EP0265633A1 - Axial turbine - Google Patents
Axial turbine Download PDFInfo
- Publication number
- EP0265633A1 EP0265633A1 EP87112769A EP87112769A EP0265633A1 EP 0265633 A1 EP0265633 A1 EP 0265633A1 EP 87112769 A EP87112769 A EP 87112769A EP 87112769 A EP87112769 A EP 87112769A EP 0265633 A1 EP0265633 A1 EP 0265633A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- diffuser
- flow
- turbine according
- ribs
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/30—Exhaust heads, chambers, or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
- Y10S415/914—Device to control boundary layer
Definitions
- the invention relates to an axially flow-through turbine with reaction blading, to the outlet rotor blades of which a high Mach number flows and which is followed by a diffuser with an axial outlet into an exhaust pipe.
- Systems of this type are used in particular in gas turbine construction.
- the axial exhaust pipe opens into a chimney through which the turbine exhaust gases are discharged into the open.
- both the inner boundary wall, ie the hub and the outer boundary wall, ie the cylinder can be inclined at a certain angle to the machine axis.
- the hub runs cylindrically with the corresponding angle adjustment of the cylinder. In machines with a high Mach number, the angle between the hub and the cylinder can easily reach 30 ° and more. The meridian streamlines at the blading outlet therefore run over this angular range.
- the diffuser for connects to this outlet the recovery of the kinetic energy. If the conicity were to be continued in a straight line, the above-mentioned angle of 30 ° would be completely unsuitable to delay the flow and to achieve the desired pressure increase. The current would detach from the walls.
- the turbine designer now knows that a diffuser angle of approx. 7 ° should not be exceeded. As a result, he will reduce the mentioned angle from 30 ° to 7 °, and connect the diffuser determined in this way according to practical considerations. Studies have now shown that such a diffuser with an axial outlet is unsuitable.
- the invention seeks to remedy this. It is based on the task of designing the diffuser for maximum pressure recovery, especially at partial load of the system. This is achieved according to the invention in that the articulation angles of the diffuser inlet both on the hub and on the cylinder are determined exclusively for the purpose of homogenizing the energy profile above the channel height at the outlet of the last row of blades, and that means for swirl removal of the swirled flow are provided within the deceleration zone.
- the advantage of the invention can be seen, inter alia, in the fact that a considerable length reduction can be achieved with such a diffuser.
- the diffuser for supporting the flow in the radial direction is divided into several partial diffusers by means of flow-guiding plates. This means that each individual partial diffuser can be optimally designed.
- Baffles of this type are known from the exhaust steam housings of steam turbines, in which the relaxed, axially escaping steam is transferred in a radial outflow direction.
- These known sheets thus do not limit part diffusers, but are usually only deflection aids.
- baffles are one-piece rings without a joint, which at least partially extend over the entire length of the diffuser.
- the free cross-section that can be flowed through is increased.
- the rotational symmetry of the guide plates has a very favorable effect on the vibration behavior of the system.
- the diffuser end part is designed as a Carnot diffuser, this measure can further shorten the overall diffuser without having to accept the disadvantages of the flow.
- the means for removing the swirl within the diffuser are at least three evenly arranged circumferential, non-curved or curved flow ribs with thick profiles, which extend over the entire height of the channel through which the flow passes. This configuration leads to the ribs being insensitive to oblique flow.
- the flow ribs have a cavity in their radial extension through which the hub interior of the diffuser can be reached. This means that the bearings and the internal tubes are accessible at all times without disassembling the diffuser.
- the flow ribs advantageously form support bodies for the guide rings, such that the correspondingly recessed rings are attached to the support body in the longitudinal direction of the profile, preferably welded on.
- the flowed leading edge of the flow ribs is at a distance from the exit plane of the turbine blading, at which a diffuser area ratio of at least 2, preferably 3, prevails.
- the first diffuser zone thus remains undisturbed due to total rotational symmetry, which leads to the greatest possible deceleration with the shortest overall length. Since the ribs only become effective in a plane in which a relatively low energy level already prevails, no interference effects between the rib and the blading are to be expected. The specific losses through the ribs are also small.
- a part of the guide rings extends in the machine longitudinal direction only up to the plane in which the support body has its greatest profile thickness. As a result, the personnel can penetrate to the narrowest point between the outer and / or inner boundary wall of the diffuser and the flow rib without impairment.
- the diffuser is supported in an exhaust gas housing which is screwed to the turbine housing, the hub-side, internal exhaust gas housing parts being connected to the external exhaust gas housing parts surrounding the diffuser by supporting ribs, which preferably penetrate the cavity of the flow ribs.
- the load-bearing structure can be kept at a lower and homogeneous temperature level, which has an effect on the deformation behavior, and thus ultimately enables smaller blade clearances.
- the system becomes particularly easy to maintain when the exhaust housing / diffuser unit can be moved axially into the exhaust pipe. If the machine has to be dismantled, the exhaust pipe, which is usually installed in the wall of the machine house, can be left in place.
- the inner ring channel formed by the inner exhaust gas housing part and the inner diffuser boundary wall are connected to one another via the cavities of the flow ribs with the outer channel by the outer exhaust gas housing part and the outer diffuser boundary wall. If an adequate coolant, for example suitably conditioned rotor cooling air, flows through the cooling channels formed in this way, the entire load-bearing structure can be kept at a low, homogeneous temperature level.
- the gas turbine of which only the last three axially flowed stages are shown in FIG. 1, essentially consists of the bladed rotor 1 and the blade carrier 2 equipped with guide blades.
- the blade carrier is suspended in the turbine housing 3.
- the rotor 1 lies in a support bearing 4, which in turn is supported in an exhaust gas housing 5.
- This exhaust housing 5 essentially consists of a hub-side, inner part 6 and an outside lying part 7. Both elements are one-piece pot housings without an axial parting plane. They are connected to each other by three welded supporting ribs 8, which are evenly distributed over the circumference.
- the supporting ribs 8 are hollow. This makes it possible to walk inside the hub 22 of the exhaust gas housing, as symbolically represented by the fitter in FIG. 1.
- the spatial conditions make it possible to carry out even larger storage work such as lifting off the bearing cover.
- the supply lines can also be led out of the system.
- the ribs have the function of transmitting the bearing forces from the inner housing part 6 to the outer housing part 7.
- the outer housing part 7 is connected to the turbine housing 3 via flange screw connections 20 (FIG. 4).
- the exhaust housing 5 is designed so that it is not in contact with the exhaust gas flow.
- the actual flow control is taken over by the diffuser, which is designed as an insert for the exhaust housing.
- the outer boundary wall 9 of the diffuser is supported on the turbine housing 3 together with the outer exhaust gas housing part 7 via sheets 19; the inner boundary wall 10, on the other hand, is suspended via struts 11 on the hub cap 12 of the inner exhaust gas housing part 6.
- the end of the diffuser opens into the exhaust pipe 13.
- the diffuser is designed, regardless of structural considerations, but solely on the basis of fluid dynamics.
- the two articulation angles must be determined based on the total flow in the blading and in the diffuser, possibly even taking into account the influence of the combustion chamber.
- the meridian curvature of the streamlines is primarily responsible for the extent of the pressure increase mentioned. This must be influenced primarily by adjusting the angle of attack in order to achieve a homogeneous energy distribution. In principle, this defines the kink angle of the inner boundary wall at the diffuser inlet. In the present case, this leads to an angle ⁇ N that rises from the horizontal in a positive direction. It can be seen that the angle is almost 20 °. This is due, among other things, to the influence of cooling air. As is known, the hub, ie the rotor surface and the blade roots, is generally cooled down to a tolerable level with cooling air.
- the total opening angle of the diffuser is in the range of the opening angle of the blading, and may even be greater than this, but in no case holds those values that would correspond to the purely constructive considerations.
- a diffuser with a 30 ° opening angle is unsuitable to delay the flow. It is therefore divided into partial diffusers in the radial direction by means of flow-guiding plates 15. These can now be dimensioned according to the known rules. In the present case this means that three baffles 15 are arranged in such a way that four partial diffusers 16, each with an opening angle of 7.5 °, result.
- these guide plates 15 are designed as one-piece rings or truncated cones. Because they are designed to be rotationally symmetrical and without separating flanges, they form the best prerequisites for the undisturbed pressure conversion in the flow, which at the time was still swirling. In order to achieve the best possible pressure recovery in this way, the guide rings 15 extend without any cross-sectional impairments to a level at which a diffuser area ratio of 3 is reached. This route is considered the first diffuser zone.
