweils ein Schnitt durch einen Absorber mit einer Austrittsöffnung veranschaulicht.To further explain the invention, reference is made to the drawing, in which an embodiment of a synchrotron according to the invention is schematically illustrated. FIG. 1 shows a synchrotron as a top view and FIG. 2 shows a section through one of the curved regions of the electron path according to FIG. 1. FIGS. 3 and 4 each illustrate a section through an absorber with an outlet opening.

In der schematischen Übersicht eines Elektronen-Synchrotrons gemäß Figur 1 besteht eine Elektronenbahn 2 aus gekrümmten Bahnbereichen 3 und 4 sowie geraden Bahnbereichen 5 und 6. Der Bahnbereich 5 enthält einen Hohlraumresonator 8 für eine Frequenz von beispielsweise 500 MHz zur Elektronenbeschleunigung und zwei Quadrupol-Magnete 10 und 11, von denen einer zur Fokussierung und der andere zur Defokussierung dient. Der andere gerade Bahnbereich 6 ist ebenfalls mit zwei Quadrupol-Magneten 12 und 13, von denen einer zur Fokussierung und der andere zur Defokussierung dient, und außerdem mit einer Injektionseinrichtung 14 für Elektronen versehen.In the schematic overview of an electron synchrotron according to FIG. 1, an electron path 2 consists of curved ones Path regions 3 and 4 and straight path regions 5 and 6. The path region 5 contains a cavity resonator 8 for a frequency of, for example, 500 MHz for electron acceleration and two quadrupole magnets 10 and 11, one of which is used for focusing and the other for defocusing. The other straight path region 6 is also provided with two quadrupole magnets 12 and 13, one of which is used for focusing and the other for defocusing, and also with an injection device 14 for electrons.

Die gekrümmten Bereiche 3 und 4 sind in gleicher Weise aufgebaut und deshalb mit den gleichen Bezugszeichen versehen. Die beiden gekrümmten Bahnbereiche sind als Schnitt schematisch dargestellt. Die jeweils einem der gekrümmten Bahnbereiche 3 oder 4 umgebenden evakuierten Kammern 16 sind radial nach außen etwas erweitert und enthalten in Richtung der Synchrotronstrahlung 18 jeweils einen Absorber 20, dem gegebenenfalls noch eine Schlitzblende 21 vorgelagert sein kann. Zur Durchleitung der Synchrotronstrahlung 18 ist im Absorber 20 ein Strahlrohr 19 oder gegebenenfalls eine Bohrung vorgesehen. Zur Ablenkung der Elektronen in den gekrümmten Bahnbereichen 3 und 4 dienen supraleitende Dipolmagnete, die als supraleitende gekrümmte Flachspulen ausgeführt sind und von denen in der Figur nur einer angedeutet und mit 23 bezeichnet ist. Den Dipolmagneten sind in der Figur zur Vereinfachung nicht dargestellte Gradientenspulen und Korrekturspulen zugeordnet.The curved areas 3 and 4 are constructed in the same way and therefore provided with the same reference numerals. The two curved path areas are shown schematically as a section. The evacuated chambers 16 surrounding one of the curved path areas 3 or 4 are somewhat expanded radially outward and each contain an absorber 20 in the direction of the synchrotron radiation 18, which can optionally be preceded by a slit diaphragm 21. To transmit the synchrotron radiation 18, a beam pipe 19 or, if appropriate, a bore is provided in the absorber 20. Superconducting dipole magnets, which are designed as superconducting curved flat coils and of which only one is indicated in the figure and designated by 23, are used to deflect the electrons in the curved path regions 3 and 4. For simplification, the dipole magnets are assigned gradient coils and correction coils, which are not shown.