- baffles 15 must be suitably fastened in the diffuser and kept at a distance from one another.
- the classic ribs are ideal for this.
- the invention also provides for the best possible pressure recovery at partial load. This leads to the requirement to remove the adherent swirl from the flow, which in turn is feasible in the classic way by rectifying ribs.
- both functions can be combined with one and the same means, namely flow ribs 17.
- the baffles are attached to the three flow ribs 17 by welding.
- the guide plates of the rib profile shape are cut out accordingly. Due to the long weld seams, a stable attachment is guaranteed, which enables the baffles to protrude long over the entire first diffuser zone.
- FIG. 1 shows that only the middle baffle extends to the end of the diffuser.
- the lower part of FIG. 1 shows that the baffles arranged between the middle plate and the boundary walls end in the plane in which the flow ribs 17 have their greatest thickness. From its end, the diffuser can thus be walked so far that, for example, the last row of the gas turbine can be subjected to a direct optical examination without further notice.
- the first diffuser zone ends in the plane of the front edge of the flow ribs 17.
- a second zone now extends from the front edge to the greatest profile thickness of the ribs.
- the boundary walls 9 and 10 of the diffuser are adapted to the profile of the rib, that the flow in this second zone, in which most of the swirl is carried out, is largely without delay.
- the second zone is followed by a third zone, which in turn is decelerated.
- the middle baffle and the flow ribs also extend beyond this third zone.
- This is a predominantly straight diffuser. Since the flow is already largely swirl-free at this point in time, it must be ensured that the expansion does not run too much in order to avoid detachment of the flow at the boundary walls 9 running cylindrically in this zone. In order not to let the system length increase excessively, the inner boundary walls 10 of the diffuser are not allowed to run out completely, but are limited in their axial extent by a blunt section 23.
- the flow ribs 17 end in the same plane as the inner diffuser walls 10 also with a blunt section 18, which determines the trailing edges of the profile.
- a type of Carnot diffuser is formed here in a fourth zone due to the sudden expansion, which in turn contributes to shortening the overall length.
- the dotted surface which is composed of the blunt ends of the three ribs and the blunt end of the inner boundary walls, is less than 20% of the circular area of the exhaust pipe 13 is.
- the exhaust gas housing and diffuser elements which form a functional unit, are designed to be displaceable as a whole.
- the unit can be moved into the exhaust pipe 13 at least by the amount necessary to be able to lift the rotor 1 freely from the support bearing 4. Since that Support bearing in the fully assembled system is supported in the interior of the exhaust housing part 6 to be moved, for this purpose it is provided to support the rotor 1 preferably in the plane of the compressor diffuser, not shown.
- the cooling medium is introduced downstream of the blading into the annular channel 24 between the inner exhaust gas housing part 5 and the inner diffuser boundary wall 10.
- FIG. 4 it can be seen that the parts of the flow ribs 17 projecting beyond the flow-through channel are perforated both at their inner and at their outer end.
- the coolant enters the cavity 21 of the ribs through the inner cooling air openings 25 ⁇ (FIG. 6).
- the front part of this cavity is partitioned off from the end of the profile by a partition 27 which extends over the entire channel height.
- the supporting ribs 8 are located in an actual cooling space which is flowed through from the inside to the outside in the radial direction.
- the cooling air flows through the corresponding cooling air openings 25 ⁇ into the ring channel 26 (FIG. 7) between the outer exhaust gas housing part 7 and the outer diffuser boundary wall 9.
- the medium is directed back to the diffuser inlet, where it is directly behind the trailing edge of the blades 14 the gap flow and the main flow is mixed as aerodynamic ballast.
- this proportion of cooling air will also have to be taken into account when determining the articulation angle ⁇ Z.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Supercharger (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Bei einer axialdurchströmten Gasturbine mit Reaktionsbeschaufelung, an deren Austrittslaufschaufeln (14) sich ein Diffusor mit axialem Austritt in ein Abgasrohr (13) anschliesst, werden zur Verkürzung des Diffusorsystems und zu dessen Optimierung in Teillastbetrieb die Knickwinkel des Diffusoreintritts sowohl an der Nabe (10) als auch am Zylinder (9) ausschliesslich zwecks Vergleichmässigung des Energieprofils über der Kanalhöhe am Austritt der letzten Laufschaufelreihe festgelegt. Darüber hinaus sind Mittel zur Drallwegnahme der drallbehafteten Strömung vorgesehen in Form von Profilrippen (17). Sofern die Austrittslaufschaufeln mit hoher Machzahl durchströmt werden, was zu einem grossen Oeffnungswinkel der Beschaufelung führt, wird der Diffusor mittels Leitblechen (15) in mehrere Teildiffusoren (16) unterteilt.In the case of an axially flow-through gas turbine with reaction blading, at the outlet blades (14) of which there is a diffuser with an axial outlet into an exhaust pipe (13), in order to shorten the diffuser system and optimize it in part-load operation, the angle of the diffuser inlet both at the hub (10) and also on the cylinder (9) exclusively for the purpose of equalizing the energy profile above the channel height at the outlet of the last row of blades. In addition, means for swirl removal of the swirled flow are provided in the form of profile ribs (17). If a high Mach number flows through the outlet rotor blades, which leads to a large opening angle of the blading, the diffuser is divided into several partial diffusers (16) by means of guide plates (15).
Description
Die Erfindung betrifft eine axialdurchströmte Turbine mit Reaktionsbeschaufelung, an deren mit hoher Machzahl durchströmten Austrittslaufschaufeln sich ein Diffusor mit axialem Austritt in ein Abgasrohr anschliesst.
Derartige Systeme finden insbesondere im Gasturbinenbau ihre Verwendung. In der Regel mündet das axiale Abgasrohr in ein Kamin, über den die Turbinenabgase ins Freie abgelassen werden.The invention relates to an axially flow-through turbine with reaction blading, to the outlet rotor blades of which a high Mach number flows and which is followed by a diffuser with an axial outlet into an exhaust pipe.
Systems of this type are used in particular in gas turbine construction. As a rule, the axial exhaust pipe opens into a chimney through which the turbine exhaust gases are discharged into the open.
Bedingt durch die Volumenzunahme der Abgase infolge ihrer Expansion beim Durchströmen der in der Regel mehrstufigen Turbine sind die Schaufellängen von Leit- und Laufschaufeln den Dichteänderungen angepasst. Dies ergibt einen konischen Strömungskanal, wobei je nach Konstruktionsart sowohl die innere Begrenzungswand, d.h. die Nabe als auch die äussere Begrenzungswand, d.h. der Zylinder mit einem bestimmten Winkel zur Maschinenachse geneigt sein können. Bei vielen Konstruktionen verläuft die Nabe zylindrisch mit entsprechender Winkelanpassung des Zylinders. Bei Maschinen, die mit hoher Machzahl durchströmt werden, kann der Winkel zwischen Nabe und Zylinder ohne weiteres 30° und mehr erreichen. Ueber diesen Winkelbereich verlaufen demnach die Meridianstromlinien am Beschaufelungsaustritt. An diesen Austritt schliesst sich der Diffusor für die Rückgewinnung der kinetischen Energie an. Würde man jetzt die Konizität geradlinig weiterführen, so wäre der genannte Winkel von 30° völlig ungeeignet, um die Strömung zu verzögern und den gewünschten Druckanstieg zu erzielen. Die Strömung würde von den Wandungen ablösen.
Der Turbinenkonstrukteur weiss nun, dass ein Diffusorwinkel von ca. 7° nicht überschritten werden soll. Demzufolge wird er den erwähnten Winkel von 30° auf 7° reduzieren, und den so festgelegten Diffusor nach praktischen Erwägungen anschliessen.
Untersuchungen haben nun gezeigt, dass ein solchermassen ausgelegter Diffusor mit axialem Austritt ungeeignet ist. Die Umlenkung der Stromlinien an den Knickstellen des Diffusoreintritts und der damit verbundene schädliche Druckaufbau reduziert das Gefälle, d.h. die Gasarbeit über der Beschaufelung. Daraus resultiert eine geringere Leistung. Die nicht verwertete Energie führt am Diffusoraustritt lokal zu Uebergeschwindigkeiten und dissipiert in der Folge im Abgasrohr.Due to the increase in volume of the exhaust gases as a result of their expansion when flowing through the generally multi-stage turbine, the blade lengths of the guide and rotor blades are adapted to the changes in density. This results in a conical flow channel, and depending on the type of construction, both the inner boundary wall, ie the hub and the outer boundary wall, ie the cylinder, can be inclined at a certain angle to the machine axis. In many constructions, the hub runs cylindrically with the corresponding angle adjustment of the cylinder. In machines with a high Mach number, the angle between the hub and the cylinder can easily reach 30 ° and more. The meridian streamlines at the blading outlet therefore run over this angular range. The diffuser for connects to this outlet the recovery of the kinetic energy. If the conicity were to be continued in a straight line, the above-mentioned angle of 30 ° would be completely unsuitable to delay the flow and to achieve the desired pressure increase. The current would detach from the walls.
The turbine designer now knows that a diffuser angle of approx. 7 ° should not be exceeded. As a result, he will reduce the mentioned angle from 30 ° to 7 °, and connect the diffuser determined in this way according to practical considerations.
Studies have now shown that such a diffuser with an axial outlet is unsuitable. The redirection of the streamlines at the kinks of the diffuser inlet and the associated build-up of pressure reduces the gradient, ie the gas work over the blading. This results in lower performance. The energy not used leads locally to overspeeds at the diffuser outlet and subsequently dissipates in the exhaust pipe.
Hier will die Erfindung Abhilfe schaffen. Ihr liegt die Aufgae zugrunde, den Diffusor für maximalen Druckrückgewinn insbesondere auch bei Teillast der Anlage zu konzipieren. Erfindungsgemäss wird dies dadurch erreicht, dass die Knickwinkel des Diffusoreintritts sowohl an der Nabe als auch am Zylinder ausschliesslich zwecks Vergleichmässigung des Energieprofils über der Kanalhöhe am Austritt der letzten Laufschaufelreihe festgelegt sind, und dass innerhalb der Verzögerungszone Mittel zur Drallwegnahme der drallbehafteten Strömung vorgesehen sind.
Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass mit einem derartigen Diffusor eine beträchtliche Baulängenverkürzung erzielt werden kann.The invention seeks to remedy this. It is based on the task of designing the diffuser for maximum pressure recovery, especially at partial load of the system. This is achieved according to the invention in that the articulation angles of the diffuser inlet both on the hub and on the cylinder are determined exclusively for the purpose of homogenizing the energy profile above the channel height at the outlet of the last row of blades, and that means for swirl removal of the swirled flow are provided within the deceleration zone.
The advantage of the invention can be seen, inter alia, in the fact that a considerable length reduction can be achieved with such a diffuser.
Da bei üblichen hochbelasteten Beschaufelungen deren Oeffnungswinkel jenen eines guten Diffusors weit überschreitet, ist es zweckmässig, dass der Diffusor zur Stützung der Strömung in radialer Richtung mittels strömungsführender Leitbleche in mehrere Teildiffusoren unterteilt ist. Hierdurch kann jeder einzelne Teildiffusor optimal ausgelegt werden. Zwar sind derartige Leitbleche aus den Abdampfgehäusen von Dampfturbinen bekannt, bei denen der entspannte, axial austretende Dampf in eine radiale Abströmrichtung überführt wird. Aus der Theorie der gekrümmten Diffusoren ist es indes auch bekannt, dass bei den technisch möglichen relativ kurzen Baulängen und meridionalen Umlenkungen von gegen 90° d.h., von axial zu radial, nur eine schwache Verzögerung stattfindet. Diese bekannten Bleche begrenzen somit keine T eildiffusoren, sondern sind im Regelfall nur Umlenkhilfen.Since with conventional, heavily loaded blades, their opening angle far exceeds that of a good diffuser it is expedient that the diffuser for supporting the flow in the radial direction is divided into several partial diffusers by means of flow-guiding plates. This means that each individual partial diffuser can be optimally designed. Baffles of this type are known from the exhaust steam housings of steam turbines, in which the relaxed, axially escaping steam is transferred in a radial outflow direction. However, it is also known from the theory of curved diffusers that with the technically possible relatively short lengths and meridional deflections of around 90 °, ie from axial to radial, there is only a slight deceleration. These known sheets thus do not limit part diffusers, but are usually only deflection aids.
Besonders günstig ist es, wenn die Leitbleche einteilige Ringe ohne Trennfuge sind, die sich zumindest teilweise über die ganze Diffusorlänge erstrecken. Durch den hierdurch erzielten Wegfall von Flanschverbindungen wird zum einen der freie, durchströmbare Querschnitt erhöht. Zum andern wirkt sich die Rotationssymmetrie der Leitbleche sehr günstig auf das Schwingungsverhalten des Systemes aus.It is particularly favorable if the baffles are one-piece rings without a joint, which at least partially extend over the entire length of the diffuser. As a result of the elimination of flange connections, the free cross-section that can be flowed through is increased. On the other hand, the rotational symmetry of the guide plates has a very favorable effect on the vibration behavior of the system.
Wird der Diffusorendteil als Carnot-Diffusor ausgebildet, so kann mit dieser Massnahme eine weitere Verkürzung des Gesamtdiffusors erreicht werden, ohne strömungstechnische Nachteile in Kauf nehmen zu müssen.If the diffuser end part is designed as a Carnot diffuser, this measure can further shorten the overall diffuser without having to accept the disadvantages of the flow.
Zweckmässig ist es, wenn die Mittel zur Wegnahme des Dralls innerhalb des Diffusors mindestens drei gleichmässig über den Umfang angeordnete, ungekrümmte oder gekrümmte Strömungsrippen mit dicken Profilen sind, die sich über die ganze Höhe des durchströmten Kanals erstrecken. Diese Konfiguration führt zur Unempfindlichkeit der Rippen gegen Schräganströmung.It is expedient if the means for removing the swirl within the diffuser are at least three evenly arranged circumferential, non-curved or curved flow ribs with thick profiles, which extend over the entire height of the channel through which the flow passes. This configuration leads to the ribs being insensitive to oblique flow.
Werden die Begrenzungswände des Diffusors so gestaltet, dass im vorderen Bereich der Strömungsrippen nur eine bescheidene Querschnittsänderung im Diffusor stattfindet, so wird mit dieser Massnahme eine ablösungsfreie Umlenkung sowohl eingeleitet als auch durchgeführt.If the boundary walls of the diffuser are designed in such a way that in the front area of the flow ribs only a modest change in cross-section takes place in the diffuser, then This measure both initiated and carried out a detachment-free redirection.
Es ist sinnvoll, wenn die Strömungsrippen in ihrer radialen Erstreckung einen Hohlraum aufweisen, durch den das Nabeninnere des Diffusors erreichbar ist. Ohne Demontage des Diffusors sind dadurch jederzeit die Lager und die innenliegenden Berohrungen zugänglich.It is useful if the flow ribs have a cavity in their radial extension through which the hub interior of the diffuser can be reached. This means that the bearings and the internal tubes are accessible at all times without disassembling the diffuser.
Mit Vorteil bilden die Strömungsrippen Tragkörper für die Leitringe, derart, dass die entsprechend ausgesparten Ringe in Profillängserstreckung am Tragkörper befestigt, vorzugsweise angeschweisst sind. Bei Vermeidung der sonst erforderlichen Stützrippen sind hierdurch stabile Verbindungen herstellbar.The flow ribs advantageously form support bodies for the guide rings, such that the correspondingly recessed rings are attached to the support body in the longitudinal direction of the profile, preferably welded on. By avoiding the otherwise necessary support ribs, stable connections can be made.
Es ist angebracht, dass die angeströmte Vorderkante der Strömungsrippen sich in einem Abstand zur Austrittsebene der Turbinenbeschaufelung befindet, bei welchem ein Diffusorflächenverhältnis von mindestens 2, vorzugsweise 3 vorherrscht. Die erste Diffusorzone bleibt damit infolge totaler Rotationssymmetrie ungestört, was zur grösstmöglichen Verzögerung bei kürzester Baulänge führt. Dadurch, dass die Rippen erst in einer Ebene wirksam werden, in der bereits ein relativ tiefes Energieniveau vorherrscht, sind auch keine Interferenzeffekte zwischen Rippe und Beschaufelung zu erwarten. Die spezifischen Verluste durch die Rippen sind ebenfalls klein.It is appropriate that the flowed leading edge of the flow ribs is at a distance from the exit plane of the turbine blading, at which a diffuser area ratio of at least 2, preferably 3, prevails. The first diffuser zone thus remains undisturbed due to total rotational symmetry, which leads to the greatest possible deceleration with the shortest overall length. Since the ribs only become effective in a plane in which a relatively low energy level already prevails, no interference effects between the rib and the blading are to be expected. The specific losses through the ribs are also small.