In der Ausführungsform gemäß Figur 2 ist dem gekrümmten Bahnbereich 3 der Bahn 2 die oberhalb der Kammer 16 angeordnete Gruppe von Dipolmagneten 22, von denen in der Figur zur Vereinfachung lediglich einer angedeutet ist, und eine unterhalb der Kammer 16 angeordnete Gruppe von Dipolmagneten 23 zugeordnet. Die Kammer 16 umgibt den gekrümmten Bahnbereich 3 der Elektronenbahn 2 und ist mit dem Strahlrohr 19 zur Ableitung der Synchrotronstrahlung 18 versehen. Das Strahlrohr 19 ist durch die Wand eines Heliumbehälters 17 hochvakuumdicht hindurchgeführt. Dem gekrümmten Bahnbereich 3 der Elektronenbahn 2 sind ferner Korrekturspulen 25 und eine Gradientenspule 24 zugeordnet. Oberhalb und unterhalb der Gruppen von Dipolmagneten 22 und 23 ist jeweils eine Abdeckvorrichtung 26 bzw. 28 vorgesehen, die im Falle einer Kunststoffausführung als Abdeckplatten und im Falle einer Metallausführung als Abdeckrippen gestaltet sein können. Die Abdeckvorrichtung 26 ist mit einer oberen Tragstruktur 32 und die untere Abdeckvorrichtung 28 ist mit einer unteren Tragstruktur 33 lösbar verbunden. Zur Aufnahme der Kräfte der Gruppen von Dipolmagneten 22 und 23 in senkrechter Richtung sind einfache durchgehende Verschraubungen 34 und 35 vorgesehen, die in der Figur lediglich schematisch angedeutet sind. Zur Aufnahme der Lorentzkräfte in radialer Richtung ist für die Gruppen von Dipolmagneten 22 und 23 jeweils eine Halterung 36 und 37 vorgesehen, die im wesentlichen aus einem Schraubbolzen 38 bzw. 39 sowie einem Lagerbolzen 40 bzw. 41 bestehen, der in je zwei Zugankern 42 und 43 bzw. 44 und 45 gelagert ist. Die Zuganker 42 und 43 sind an der Tragstruktur 32 und die Halteplatten 44 und 45 sind an der unteren Tragstruktur 33 befestigt.In the embodiment according to FIG. 2, the curved path region 3 of the path 2 is assigned the group of dipole magnets 22 arranged above the chamber 16, of which only one is indicated in the figure for simplicity, and a group of dipole magnets 23 arranged below the chamber 16. The chamber 16 surrounds the curved path region 3 of the electron path 2 and is provided with the beam tube 19 for deriving the synchrotron radiation 18. The jet pipe 19 is passed through the wall of a helium container 17 in a highly vacuum-tight manner. Correction coils 25 and a gradient coil 24 are also assigned to curved path region 3 of electron path 2. Above and below the groups of dipole magnets 22 and 23 there is provided a cover device 26 and 28, which can be designed as cover plates in the case of a plastic version and as cover ribs in the case of a metal version. The cover device 26 is detachably connected to an upper support structure 32 and the lower cover device 28 is connected to a lower support structure 33. In order to absorb the forces of the groups of dipole magnets 22 and 23 in the vertical direction, simple continuous screw connections 34 and 35 are provided, which are only indicated schematically in the figure. To accommodate the Lorentz forces in the radial direction, a holder 36 and 37 is provided for the groups of dipole magnets 22 and 23, which essentially consist of a screw bolt 38 and 39 and a bearing bolt 40 and 41, each in two tie rods 42 and 43 or 44 and 45 is mounted. The tie rods 42 and 43 are attached to the support structure 32 and the holding plates 44 and 45 are attached to the lower support structure 33.

Der gekrümmte Bahnbereich 3 der Elektronenbahn 2 ist von der Kammer 16 umgeben, die mit wenigstens einer Austrittsöffnung für die Synchrotronstrahlung 18 versehen ist. Zweckmäßig kann für den gesamten gekrümmten Bahnbereich 3 ein gemeinsamer Absorber 20 vorgesehen sein, dem die Schlitzblende 21 vorgelegt ist und dessen Krümmung dem Verlauf der Elektronenbahn 2 im Bereich 3 angepaßt ist. Der Absorber 20 ist lediglich mit einer entsprechenden Öffnung für die Synchrotron-Strahlung 18 versehen.The curved path region 3 of the electron path 2 is surrounded by the chamber 16, which is provided with at least one outlet opening for the synchrotron radiation 18. A common absorber 20 can expediently be provided for the entire curved path region 3, to which the slit diaphragm 21 is placed and the curvature of which is adapted to the course of the electron path 2 in region 3. The absorber 20 is only provided with a corresponding opening for the synchrotron radiation 18.

Für den Absorber 20 ist eine Flüssigkeitskühlung vorgesehen , deren Kühlmedium durch Kühlkanäle 51 und 52 strömt, die mit einem in der Figur nicht dargestellten Kühlmittelreservoir in Verbindung stehen und für die eine Umlaufkühlung vorgesehen ist. Der Absorber 20 schützt eine äußere Wand 29 der Elektronenstrahlkammer 16, die in der Richtung der Synchrotronstrahlung 18 hinter dem Absorber 20 angeordnet ist, vor der Einwirkung der Synchrotronstrahlung 18. Eine Tragstruktur 60 kann in einfacher Weise lediglich als Füllmaterial den Raum zwischen dem radial außenliegenden Teil der Windungen der Dipolmagneten 22 und dem entsprechenden Teil der Windungen der Dipolmagneten 23 ausfüllen. Diese Tragstruktur 60 kann zweckmäßig aus glasfaserverstärktem Kunststoff bestehen und allein durch die Druckkräfte der Verschraubungen 34 und 35 in ihrer Lage fixiert werden. Die Stützstruktur 60 kann jedoch auch aus einzelnen in der Figur nicht dargestellten Stützelementen oder Abstandhaltern bestehen.Liquid cooling is provided for the absorber 20, the cooling medium of which flows through cooling channels 51 and 52, which are connected to a coolant reservoir (not shown in the figure) and for one Circulation cooling is provided. The absorber 20 protects an outer wall 29 of the electron beam chamber 16, which is arranged in the direction of the synchrotron radiation 18 behind the absorber 20, from the action of the synchrotron radiation 18. A support structure 60 can simply fill the space between the radially outer part as a filling material fill in the turns of the dipole magnets 22 and the corresponding part of the turns of the dipole magnets 23. This support structure 60 can expediently consist of glass fiber reinforced plastic and can be fixed in its position solely by the compressive forces of the screw connections 34 and 35. However, the support structure 60 can also consist of individual support elements or spacers, not shown in the figure.

In der Ausführungsform gemäß Figur 3 besteht der Absorber 20 aus einem gekrümmten metallischen Gehäuse 53, beispielsweise aus rostfreiem Stahl, dessen Krümmung der Elektronenbahn 2 im gekrümmten Bahnbereich 3 angepaßt ist und dessen der Elektronenbahn zugewandte Gehäusewand von dieser Bahn immer den gleichen Abstand hat. Der Absorber 20 ist von einem Kühlmittel, vorzugsweise flüssigem Stückstoff LN₂, durchströmt. In einer entsprechenden Öffnung des Gehäuses 53 ist ein Strahldurchtrittsrohr 48 derart angeordnet, daß die im Bahnbereich 3 tangential abgestrahlte und in der Figur strichpunktiert angedeutete Synchrotronstrahlung 18 hindurchtreten kann. Das Durchtrittsrohr 48 ist mit dem Gehäuse 53 des Absorbers 20 unlösbar verbunden, vorzugsweise ultrahochvakuumdicht verschweißt.In the embodiment according to FIG. 3, the absorber 20 consists of a curved metallic housing 53, for example made of stainless steel, the curvature of which is adapted to the electron path 2 in the curved path region 3 and the housing wall facing the electron path is always at the same distance from this path. The absorber 20 is flowed through by a coolant, preferably liquid LN₂. A beam passage tube 48 is arranged in a corresponding opening of the housing 53 in such a way that the synchrotron radiation 18 radiated tangentially in the web area 3 and indicated by dash-dotted lines in the figure can pass through. The passage tube 48 is permanently connected to the housing 53 of the absorber 20, preferably welded in an ultra-high vacuum tight manner.