Um eine gute Inspektionsmöglichkeit für die letzte Beschaufelungsreihe zu schaffen, ist es vorteilhaft, wenn ein Teil der Leitringe sich in Maschinenlängsrichtung lediglich bis zu jener Ebene erstreckt, in welcher der Tragkörper seine grösste Profildicke aufweist. Es kann dadurch vom Personal ohne Beeinträchtigung bis zur engsten Stelle zwischen äusserer und/oder innerer Begrenzungswand des Diffusors und Strömungsrippe vorgedrungen werden.In order to provide a good inspection option for the last row of blading, it is advantageous if a part of the guide rings extends in the machine longitudinal direction only up to the plane in which the support body has its greatest profile thickness. As a result, the personnel can penetrate to the narrowest point between the outer and / or inner boundary wall of the diffuser and the flow rib without impairment.
Insbesondere wärmetechnisch ist es günstig, wenn der Diffusor sich in einem Abgasgehäuse abstützt, welches mit dem Turbinengehäuse verschraubt ist, wobei die nabenseitigen, innenliegenden Abgasgehäuseteile mit den den Diffusor umgebenden aussenliegenden Abgasgehäuseteilen durch tragende Rippen verbunden sind, welche vorzugsweise den Hohlraum der Strömungsrippen durchdringen. Die tragende Struktur kann dadurch auf einem tieferen und homogenen Temperaturniveau gehalten werden, was sich auf das Deformationsverhalten auswirkt, und damit letztlich kleinere Schaufelspiele ermöglicht.In terms of heat technology in particular, it is expedient if the diffuser is supported in an exhaust gas housing which is screwed to the turbine housing, the hub-side, internal exhaust gas housing parts being connected to the external exhaust gas housing parts surrounding the diffuser by supporting ribs, which preferably penetrate the cavity of the flow ribs. As a result, the load-bearing structure can be kept at a lower and homogeneous temperature level, which has an effect on the deformation behavior, and thus ultimately enables smaller blade clearances.
Es empfiehlt sich, die tragenden Rippen hohl und begehbar auszubilden, da sich die dicken Profile der Strömungsrippen hierzu anbieten.It is advisable to make the supporting ribs hollow and walkable, since the thick profiles of the flow ribs are suitable for this.
Werden die innenliegenden und die aussenliegenden Abgasgehäuseteile als einteilige Topfgehäuse ohne Trennfuge ausgebildet, so ist auch hier - bedingt durch die Rotationssymmetrie ein günstiges Deformationsverhalten zu erwarten.If the internal and external exhaust gas housing parts are designed as a one-piece pot housing without a joint, a favorable deformation behavior can also be expected here due to the rotational symmetry.
Besonders instandhaltungsfreundlich wird das System, wenn die Einheit Abgasgehäuse/Diffusor in das Abgasrohr hinein axial verschiebbar ist. Wenn die Maschine demontiert werden muss, kann somit das Abgasrohr, welches in der Regel in der Wandung des Maschinenhauses eingebaut ist, am Ort belassen werden.The system becomes particularly easy to maintain when the exhaust housing / diffuser unit can be moved axially into the exhaust pipe. If the machine has to be dismantled, the exhaust pipe, which is usually installed in the wall of the machine house, can be left in place.
Zur Kühlung der strömungsführenden und der tragenden Elemente ist es angebracht, wenn der innere, von innerem Abgasgehäuseteil und innerer Diffusorbegrenzungswand gebildete Ringkanal mit dem äusseren Kanal von äusserem Abgasgehäuseteil und äusserer Diffusorbegrenzungswand gebildete Ringkanal über die Hohlräume der Strömungsrippen miteinander verbunden sind. Werden die solchermassen gebildeten Kühlkanäle von einem adäquaten Kühlmittel, beispielsweise entsprechend konditionierter Rotorkühlluft durchströmt, so kann die gesamte tragende Struktur auf einem tiefen, homogenen Temperaturniveau gehalten werden.For cooling the flow-guiding and the supporting elements, it is appropriate if the inner ring channel formed by the inner exhaust gas housing part and the inner diffuser boundary wall are connected to one another via the cavities of the flow ribs with the outer channel by the outer exhaust gas housing part and the outer diffuser boundary wall. If an adequate coolant, for example suitably conditioned rotor cooling air, flows through the cooling channels formed in this way, the entire load-bearing structure can be kept at a low, homogeneous temperature level.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer Gasturbine dargestellt.In the drawing, an embodiment of the invention is shown using a gas turbine.
Es zeigen:
- Fig. 1 eine schematische Prinzipskizze des gesamten Diffusorsystems;
- Fig. 2 eine Draufsicht auf eine isolierte Strömungsrippe;
- Fig. 3 einen Querschnitt durch die Schnittebene A - A in Fig. 1;
- Fig. 4 einen Teillängsschnitt des Diffusors in vergrössertem Massstab;
- Fig. 5 die Abwicklung eines Zylinderschnittes auf mittlerem Durchmesser nach Schnitt B - B in Fig. 3.
- Figure 1 is a schematic schematic diagram of the entire diffuser system.
- 2 is a top view of an isolated flow rib;
- 3 shows a cross section through the sectional plane AA in FIG. 1;
- 4 shows a partial longitudinal section of the diffuser on an enlarged scale;
- 5 shows the development of a cylindrical section on a medium diameter according to section BB in FIG. 3.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind beispielsweise Verdichterteil, Brennkammer sowie die ersten Stufen des Gasturbinenteils einerseits und das vollständige Abgasrohr und das Kamin andererseits. Die Strömungsrichtung der diversen Medien ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. Not shown are, for example, the compressor part, the combustion chamber and the first stages of the gas turbine part on the one hand and the complete exhaust pipe and the chimney on the other hand. The direction of flow of the various media is indicated by arrows.