In einer besonders einfachen Ausführungsform gemäß Figur 4 besteht der Absorber 20 beispielsweise aus einem Metallprofil, vorzugsweise aus Kupfer oder auch aus Messing, mit Kühlkanälen 51 und 52, das mit einer Öffnung 54 zur Durchleitung des Synchrotronstrahls versehen ist.In a particularly simple embodiment according to FIG. 4, the absorber 20 consists, for example, of a metal profile, preferably of copper or also of brass, with cooling channels 51 and 52, which is provided with an opening 54 for the passage of the synchrotron beam.

Claims (3)

  1. Synchrotron for accelerating charged particles on a trajectory, comprising
    a) straight track sections including associated means for electron injection and acceleration and
    b) curved track sections including associated superconducting curved dipole magnets arranged in a cryogenic vessel, and in which
    c) the electron trajectory is surrounded in the curved track sections by a chamber which is provided with at least one exit opening radially outwards,
    characterised in that
    d) in the chambers (16) of the curved track sections (3, 4) there is respectively arranged an absorber (20) for which additional cooling is provided,
    e) the chamber (16) is provided with at least one radiation tube (19) for the synchrotron radiation (18), and in that
    f) in the direction of the synchrotron radiation behind the absorber (20) between the dipole magnets (22, 23) there is respectively provided a support structure (60).
  2. Synchrotron according to claim 1, characterised in that the radiation tube (19) passes through the absorber (20).
  3. Synchrotron according to claim 1 or 2, characterised by cooling with liquid nitrogen LN₂.
EP87115175A 1986-10-29 1987-10-16 Synchrotron Expired - Lifetime EP0265797B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3636841 1986-10-29
DE3636841 1986-10-29

Publications (3)

Publication Number Publication Date
EP0265797A2 EP0265797A2 (en) 1988-05-04
EP0265797A3 EP0265797A3 (en) 1988-11-30
EP0265797B1 true EP0265797B1 (en) 1991-04-10

Family

ID=6312753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87115175A Expired - Lifetime EP0265797B1 (en) 1986-10-29 1987-10-16 Synchrotron

Country Status (4)

Country Link
US (1) US4808941A (en)
EP (1) EP0265797B1 (en)
JP (1) JPS63124400A (en)
DE (1) DE3769273D1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3865977D1 (en) * 1987-01-28 1991-12-12 Siemens Ag SYNCHROTRON RADIATION SOURCE WITH A FIXING OF YOUR CURVED COIL REELS.
US5177448A (en) * 1987-03-18 1993-01-05 Hitachi, Ltd. Synchrotron radiation source with beam stabilizers
EP0282988B1 (en) * 1987-03-18 1994-03-02 Hitachi, Ltd. Synchrotron radiation source
JPH0712000B2 (en) * 1987-11-02 1995-02-08 株式会社日立製作所 Synchrotron radiation generator and manufacturing method thereof
GB2223350B (en) * 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
US5216377A (en) * 1988-11-24 1993-06-01 Mitsubishi Denki Kabushiki Kaisha Apparatus for accumulating charged particles with high speed pulse electromagnet
US5101169A (en) * 1989-09-29 1992-03-31 Kabushiki Kaisha Toshiba Synchrotron radiation apparatus
JPH03147298A (en) * 1989-11-01 1991-06-24 Mitsubishi Electric Corp Vacuum container for accelerator
US5457361A (en) * 1992-02-17 1995-10-10 Mitsubishi Denki Kabushiki Kaisha Ion removing device, ion removing method and electron accumulating ring having ion removing device
WO2006012467A2 (en) 2004-07-21 2006-02-02 Still River Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
JP5368103B2 (en) 2005-11-18 2013-12-18 メビオン・メディカル・システムズ・インコーポレーテッド Charged particle radiation therapy
US8003964B2 (en) * 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) * 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
RU2477936C2 (en) * 2011-06-15 2013-03-20 Объединенный Институт Ядерных Исследований Cyclic charged particle accelerator
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
WO2014052709A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
EP2901821B1 (en) 2012-09-28 2020-07-08 Mevion Medical Systems, Inc. Magnetic field regenerator
CN104813747B (en) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 Use magnetic field flutter focused particle beam
WO2014052719A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9793036B2 (en) * 2015-02-13 2017-10-17 Particle Beam Lasers, Inc. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN113811355A (en) 2019-03-08 2021-12-17 美国迈胜医疗系统有限公司 Delivering radiation through a column and generating a treatment plan therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3148100A1 (en) * 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks Synchrotron X-ray radiation source
GB8421867D0 (en) * 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron
DE3703938A1 (en) * 1986-02-12 1987-09-10 Mitsubishi Electric Corp PARTICLE ACCELERATOR
US4737727A (en) * 1986-02-12 1988-04-12 Mitsubishi Denki Kabushiki Kaisha Charged beam apparatus

Also Published As

Publication number Publication date
DE3769273D1 (en) 1991-05-16
EP0265797A3 (en) 1988-11-30
JPS63124400A (en) 1988-05-27
US4808941A (en) 1989-02-28
EP0265797A2 (en) 1988-05-04

Similar Documents

Publication Publication Date Title
EP0265797B1 (en) Synchrotron
EP0277521B1 (en) Synchrotron radiation source with fixation of its curved coils
EP0276360B1 (en) Magnet device with curved coil windings
DE3511282C1 (en) Superconducting magnet system for particle accelerators of a synchrotron radiation source
EP0111218B1 (en) Electromagnet for nmr tomography
DE69736081T2 (en) Plasma processing apparatus
DE3704442A1 (en) CARRIER BEAM DEVICE
DE3530446A1 (en) SYNCHROTRON
DE3148100A1 (en) Synchrotron X-ray radiation source
DE4109931A1 (en) DEFLECTING MAGNET FOR DEFLECTING A RAY OF LOADED PARTICLES ON A SEMI-CIRCULAR RAILWAY
DE2307822C3 (en) Superconducting lens system for corpuscular radiation
DE3424449A1 (en) SOURCE FOR NEGATIVE IONS
DE2647477A1 (en) CORE ENCLOSURE FOR CORE REACTORS
DE1565881B2 (en) Method and arrangement for the controlled heating of a target material in a high vacuum electron beam furnace
DE1114946B (en) Tuning arrangement for electron tubes
DE900853C (en) Arrangement for the acceleration of charged particles
DE2204467A1 (en) Device for vapor deposition of a surface metal layer or a metal coating on an elongated base with the aid of at least one electron gun
DE2349437A1 (en) METHOD AND DEVICE FOR ISOTOPE SEPARATION BY SELECTIVE IONIZATION
DE3842792C2 (en)
DE102006027218A1 (en) Magnet for the guidance of a beam of electrically charged particles along a path of the particles, comprises an evacuable beam guidance tube that encloses the path of the particles, and a winding chamber that encloses the guidance tube
EP0758480A1 (en) Process for irradiation cross-linking of strand-shaped materials
DE10033969B4 (en) Apparatus for generating collisions of opposing ion bundles
DE1109277B (en) Method and device for heating a plasma to high temperatures
DE2459390A1 (en) PROCEDURE FOR COOLING A HEAT EXCHANGER AND SUITABLE HEAT EXCHANGER
DE4238359C2 (en) Vacuum chamber for use in accelerators for elementary particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19881221

17Q First examination report despatched

Effective date: 19900328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3769273

Country of ref document: DE

Date of ref document: 19910516

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910913

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911022

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911217

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920124

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051016