Die Gasturbine, von der in Fig. 1 lediglich die drei letzten, axialdurchströmten Stufen dargestellt sind, besteht im wesentlichen aus dem beschaufelten Rotor 1 und dem mit Leitschaufeln bestückten Schaufelträger 2. Der Schaufelträger ist im Turbinengehäuse 3 eingehängt. Der Rotor 1 liegt in einem Traglager 4 ein, welches sich seinerseits in einem Abgasgehäuse 5 abstützt. Dieses Abgasgehäuse 5 besteht im wesentlichen aus einem nabenseitigen, innenliegenden Teil 6 und einem aussen liegenden Teil 7. Beide Elemente sind einteilige Topfgehäuse ohne axiale Trennebene. Sie sind miteinander verbunden durch drei angeschweisste tragende Rippen 8, die gleichmässig verteilt über dem Umfang angeordnet sind. Die tragenden Rippen 8 sind hohl ausgeführt. Dadurch ist es möglich, das Nabeninnere 22 des Abgasgehäuses zu begehen, wie dies durch dem Monteur in Fig. 1 symbolisch dargestellt ist. Die Raumverhältnisse gestatten es, selbst grössere Lagerarbeiten wie beispielsweise das Abheben des Lagerdeckels durchzuführen. Durch diese hohlen Tragrippen 8 können auch die Versorgungsleitungen aus dem System herausgeführt werden. Darüber hinaus haben die Rippen die Funktion, die Lagerkräfte vom innenliegenden Gehäuseteil 6 auf das äussere Gehäuseteil 7 zu übertragen. Das äussere Gehäuseteil 7 ist mit dem Turbinengehäuse 3 über Flanschverschraubungen 20 verbunden (Fig. 4).The gas turbine, of which only the last three axially flowed stages are shown in FIG. 1, essentially consists of the bladed rotor 1 and the
Das Abgasgehäuse 5 ist so konzipiert, dass es mit der Abgasströmung nicht in Kontakt ist. Die eigentliche Strömungsführung wird vom Diffusor übernommen, der als Einsatz zum Abgasgehäuse ausgelegt ist. Wie in Fig. 4 erkennbar ist, stützt sich die äussere Begrenzungswand 9 des Diffusors über Bleche 19 zusammen mit dem äusseren Abgasgehäuseteil 7 am Turbinengehäuse 3 ab; die innere Begrenzungswand 10 hingegen ist über Streben 11 an der Nabenkappe 12 des inneren Abgasgehäuseteils 6 eingehängt. Der Diffusor mündet mit seinem Endteil in das Abgasrohr 13.The
Massgebend für die gewünschte Funktionsweise des Diffusors ist nunmehr der Knickwinkel seiner beiden Begrenzungswände 9 und 10 unmittelbar am Austrit t der Beschaufelung. Aus Fig. 1 ist aufgrund des grossen Oeffnungswinkels h erkennbar, dass die Beschaufelung der Gasturbine eine hochbelastete Reaktionsbeschaufelung ist, deren letzte Laufschaufelreihe in der Folge mit hoher Machzahl durchströmt wird. Die Fig. 4 zeigt, dass die Kontur am Schaufelfuss zylindrisch ist mit entsprechender Schräge an der Spitze der Laufschaufel 14. Die Konizität beträgt etwa 30°. Der Konstrukteur würde jetzt diesen Winkel auf ca. 7° reduzieren, indem er beispielsweise die Nabenkontur und die Zylinderkontur so anstellt, dass die geometrische Mittellinie der letzten Turbinenstufe und jene des Diffusoreintritts übereinstimmen.The kink angle of its two
Gemäss der Erfindung ist dieses Vorgehen jedoch unter allen Umständen zu vermeiden. Sobald die Beschaufelung festgelegt ist und damit die Strömungsverhältnisse an deren Austritt bekannt sind, wird der Diffusor ausgelegt und zwar unabhängig von konstruktiven Ueberlegungen, sondern einzig und allein nach strömungstechnischen Gesichtspunkten. Die beiden Knickwinkel müssen bestimmt werden aufgrund der gesamten Strömung in der Beschaufelung und im Diffusor, gegebenenfalls sogar unter Berücksichtigung des Brennkammereinflusses.According to the invention, however, this procedure should be avoided under all circumstances. As soon as the blading has been determined and the flow conditions at its outlet are known, the diffuser is designed, regardless of structural considerations, but solely on the basis of fluid dynamics. The two articulation angles must be determined based on the total flow in the blading and in the diffuser, possibly even taking into account the influence of the combustion chamber.
Es sind demnach Strömungsüberlegungen anzustellen, die den eingangs erwähnten schädlichen Druckaufbau an der Nabe und am Zylinder nicht verursachen, sondern dort ein möglichst homogenes Energieprofil erzeugen.Flow considerations must therefore be made that do not cause the harmful pressure build-up on the hub and on the cylinder mentioned above, but instead generate an energy profile that is as homogeneous as possible.
Betrachtet man die Gleichung für das radiale Gleichgewicht, so ist in erster Linie die Meridiankrümmung der Stromlinien verantwortlich für das Ausmass der erwähnten Druckerhöhung. Diese muss primär beeinflusst werden durch Anpassen des Anstellwinkels, um eine homogene Energieverteilung zu erzielen. Damit ist der Knickwinkel der inneren Begrenzungswand am Diffusoreintritt im Prinzip festgelegt. Im vorliegenden Fall führt dies zu einem Winkel α N, der von der Horizontalen in positiver Richtung ansteigt. Erkennbar ist, dass der Winkel nahezu 20° aufweist. Dies ist u.a. noch auf den Kühllufteinfluss zurückzuführen. Bekanntlich wird die Nabe, d.h. die Rotoroberfläche und die Laufschaufelfüsse in der Regel mit Kühlluft auf ein erträgliches Mass heruntergekühlt. Ein Teil dieser Kühlluft strömt nun entlang der Rotoroberfläche in den Hauptkanal ein. Diese Kühlluft weist eine tiefere Temperatur auf als die Hauptströmung, was unmittelbar an der Nabe hinter der letzten Laufschaufel energieschwache Zonen, sogenannte Energielöcher ver ursacht. Diese gasturbinenspezifische Tatsache führt nun dazu, dass an der Stelle des Energiemangels der erwähnte Druckgradient an dieser Stelle erzwungen werden muss. Und dies wird durch vermehrtes Anstellen der inneren Begrenzungswand 10 und eine dadurch bedingte meridionale Umlenkung der Strömung erreicht. Die hierdurch aufgebaute Energie verhindert ein Ablösen der Strömung an der Nabe des Diffusors.
Aus alldem erkennt man, dass ein willkürliches, z.B. zylindrisches Weiterführen der inneren Begrenzungswand des Diffusors auf jeden Fall ungeeignet wäre, um die typischen Abströmmängel auszugleichen.Looking at the equation for the radial equilibrium, the meridian curvature of the streamlines is primarily responsible for the extent of the pressure increase mentioned. This must be influenced primarily by adjusting the angle of attack in order to achieve a homogeneous energy distribution. In principle, this defines the kink angle of the inner boundary wall at the diffuser inlet. In the present case, this leads to an angle α N that rises from the horizontal in a positive direction. It can be seen that the angle is almost 20 °. This is due, among other things, to the influence of cooling air. As is known, the hub, ie the rotor surface and the blade roots, is generally cooled down to a tolerable level with cooling air. Part of this cooling air now flows into the main duct along the rotor surface. This cooling air has a lower temperature than the main flow, which causes low-energy zones, so-called energy holes, directly on the hub behind the last rotor blade causes. This gas turbine-specific fact now leads to the fact that the pressure gradient mentioned must be enforced here at the point of the lack of energy. And this is achieved by increasing the setting of the
From all this it can be seen that an arbitrary, for example cylindrical, extension of the inner boundary wall of the diffuser would in any case be unsuitable to compensate for the typical leakage defects.
Die gleichen Ueberlegungen werden nun ebenfalls für den Zylinder durchgeführt. Hier gilt es allerdings zu berücksichtigen, dass die Strömung infolge des Spaltstromes zwischen Schaufelspitze und Schaufelträger 2 sehr energiereich ist. Ausserdem weist sie einen starken Drall auf. Eine homogene Energieverteilung lässt sich hier nur dann erzielen, wenn der Knickwinkel am Zylinder gegenüber der Schrägen des Beschaufelungskanals in jedem Fall nach aussen öffnet. Im vorliegenden Fall ist er mit α Z bezeichnet und weist einen Betrag von ca. 10° auf.The same considerations are now also carried out for the cylinder. Here, however, it must be taken into account that the flow is very high in energy due to the gap current between the blade tip and
Im Ergebnis zeigt sich also, dass der Gesamtöffnungswinkel des Diffusors im Bereich des Oeffnungswinkels der Beschaufelung liegt, ja selbst grösser als dieser sein kann, keinesfalls jedoch jene Werte innehat, die den rein konstruktiven Ueberlegungen entsprechen würden.The result shows that the total opening angle of the diffuser is in the range of the opening angle of the blading, and may even be greater than this, but in no case holds those values that would correspond to the purely constructive considerations.
Damit sind die Bedingungen geschaffen, dass im nachfolgenden Diffusor die Druckumse tzung so erfolgt, dass an dessen Austritt eine homogene, gleichmässige Abströmung vorliegt.This creates the conditions for the pressure to be converted in the subsequent diffuser in such a way that a homogeneous, uniform outflow is present at the outlet thereof.
Nun ist es allerdings klar, dass ein Diffusor mit 30° Oeffnungswinkel ungeeignet ist, um die Strömung zu verzögern. In radialer Richtung wird er deshalb mittels strömungsführender Leitbleche 15 in Teildiffusoren unterteilt. Diese können nun nach den bekannten Regeln dimensioniert werden. Im vorliegenden Fall heisst das, dass drei Leitbleche 15 so angeordnet werden, dass vier Teildiffusoren 16 mit je 7,5° Oeffnungswinkel resultieren.However, it is now clear that a diffuser with a 30 ° opening angle is unsuitable to delay the flow. It is therefore divided into partial diffusers in the radial direction by means of flow-guiding
Zwar ist auch diese Lösung von den kurzbauenden Quelldiffusoren her im Grundsatz bekannt, jedoch darf nicht ausser acht gelassen werden, dass bei diesen bekannten Diffusoren der Knickwinkel am Diffusoreintritt willkürlich entsteht je nach Anzahl Teildiffusoren. Wie indes ausgeführt wurde, sind willkürliche Knickwinkel bei Strömungsmaschinen aufgrund deren spezifischer Abströmverhältnisse völlig ungeeignet.Although this solution is known in principle from the short source diffusers, it should not be forgotten that with these known diffusers the kink angle at the diffuser inlet arises arbitrarily depending on the number of partial diffusers. As has been stated, arbitrary kink angles are completely unsuitable for turbomachines because of their specific outflow conditions.
Um das Schwingungsverhalten zu verbessern, sind diese Leitbleche 15 als einteilige Ringe oder Kegelstümpfe konzipiert. Dadurch, dass sie rotationssymmetrisch und ohne Trennflansche ausgeführt sind, bilden sie die besten Voraussetzungen für die ungestörte Druckumsetzung in der zu diesem Zeitpunkt noch drallbehafteten Strömung. Um auf diese Art den bestmöglichen Druckrückgewinn zu erzielen, erstrecken sich die Leitringe 15 ohne irgendwelche Querschnittsbeeinträchtigungen hin bis zu einer Ebene, bei welcher ein Diffusorflächenverhältnis von 3 erreicht ist. Diese Strecke gilt als erste Diffusorzone.In order to improve the vibration behavior, these
Nun müssen diese Leitbleche 15 auf geeignete Weise im Diffusor befestigt und untereinander auf Abstand gehalten werden. Hierzu bieten sich in erster Linie die klassischen Rippen an. Andererseits sieht die Erfindung auch vor, bei Teillast den bestmöglichen Druckrückgewinn zu erzielen. Dies führt zur Forderung, der Strömung den anhaftenden Drall wegzunehmen, was wiederum in klassischer Weise durch gleichrichtende Rippen machbar ist. Im vorliegenden Fall sind beide Funktionen mit ein und demselben Mittel, nämlich Strömungsrippen 17 kombinierbar.Now these
Gleichmässig über den Umfang verteilt sind drei gerade Strömungsrippen im Diffusor angeordnet. Es handelt sich dabei um dicke Profile, die nach den Erkenntnissen des Strömungsmaschinenbaus ausgelegt sind und die gegen Schräganströmung unempfindlch sind. Will man ein Verhältnis von Teilung/Sehne von ca. 1 zugrundelegen, so ist ersichtlich, dass diese Profile bei nur drei Rippen über den Umfang eine sehr grosse Sehne erhalten. In der Tat erstrecken sie sich bis an das eigentliche Diffusorende. Sie reichen über die ganze Kanalhöhe des Diffusors und verbinden somit gleichzeitig dessen innere und äussere Begrenzungswände 10, 9 miteinander, an denen sie durch Schweissung befestigt sind. Sie sind hohl ausgeführt und aufgrund ihrer Dicke in der Eintrittspartie ist dieser Hohlraum 21 geeignet zur Aufnahme der tragenden Rippe 8 des Abgasgehäuses 5. Es versteht sich, dass die Form der hohlen tragenden Rippen 8 im Hinblick auf grösstmöglich begehbaren Raum an die Kontur der Strömungsrippen angepasst ist, wie dies aus Fig. 2 ersichtlich ist.Three straight flow ribs are evenly distributed over the circumference in the diffuser. These are thick profiles, which are designed according to the knowledge of turbomachinery and which are against inclined flow are insensitive. If you want to use a ratio of pitch / chord of approx. 1, it can be seen that these profiles are given a very large chord with only three ribs over the circumference. In fact, they extend to the actual end of the diffuser. They extend over the entire channel height of the diffuser and thus simultaneously connect the inner and
Die Befestigung der Leitbleche an den drei Strömungsrippen 17 erfolgt durch Schweissung. Hierzu sind die Leitbleche der Rippenprofilform entsprechend ausgespart. Aufgrund der langen Schweissnähte ist eine stabile Befestigung gewährleistet, welche das lange Herauskragen der Leitbleche über die ganze erste Diffusorzone ermöglicht.The baffles are attached to the three
Aus den Fig. 1 und 4 ist erkennbar, dass nur das mittlere Leitblech bis an das Diffusorende reicht. Der untere Teil von Fig. 1 zeigt, dass die zwischen Mittelblech und Begrenzungswänden angeordnete Leitbleche in jener Ebene enden, in denen die Strömungsrippen 17 ihre grösste Dicke aufweisen. Von seinem Ende aus wird damit der Diffusor so weit begehbar, dass beispielsweise die letzte Laufreihe der Gasturbine ohne weiteres einer direkten optischen Untersuchung unterworfen werden kann.1 and 4 that only the middle baffle extends to the end of the diffuser. The lower part of FIG. 1 shows that the baffles arranged between the middle plate and the boundary walls end in the plane in which the
W ie bereits erwähnt, endet die erste Diffusorzone in der Ebene der Vorderkante der Strömungsrippen 17. Eine zweite Zone erstreckt sich nun von der Vorderkante bis zur grössten Profildicke der Rippen. In dieser Zone sind die Begrenzungswände 9 und 10 des Diffusors so an das Profil der Rippe angepasst, dass die Strömung in dieser zweiten Zone, in der die Entdrallung grösstenteils vorgenommen wird, weitgehend verzögerungsfrei ist.As already mentioned, the first diffuser zone ends in the plane of the front edge of the
An die zweite Zone schliesst sich eine dritte Zone an, in der wiederum verzögert wird. Ueber diese dritte Zone hinweg reicht auch das mittlere Leitblech und die Strömungsrippen. Es handelt sich hier um einen vorwiegend geraden Diffusor. Da die Strömung zu diesem Zeitpunkt bereits weitgehend drallfrei ist, ist darauf zu achten, dass die Erweiterung nicht allzu stark verläuft, um ein Ablösen der Strömung an den in dieser Zone zylindrisch verlaufenden Begrenzungswänden 9 zu vermeiden. Um die Systemlänge nicht über Gebühr anwachsen zu lassen, werden die inneren Begrenzungswände 10 des Diffusors nicht voll auslaufen lassen, sondern durch einen stumpfen Abschnitt 23 in ihrer axialen Erstreckung begrenzt.The second zone is followed by a third zone, which in turn is decelerated. The middle baffle and the flow ribs also extend beyond this third zone. This is a predominantly straight diffuser. Since the flow is already largely swirl-free at this point in time, it must be ensured that the expansion does not run too much in order to avoid detachment of the flow at the
Die Strömungsrippen 17 enden in der gleichen Ebene wie die inneren Diffusorwände 10 mit ebenfalls einem stumpfen Abschnitt 18, welcher die Abströmkanten des Profils bestimmt. Zusammen mit dem vollen Querschnitt des zylindrischen Abgasrohres 13 wird hier in einer vierten Zone durch die plötzliche Erweiterung eine Art Carnot-Diffusor gebildet, der wiederum zur Verkürzung der Baulänge beiträgt. Wie in Fig. 3 erkennbar ist, ist zum ordentlichen Funktionieren dieses Carnot-Diffusors lediglich darauf zu achten, dass die punktierte Fläche, die sich aus den stumpfen Enden der drei Rippen und dem stumpfen Ende der inneren Begrenzungswände zusammensetzt, weniger als 20 % der Kreisfläche des Abgasrohres 13 beträgt.The
Da sowohl die wesentlichen tragenden als auch die strömungsführenden Elemente einteilig sind, ist zur Demontage der Turbinen vorgesehen, dass die eine funktionelle Einheit bildenden Elemte Abgasgehäuse und Diffusor als Ganzes verschiebbar ausgebildet ist. Zumindest um den Betrag, der notwendig ist, um den Rotor 1 ungehindert aus dem Traglager 4 abheben zu können, kann die Einheit in das Abgasrohr 13 hinein verschoben werden. Da das Traglager bei der fertig montierten Anlage im Inneren des mit zu verschiebendem Abgasgehäuseteiles 6 abgestützt ist, ist zu diesem Zweck vorgesehen, den Rotor 1 vorzugsweise in der Ebene des nicht gezeigten Verdichterdiffusors hilfsweise abzustützen.Since both the essential load-bearing elements and the flow-guiding elements are in one piece, it is provided for dismantling the turbines that the exhaust gas housing and diffuser elements, which form a functional unit, are designed to be displaceable as a whole. The unit can be moved into the
Zur Kühlung und Temperaturhomogenisierung insbesondere der tragenden Struktur des Abgasgehäuses 5 ist vorgesehen, diese mit aufbereiteter Kühlluft zu beaufschlagen. Hierzu wird das Kühlmedium stromabwärts der Beschaufelung in den Ringkanal 24 zwischen innerem Abgasgehäuseteil 5 und innerer Diffusorbegrenzungswand 10 eingeleitet. In Fig. 4 ist erkennbar, dass die über den durchströmten Kanal hinausragenden Teile der Strömungsrippen 17 sowohl an ihrem inneren als auch an ihrem äusseren Ende gelocht sind. Durch die inneren Kühlluftöffnungen 25ʹ gelangt das Kühlmittel in den Hohlraum 21 der Rippen (Fig. 6). Der vordere Teil dieses Hohlraumes ist durch eine sich über die ganze Kanalhöhe erstreckende Trennwand 27 zum stromabseitigen Profilende abgeschottet. Hieraus ergibt sich, dass sich die tragenden Rippen 8 in einem eigentlichen Kühlraum befinden, der in radialer Richtung von innen nach aussen durchströmt ist. Am äusseren Ende strömt die Kühlluft über die entsprechenden Kühlluftöffnungen 25ʺ in den Ringkanal 26 (Fig. 7) zwischen äusserem Abgasgehäuseteil 7 und äusserer Diffusorbegrenzungswand 9. Zur Kühlung dieser Wandungen wird das Medium zurück zum Diffusoreintritt geleitet, wo es unmittelbar hinter der Austrittskante der Laufschaufeln 14 dem Spaltstrom und der Hauptströmung als aerodynamischer Ballast zugemischt wird. Selbstverständlich wird auch dieser Kühlluftanteil bei der Bestimmung des Knickwinkels α Z mitzuberücksich tigen sein. For cooling and temperature homogenization, in particular of the supporting structure of the
Claims (15)
dadurch gekennzeichnet,
- dass die Knickwinkel (α N, α Z) des Diffusoreintritts sowohl an der Nabe (10) als auch am Zylinder (9) ausschliesslich zwecks Vergleichsmässigung des Energieprofils über der Kanalhöhe am Austritt der letzten Laufschaufelreihe festgelegt sind,
- und dass innerhalb der Verzögerungszone Mittel zur Drallwegnahme der drallbehafteten Strömung vorgesehen sind.1. A flow-through turbine with reaction blading connects to its outlet blades (14) through which a high Mach number flows a diffuser with an axial outlet into an exhaust pipe (13),
characterized,
- that the articulation angles (α N , α Z ) of the diffuser inlet both on the hub (10) and on the cylinder (9) are determined exclusively for the purpose of equalizing the energy profile over the channel height at the outlet of the last row of blades,
- And that means are provided for swirl removal of the swirled flow within the delay zone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3876/86 | 1986-09-26 | ||
CH3876/86A CH672004A5 (en) | 1986-09-26 | 1986-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0265633A1 true EP0265633A1 (en) | 1988-05-04 |
EP0265633B1 EP0265633B1 (en) | 1991-02-06 |
Family
ID=4265384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87112769A Expired - Lifetime EP0265633B1 (en) | 1986-09-26 | 1987-09-02 | Axial turbine |
Country Status (6)
Country | Link |
---|---|
US (1) | US4802821A (en) |
EP (1) | EP0265633B1 (en) |
JP (1) | JP2820403B2 (en) |
AU (1) | AU603136B2 (en) |
CH (1) | CH672004A5 (en) |
DE (1) | DE3767965D1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014175763A1 (en) * | 2013-04-25 | 2014-10-30 | Siemens Aktiengesellschaft | Turbo-machine and waste heat utilization device |
EP3159501A1 (en) * | 2015-10-21 | 2017-04-26 | Siemens Aktiengesellschaft | Flow engine comprising an outlet arrangement |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0417433B1 (en) * | 1989-09-12 | 1993-06-09 | Asea Brown Boveri Ag | Axial turbine |
US5297930A (en) * | 1991-12-31 | 1994-03-29 | Cornell Research Foundation, Inc. | Rotating stall suppression |
EP0581978B1 (en) * | 1992-08-03 | 1996-01-03 | Asea Brown Boveri Ag | Multi-zone diffuser for turbomachine |
DE4422700A1 (en) * | 1994-06-29 | 1996-01-04 | Abb Management Ag | Diffuser for turbomachinery |
US5494405A (en) * | 1995-03-20 | 1996-02-27 | Westinghouse Electric Corporation | Method of modifying a steam turbine |
US5743710A (en) * | 1996-02-29 | 1998-04-28 | Bosch Automotive Motor Systems Corporation | Streamlined annular volute for centrifugal blower |
CN1089136C (en) * | 1997-10-17 | 2002-08-14 | Entek股份有限公司 | Exhaust duct for steam turbine |
DE19803161C2 (en) * | 1998-01-28 | 2000-03-16 | Alstom Energy Syst Gmbh | Gas turbine silencer with diffuser |
DE19821889B4 (en) * | 1998-05-15 | 2008-03-27 | Alstom | Method and device for carrying out repair and / or maintenance work in the inner housing of a multi-shell turbomachine |
DE19846224A1 (en) * | 1998-10-07 | 2000-04-20 | Siemens Ag | Steam turbine with an exhaust steam casing |
DE10037684A1 (en) | 2000-07-31 | 2002-02-14 | Alstom Power Nv | Low pressure steam turbine with multi-channel diffuser |
DE10051223A1 (en) | 2000-10-16 | 2002-04-25 | Alstom Switzerland Ltd | Connectable stator elements |
US6807803B2 (en) * | 2002-12-06 | 2004-10-26 | General Electric Company | Gas turbine exhaust diffuser |
JP4040556B2 (en) * | 2003-09-04 | 2008-01-30 | 株式会社日立製作所 | Gas turbine equipment and cooling air supply method |
US20110176917A1 (en) * | 2004-07-02 | 2011-07-21 | Brian Haller | Exhaust Gas Diffuser Wall Contouring |
US7100358B2 (en) * | 2004-07-16 | 2006-09-05 | Pratt & Whitney Canada Corp. | Turbine exhaust case and method of making |
US7909569B2 (en) * | 2005-06-09 | 2011-03-22 | Pratt & Whitney Canada Corp. | Turbine support case and method of manufacturing |
US20110076146A1 (en) * | 2009-09-30 | 2011-03-31 | Falcone Andrew J | Wind turbine electrical generating system with combined structural support members and straightening vanes |
US8313286B2 (en) * | 2008-07-28 | 2012-11-20 | Siemens Energy, Inc. | Diffuser apparatus in a turbomachine |
US8591184B2 (en) * | 2010-08-20 | 2013-11-26 | General Electric Company | Hub flowpath contour |
US8628297B2 (en) * | 2010-08-20 | 2014-01-14 | General Electric Company | Tip flowpath contour |
US20130091865A1 (en) * | 2011-10-17 | 2013-04-18 | General Electric Company | Exhaust gas diffuser |
US8899975B2 (en) | 2011-11-04 | 2014-12-02 | General Electric Company | Combustor having wake air injection |
US9267687B2 (en) | 2011-11-04 | 2016-02-23 | General Electric Company | Combustion system having a venturi for reducing wakes in an airflow |
DE102011118735A1 (en) | 2011-11-17 | 2013-05-23 | Alstom Technology Ltd. | DIFFUSER, ESPECIALLY FOR AN AXIAL FLOW MACHINE |
US20130180245A1 (en) * | 2012-01-12 | 2013-07-18 | General Electric Company | Gas turbine exhaust diffuser having plasma actuator |
PL221113B1 (en) * | 2012-01-25 | 2016-02-29 | Gen Electric | Turbine exhaust diffuser system |
EP2685054B1 (en) * | 2012-07-09 | 2020-11-25 | ABB Schweiz AG | Diffuser of an exhaust gas turbine |
EP2971614B1 (en) * | 2013-03-14 | 2020-10-14 | Rolls-Royce Corporation | A subsonic shock strut |
US9739201B2 (en) | 2013-05-08 | 2017-08-22 | General Electric Company | Wake reducing structure for a turbine system and method of reducing wake |
US9322553B2 (en) | 2013-05-08 | 2016-04-26 | General Electric Company | Wake manipulating structure for a turbine system |
US9435221B2 (en) | 2013-08-09 | 2016-09-06 | General Electric Company | Turbomachine airfoil positioning |
US20150059312A1 (en) * | 2013-08-29 | 2015-03-05 | General Electric Company | Exhaust stack having a co-axial silencer |
US9598981B2 (en) * | 2013-11-22 | 2017-03-21 | Siemens Energy, Inc. | Industrial gas turbine exhaust system diffuser inlet lip |
US9617873B2 (en) * | 2014-09-15 | 2017-04-11 | Siemens Energy, Inc. | Turbine exhaust cylinder / turbine exhaust manifold bolted stiffening ribs |
US10563543B2 (en) * | 2016-05-31 | 2020-02-18 | General Electric Company | Exhaust diffuser |
US20190145284A1 (en) * | 2017-11-13 | 2019-05-16 | National Chung Shan Institute Of Science And Technology | Exhaust channel of microturbine engine |
US11028778B2 (en) | 2018-09-27 | 2021-06-08 | Pratt & Whitney Canada Corp. | Engine with start assist |
KR102350377B1 (en) * | 2020-03-20 | 2022-01-14 | 두산중공업 주식회사 | Anti-Separation Hub Structure for Exhaust Diffuser |
CN113757021A (en) * | 2021-09-24 | 2021-12-07 | 广西桂冠电力股份有限公司大化水力发电总厂 | Method for measuring center of large shaft of water turbine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH352534A (en) * | 1957-12-12 | 1961-02-28 | Napier & Son Ltd | Assembly comprising an annular exhaust duct and bearings for supporting a rotor of a gas turbine engine unit |
DE1227290B (en) * | 1959-11-04 | 1966-10-20 | Otto Schiele Dr Ing | Diffuser arrangement of short overall length with a profile grille at the beginning and / or at the end of the diverging diffuser part |
CH512664A (en) * | 1969-08-04 | 1971-09-15 | Gen Electric | Method for cooling the housing of a turbo machine for compressible media and device for carrying out the method |
DE2224249A1 (en) * | 1971-05-27 | 1972-11-30 | Westinghouse Electric Corp., Pittsburgh, Pa. (V.StA.) | Exhaust system for a gas turbine with open circuit and elastic propellant |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE697997C (en) * | 1936-06-23 | 1940-10-29 | Siemens Schuckertwerke Akt Ges | Air duct behind an axial fan with diffuser |
US2538739A (en) * | 1946-03-27 | 1951-01-16 | Joy Mfg Co | Housing for fan and motor |
US2828939A (en) * | 1950-09-20 | 1958-04-01 | Power Jets Res & Dev Ltd | Support of turbine casings and other structure |
FR1104644A (en) * | 1954-02-15 | 1955-11-22 | Thomson Houston Comp Francaise | Improvements to Fluid Flow Control Systems |
CH484358A (en) * | 1968-02-15 | 1970-01-15 | Escher Wyss Ag | Exhaust housing of an axial turbo machine |
US4013378A (en) * | 1976-03-26 | 1977-03-22 | General Electric Company | Axial flow turbine exhaust hood |
FR2401311A1 (en) * | 1977-08-25 | 1979-03-23 | Europ Turb Vapeur | EXHAUST SYSTEM FOR AXIAL CONDENSABLE FLUID TURBINE |
JPS5672206A (en) * | 1979-11-14 | 1981-06-16 | Nissan Motor Co Ltd | Diffuser with collector |
EP0035838B1 (en) * | 1980-03-10 | 1985-02-06 | Rolls-Royce Plc | Diffusion apparatus |
DE3206626A1 (en) * | 1982-02-24 | 1983-09-01 | Kraftwerk Union AG, 4330 Mülheim | EXHAUST CHANNEL FOR GAS TURBINES |
IT1153351B (en) * | 1982-11-23 | 1987-01-14 | Nuovo Pignone Spa | PERFECTED COMPACT DIFFUSER, PARTICULARLY SUITABLE FOR HIGH-POWER GAS TURBINES |
JPS60196414A (en) * | 1984-03-16 | 1985-10-04 | Hitachi Ltd | Rectifier for gas turbine duct |
-
1986
- 1986-09-26 CH CH3876/86A patent/CH672004A5/de not_active IP Right Cessation
-
1987
- 1987-09-02 EP EP87112769A patent/EP0265633B1/en not_active Expired - Lifetime
- 1987-09-02 DE DE8787112769T patent/DE3767965D1/en not_active Expired - Fee Related
- 1987-09-21 AU AU78802/87A patent/AU603136B2/en not_active Ceased
- 1987-09-21 US US07/099,020 patent/US4802821A/en not_active Expired - Lifetime
- 1987-09-25 JP JP62239105A patent/JP2820403B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH352534A (en) * | 1957-12-12 | 1961-02-28 | Napier & Son Ltd | Assembly comprising an annular exhaust duct and bearings for supporting a rotor of a gas turbine engine unit |
DE1227290B (en) * | 1959-11-04 | 1966-10-20 | Otto Schiele Dr Ing | Diffuser arrangement of short overall length with a profile grille at the beginning and / or at the end of the diverging diffuser part |
CH512664A (en) * | 1969-08-04 | 1971-09-15 | Gen Electric | Method for cooling the housing of a turbo machine for compressible media and device for carrying out the method |
DE2224249A1 (en) * | 1971-05-27 | 1972-11-30 | Westinghouse Electric Corp., Pittsburgh, Pa. (V.StA.) | Exhaust system for a gas turbine with open circuit and elastic propellant |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014175763A1 (en) * | 2013-04-25 | 2014-10-30 | Siemens Aktiengesellschaft | Turbo-machine and waste heat utilization device |
EP3159501A1 (en) * | 2015-10-21 | 2017-04-26 | Siemens Aktiengesellschaft | Flow engine comprising an outlet arrangement |
WO2017067774A1 (en) * | 2015-10-21 | 2017-04-27 | Siemens Aktiengesellschaft | Flow engine comprising an outlet arrangement |
Also Published As
Publication number | Publication date |
---|---|
JP2820403B2 (en) | 1998-11-05 |
DE3767965D1 (en) | 1991-03-14 |
AU603136B2 (en) | 1990-11-08 |
US4802821A (en) | 1989-02-07 |
AU7880287A (en) | 1988-03-31 |
JPS6390630A (en) | 1988-04-21 |
CH672004A5 (en) | 1989-10-13 |
EP0265633B1 (en) | 1991-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0265633B1 (en) | Axial turbine | |
EP0581978B1 (en) | Multi-zone diffuser for turbomachine | |
EP0781967B1 (en) | Annular combustion chamber for gas turbine | |
EP1141628B1 (en) | Burner for heat generator | |
DE69726626T2 (en) | Three-channel diffuser for a gas turbine engine | |
DE4422700A1 (en) | Diffuser for turbomachinery | |
DE1601564A1 (en) | Jacket ring for gas turbine systems | |
EP0718561B1 (en) | Combustor | |
DE2632427A1 (en) | DIFFUSER COMBUSTION CHAMBER HOUSING FOR A GAS TURBINE ENGINE | |
DE1108516B (en) | Burning device | |
EP0589215B1 (en) | Gasturbine with exhaust casing and exhaust duct | |
EP0489193B1 (en) | Combustion chamber for gas turbine | |
DE2707063A1 (en) | MIXER FOR A FAN POWER PLANT | |
DE3309268C2 (en) | ||
CH703749B1 (en) | Gas turbine with axial-radial diffuser section and exhaust gas chamber. | |
EP0491966B1 (en) | Support device of a thermal turbomachine | |
EP0193029B1 (en) | Gas turbine combustor | |
DE60200420T2 (en) | Blowing device of a fan motor | |
DE102011055109A1 (en) | A system for directing the flow of air in a fuel nozzle assembly | |
CH694257A5 (en) | Steam turbine. | |
EP0751351B1 (en) | Combustion chamber | |
EP0590310A1 (en) | Gas turbine with flanged exhaust casing | |
DE4232383A1 (en) | Gas turbine group | |
DE3424141A1 (en) | AIR STORAGE GAS TURBINE | |
DE3242713C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB LI NL |
|
17P | Request for examination filed |
Effective date: 19880819 |
|
17Q | First examination report despatched |
Effective date: 19881227 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB LI NL |
|
REF | Corresponds to: |
Ref document number: 3767965 Country of ref document: DE Date of ref document: 19910314 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SIEMENS AG GRPA3 ERL S Effective date: 19911030 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SIEMENS AG |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 19930128 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950823 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19950915 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960930 Ref country code: CH Effective date: 19960930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970401 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970401 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030827 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030903 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040902 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |