EP0263240A1 - High-power high-frequency junction circulator - Google Patents

High-power high-frequency junction circulator Download PDF

Info

Publication number
EP0263240A1
EP0263240A1 EP87109520A EP87109520A EP0263240A1 EP 0263240 A1 EP0263240 A1 EP 0263240A1 EP 87109520 A EP87109520 A EP 87109520A EP 87109520 A EP87109520 A EP 87109520A EP 0263240 A1 EP0263240 A1 EP 0263240A1
Authority
EP
European Patent Office
Prior art keywords
ferrite
branching
circulator
waveguide
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87109520A
Other languages
German (de)
French (fr)
Other versions
EP0263240B1 (en
Inventor
Günter Dr.-Ing. Mörz
Wolfgang Dipl.-Phys. Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Publication of EP0263240A1 publication Critical patent/EP0263240A1/en
Application granted granted Critical
Publication of EP0263240B1 publication Critical patent/EP0263240B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/39Hollow waveguide circulators

Definitions

  • the present invention relates to a branching circulator for large high-frequency outputs with a cooled ferrite structure which is arranged in the waveguide branching zone and is exposed there to a static magnetic field.
  • the ferrite structure consists of a plurality of ferrite disks, separated from one another by air gaps and arranged perpendicular to the static magnetic field, which are attached to metal carriers through which a cooling liquid flows.
  • the invention has for its object to provide a circulator of the type mentioned, which is suitable for operation with very high radio frequency power.
  • the circulator By dividing the circulator ferrite into a large number of spheres, a very extensive cooling surface is created, which enables large amounts of heat to be dissipated. Therefore, the circulator can be operated at a very high output without the ferrite material being destroyed by thermal stresses.
  • a dielectric cylinder 5 is inserted in the waveguide branch, which is inserted in grooves 6, 7 in the mutually facing surfaces of the pole pieces.
  • This dielectric cylinder 5 serves to hold several ferrite balls 8 stacked one on top of the other to form a densest packing of balls, so that a cylindrical ferrite ball cluster in contact with the two pole pieces 3 and 4 is formed.
  • the ferrite balls 8 form a very large surface overall, which provides extremely favorable conditions for the dissipation of the heat present in the ferrite balls 8.
  • a coolant flowing around the ferrite balls for. B. gas or a suitable dielectric liquid can easily dissipate very large amounts of heat from the ferrite ball pile.
  • openings 9 and 10 are provided in the pole pieces 3 and 4, through which a gaseous or liquid coolant can penetrate into the dielectric cylinder 5 and escape again from the dielectric cylinder 5 after flowing through the ferrite ball cluster.
  • the dielectric cylinder 5 In order that no coolant from the dielectric cylinder 5 gets into the waveguide arms of the circulator, the dielectric cylinder 5 is sealed with sealing rings 11 and 12 in the grooves 6 and 7 of the pole pieces 3 and 4.
  • the openings 9 and 10 in the pole pieces 3 and 4 pointing into the waveguide branch are dimensioned such that they are impermeable to the high-frequency field in the circulator.
  • the direct contact of the pole pieces 3 and 4 with the ferrite balls 8 creates a very small magnetic resistance for the static magnetic field spreading between the pole pieces.
  • the magnetic field required for the magnetization of the ferrite ball cluster can be applied by a less complex magnet system.
  • FIG. 2 shows a section through a branching circulator using stripline technology.
  • the inner conductor 14 forms, together with the pole shoes 3 and 4 serving as the outer conductor, a waveguide branching which is implemented using stripline technology.
  • this strip conductor branching circulator all parts which correspond to components of the waveguide circulator are provided with the same reference symbols used in FIG. 1.
  • there are two dielectric cylinders filled with ferrite balls one of which dielectric cylinder 5 with the ferrite balls 8 between the top of the inner conductor 14 and the pole piece 3 and the other dielectric cylinder 5 ⁇ with the ferrite balls 8 ⁇ between the bottom of the inner conductor 14 and the pole piece 4 is arranged. So that the coolant can flow from one dielectric cylinder 5 into the other 5 ⁇ , the inner conductor 14 is provided with holes 16.
  • the dielectric cylinders 5 and 5 ⁇ are sealed against the outflow of coolant at the pole pieces 3 and 4 and on the inner conductor 14.
  • the inner conductor 14 can be made of magnetically conductive material in order to keep the magnetic resistance of the arrangement between the pole pieces small.

Abstract

Bei einem Verzweigungszirkulator für große Hochfrequenzleistungen mit einer gekühlten Ferritstruktur, die in der Wellenleiterverzweigungszone angeordnet und dort einem statischen Magnetfeld ausgesetzt ist, besteht die Ferritstruktur aus mehreren aufeinandergeschichteten Ferritkugeln (8) (Figur 1).In a branching circulator for large high-frequency outputs with a cooled ferrite structure which is arranged in the waveguide branching zone and is exposed there to a static magnetic field, the ferrite structure consists of a plurality of ferrite balls (8) stacked on top of one another (FIG. 1).

Description

Die vorliegende Erfindung betrifft einen Verzweigungszirkulator für große Hochfrequenzleistungen mit einer gekühlten Ferritstruktur, die in der Wellenleiterverzweigungszone angeordnet und dort einem statischen Magnetfeld ausgesetzt ist.The present invention relates to a branching circulator for large high-frequency outputs with a cooled ferrite structure which is arranged in the waveguide branching zone and is exposed there to a static magnetic field.

Ein derartiger Hochleistungszirkulator ist aus den Druckschriften IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-26, No. 5, May 1978 S. 364-369 und IEEE Transactions on Magnetics, Vol. MAG-17, No. 6. Nov. 1981 S. 2957-2960 bekannt. Bei den hier beschriebenen Zirkulatoren besteht die Ferritstruktur aus mehreren durch Luftspalte voneinander getrennten, senkrecht zum statischen Magnetfeld angeordneten Ferritscheiben, welche auf von einer Kühlflüssigkeit durchströmten Metallträgern angebracht sind.Such a high-performance circulator is known from the publications IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-26, No. 5, May 1978 pp. 364-369 and IEEE Transactions on Magnetics, Vol. MAG-17, No. Nov. 6, 1981 pp. 2957-2960. In the circulators described here, the ferrite structure consists of a plurality of ferrite disks, separated from one another by air gaps and arranged perpendicular to the static magnetic field, which are attached to metal carriers through which a cooling liquid flows.

Der Erfindung liegt die Aufgabe zugrunde, einen Zirkulator der eingangs genannten Art anzugeben, der für einen Betrieb mit sehr großer Hochfrequenzleistung geeignet ist.The invention has for its object to provide a circulator of the type mentioned, which is suitable for operation with very high radio frequency power.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is solved by the features of claim 1.

Zweckmäßige Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.Appropriate embodiments of the invention emerge from the subclaims.

Durch die Aufteilung des Zirkulator-Ferrits in eine Vielzahl von Kugeln entsteht eine sehr ausgedehnte Kühlfläche, die es ermöglicht, große Wärmemengen abzuleiten. Deshalb kann der Zirkulator mit einer sehr hohen Leistung betrieben werden, ohne daß das Ferritmaterial durch thermische Spannungen zerstört wird.By dividing the circulator ferrite into a large number of spheres, a very extensive cooling surface is created, which enables large amounts of heat to be dissipated. Therefore, the circulator can be operated at a very high output without the ferrite material being destroyed by thermal stresses.

An Hand von zwei zeichnerisch dargestellten Ausführungsbeispielen wird nun die Erfindung näher erläutert.

  • Figur 1 zeigt einen Querschnitt durch die Verzweigungszone eines Hohlleiterzirkulators und
  • Figur 2 zeigt einen Querschnitt durch die Verzweigungszone eines Streifenleitungszirkulators.
The invention will now be explained in more detail with the aid of two illustrative embodiments.
  • Figure 1 shows a cross section through the branching zone of a waveguide circulator and
  • Figure 2 shows a cross section through the branching zone of a strip line circulator.

Wie der in Figur 1 dargestellte Querschnitt durch die Verzweigungszone eines Hohlleiterzirkulators zeigt, sind in die zwei einander gegenüberliegenden Hohlleiterwände 1 und 2 zwei in das Innere der Verzweigungszone hineinragende Polschuhe 3 und 4 eines nicht im einzelnen dargestellten üblichen Magnetsystems eingelassen.As the cross section shown in FIG. 1 through the branching zone of a waveguide circulator shows, two pole shoes 3 and 4 of a conventional magnet system, not shown in detail, are inserted into the two opposing waveguide walls 1 and 2.

Zwischen den beiden Polschuhen 3 und 4 ist in der Hohlleiterverzweigung ein dielektrischer Zylinder 5 eingefügt, der in Nuten 6, 7 in den einander zugewandten Flächen der Polschuhe eingesetzt ist. Dieser dielektrische Zylinder 5 dient zur Aufnahme mehrere zu einer dichtesten Kugelpackung aufeinandergeschichteter Ferritkugeln 8, so daß ein mit den beiden Polschuhen 3 und 4 in Berührung stehender zylindrischer Ferritkugelhaufen entsteht.Between the two pole pieces 3 and 4, a dielectric cylinder 5 is inserted in the waveguide branch, which is inserted in grooves 6, 7 in the mutually facing surfaces of the pole pieces. This dielectric cylinder 5 serves to hold several ferrite balls 8 stacked one on top of the other to form a densest packing of balls, so that a cylindrical ferrite ball cluster in contact with the two pole pieces 3 and 4 is formed.

Die Ferritkugeln 8 bilden insgesamt eine sehr große Oberfläche, womit äußerst günstige Voraussetzungen gegeben sind für die Ableitung der in den Ferritkugeln 8 vorhandenen Wärme. Mit Hilfe eines die Ferritkugeln umströmenden Kühlmittels, z. B. Gas oder einer geeigneten dielektrischen Flüssigkeit können auf einfache Weise sehr große Wärmemengen aus dem Ferritkugelhaufen abgeführt werden. Zu diesem Zweck sind in den Polschuhen 3 und 4 Öffnungen 9 und 10 vorgesehen, durch die ein gasförmiges oder flüssiges Kühlmittel in den dielektrischen Zylinder 5 eindringen und nach Durchströmen des Ferritkugelhaufens aus dem dielektrischen Zylinder 5 wieder entweichen kann. Damit kein Kühlmittel aus dem dielektrischen Zylinder 5 in die Hohlleiterarme des Zirkulators gelangt, ist der dielektrische Zylinder 5 mit Dichtungsringen 11 und 12 in den Nuten 6 und 7 der Polschuhe 3 und 4 abgedichtet. Die in die Hohlleiterverzweigung weisenden Öffnungen 9 und 10 in den Polschuhen 3 und 4 sind so dimensioniert, daß sie für das Hochfrequenzfeld im Zirkulator undurchlässig sind.The ferrite balls 8 form a very large surface overall, which provides extremely favorable conditions for the dissipation of the heat present in the ferrite balls 8. With the help of a coolant flowing around the ferrite balls, for. B. gas or a suitable dielectric liquid can easily dissipate very large amounts of heat from the ferrite ball pile. For this purpose, openings 9 and 10 are provided in the pole pieces 3 and 4, through which a gaseous or liquid coolant can penetrate into the dielectric cylinder 5 and escape again from the dielectric cylinder 5 after flowing through the ferrite ball cluster. In order that no coolant from the dielectric cylinder 5 gets into the waveguide arms of the circulator, the dielectric cylinder 5 is sealed with sealing rings 11 and 12 in the grooves 6 and 7 of the pole pieces 3 and 4. The openings 9 and 10 in the pole pieces 3 and 4 pointing into the waveguide branch are dimensioned such that they are impermeable to the high-frequency field in the circulator.

Der direkte Kontakt der Polschuhe 3 und 4 mit den Ferritkugeln 8 schafft einen recht kleinen magnetischen Widerstand für das sich zwischen den Polschuhen ausbreitende statische Magnetfeld. Als Folge davon kann das fur d ie Magnetisierung des Ferritkugelhaufens erforderliche Magnetfeld von einem weniger aufwendigen Magnetsystem aufgebracht werden.The direct contact of the pole pieces 3 and 4 with the ferrite balls 8 creates a very small magnetic resistance for the static magnetic field spreading between the pole pieces. As a result, the magnetic field required for the magnetization of the ferrite ball cluster can be applied by a less complex magnet system.

In der Figur 2 ist ein Schnitt durch einen Verzweigungszirkulator in Streifenleitertechnik dargestellt.FIG. 2 shows a section through a branching circulator using stripline technology.

Der Innenleiter 14 bildet zusammen mit den als Außenleiter dienenden Polschuhen 3 und 4 eine in Streifenleitungstechnik ausgeführte Wellenleiterverzweigung. Bei diesem Streifenleiter-Verzweigungszirkulator sind alle Teile, die Bauteilen des Hohlleiterzirkulators entsprechen, mit den gleichen in Figur 1 verwendeten Bezugszeichen versehen. Im Unterschied zum Hohlleiterzirkulator sind hier zwei mit Ferritkugeln gefüllte dielektrische Zylinder vorhanden, von denen der eine dielektrische Zylinder 5 mit den Ferritkugeln 8 zwischen der Oberseite des Innenleiters 14 und dem Polschuh 3 und der andere dielektrische Zylinder 5ʹ mit den Ferritkugeln 8ʹ zwischen der Unterseite des Innenleiters 14 und dem Polschuh 4 angeordnet ist. Damit das Kühlmittel von einem dielektrischen Zylinder 5 in den anderen 5ʹ strömen kann, ist der Innenleiter 14 mit Löchern 16 versehen. Die dielektrischen Zylinder 5 und 5ʹ sind gegen das Ausströmen von Kühlmittel an den Polschuhen 3 und 4 und auf dem Innenleiter 14 abgedichtet. Der Innenleiter 14 kann aus magnetisch leitendem Material bestehen, um den magnetischen Widerstand der Anordnung zwischen den Polschuhen klein zu halten. The inner conductor 14 forms, together with the pole shoes 3 and 4 serving as the outer conductor, a waveguide branching which is implemented using stripline technology. In this strip conductor branching circulator, all parts which correspond to components of the waveguide circulator are provided with the same reference symbols used in FIG. 1. In contrast to the waveguide circulator, there are two dielectric cylinders filled with ferrite balls, one of which dielectric cylinder 5 with the ferrite balls 8 between the top of the inner conductor 14 and the pole piece 3 and the other dielectric cylinder 5ʹ with the ferrite balls 8ʹ between the bottom of the inner conductor 14 and the pole piece 4 is arranged. So that the coolant can flow from one dielectric cylinder 5 into the other 5ʹ, the inner conductor 14 is provided with holes 16. The dielectric cylinders 5 and 5ʹ are sealed against the outflow of coolant at the pole pieces 3 and 4 and on the inner conductor 14. The inner conductor 14 can be made of magnetically conductive material in order to keep the magnetic resistance of the arrangement between the pole pieces small.

Claims (5)

1. Verzweigungszirkulator für große Hochfrequenzleistungen mit einer gekühlten Ferritstruktur, die in der Wellenleiterverzweigungszone angeordnet und dort einem statischen Magnetfeld ausgesetzt ist, dadurch gekennzeichnet, daß die Ferritstruktur aus mehreren aufeinandergeschichteten Ferritkugeln (8, 8ʹ) besteht.1. branching circulator for large high-frequency outputs with a cooled ferrite structure which is arranged in the waveguide branching zone and is exposed there to a static magnetic field, characterized in that the ferrite structure consists of a plurality of stacked ferrite balls (8, 8ʹ). 2. Verzweigungszirkulator nach Anspruch 1, dadurch gekennzeichnet, daß die Ferritkugeln (8, 8ʹ) in einer dichtesten Kugelpackung in einem dielektrischen Zylinder (5, 5ʹ) der in der Wellenleiterverzweigungszone angeordnet ist, untergebracht sind, und daß zwei einander gegenüberstehende Polschuhe (3, 4) eines das statische Magnetfeld erzeugenden Magnetsystems den zylindrischen Ferritkugelhaufen zwischen sich aufnehmen und dabei die Ferritkugeln (8, 8ʹ) berühren.2. branching circulator according to claim 1, characterized in that the ferrite balls (8, 8ʹ) are housed in a densest spherical packing in a dielectric cylinder (5, 5ʹ) which is arranged in the waveguide branching zone, and that two mutually opposite pole shoes (3, 4) of a magnetic system generating the static magnetic field, take the cylindrical ferrite ball between them and touch the ferrite balls (8, 8ʹ). 3. Verzweigungszirkulator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in den Polschuhen (3, 4) Öffnungen (9, 10) vorgesehen sind, durch die ein Kühlmittel in den dielektrischen Zylinder (5, 5ʹ) eindringen und nach Durchströmen des Ferritkugelhaufens aus dem dielektrischen Zylinder (5, 5ʹ) wieder entweichen kann.3. Branch circulator according to claim 1 or 2, characterized in that in the pole pieces (3, 4) openings (9, 10) are provided through which a coolant penetrate into the dielectric cylinder (5, 5ʹ) and after flowing through the ferrite ball the dielectric cylinder (5, 5ʹ) can escape again. 4. Verzweigungszirkulator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei einem Hohlleiterzirkulator die Polschuhe (3, 4) des Magnetsystems durch zwei einander gegenüberliegende Hohlleiterwände (1, 2) in das Innere der Hohlleiterverzweigungszone hineinragen und den Ferritkugelhaufen zwischen sich aufnehmen.4. branching circulator according to one of claims 1 to 3, characterized in that in a waveguide circulator, the pole pieces (3, 4) of the magnet system project through two mutually opposite waveguide walls (1, 2) into the interior of the waveguide branching zone and accommodate the ferrite ball cluster between them. 5. Verzweigungszirkulator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei einem Zirkulator, dessen Wellenleiterverzweigung in Streifenleiterstechnik ausgebildet ist, auf beiden Seiten des Innenleiters (14) ein mit Ferritkugeln (8, 8ʹ) gefüllter und von einem Polschuh (3, 4) abgedeckter dielektrischer Zylinder (5, 5ʹ) angeordnet ist und daß der Innenleiter (14) und die als Außenleiter ausgebildeten Polschuhe (3,4) mit Durchgangslöchern (16,9,10) für das Kühlmittel versehen sind.5. branching circulator according to one of claims 1 to 3, characterized in that in a circulator, the waveguide branching is formed in stripline technology, on both sides of the inner conductor (14) with a ferrite balls (8, 8ʹ) filled and by a pole piece (3, 4) covered dielectric cylinder (5, 5ʹ) is arranged and that the inner conductor (14) and the pole shoes designed as outer conductors (3,4) are provided with through holes (16,9,10) for the coolant.
EP87109520A 1986-10-04 1987-07-02 High-power high-frequency junction circulator Expired - Lifetime EP0263240B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863633910 DE3633910A1 (en) 1986-10-04 1986-10-04 BRANCHING CIRCULATOR FOR LARGE HIGH FREQUENCY POWER
DE3633910 1986-10-04

Publications (2)

Publication Number Publication Date
EP0263240A1 true EP0263240A1 (en) 1988-04-13
EP0263240B1 EP0263240B1 (en) 1991-09-18

Family

ID=6311102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87109520A Expired - Lifetime EP0263240B1 (en) 1986-10-04 1987-07-02 High-power high-frequency junction circulator

Country Status (4)

Country Link
US (1) US4794352A (en)
EP (1) EP0263240B1 (en)
CA (1) CA1277726C (en)
DE (2) DE3633910A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013997A (en) * 1990-01-02 1991-05-07 General Electric Company Liquid cooled, high power, ferrite phase shifter for phased array antennas
US6853263B2 (en) * 2003-04-23 2005-02-08 Harris Corporation Circulators and isolators with variable ferromagnetic fluid volumes for selectable operating regions
DE102015107209B4 (en) * 2015-05-08 2019-06-13 AMPAS GmbH High-frequency device
CN104916891A (en) * 2015-06-30 2015-09-16 成都八九九科技有限公司 High-power waveguide circulator
CN113839164B (en) * 2021-10-15 2022-08-12 散裂中子源科学中心 High-power Y-junction type waveguide circulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781024A (en) * 1955-06-01 1957-08-14 Hughes Aircraft Co Microwave unidirectional coupling device
US3246262A (en) * 1962-05-22 1966-04-12 Telefunken Patent Heat sink for a ferrite material employing metal oxides as the dielectric material
US3500256A (en) * 1968-02-19 1970-03-10 Philip S Carter Power limiter comprising a chain of ferrite-filled dielectric resonators
US3662291A (en) * 1970-06-19 1972-05-09 E & M Lab Waveguide ferrite circulator having conductive side of dielectric disc in contact with ferrite
US3749962A (en) * 1972-03-24 1973-07-31 Us Navy Traveling wave tube with heat pipe cooling
US4605915A (en) * 1984-07-09 1986-08-12 Cubic Corporation Stripline circuits isolated by adjacent decoupling strip portions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089101A (en) * 1959-02-27 1963-05-07 Herman N Chait Field displacement circulator
US3341789A (en) * 1965-04-19 1967-09-12 Bendix Corp Latching ferrite circulator having the ferrite symmetrically located with respect toeach rf signal carrying arm
US3466571A (en) * 1968-02-28 1969-09-09 Motorola Inc High peak power waveguide junction circulators having inductive posts in each port for tuning circulator
US3714608A (en) * 1971-06-29 1973-01-30 Bell Telephone Labor Inc Broadband circulator having multiple resonance modes
FR2443750A1 (en) * 1978-12-08 1980-07-04 Lignes Telegraph Telephon LOW INSERTION LOSS POWER CIRCULATOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781024A (en) * 1955-06-01 1957-08-14 Hughes Aircraft Co Microwave unidirectional coupling device
US3246262A (en) * 1962-05-22 1966-04-12 Telefunken Patent Heat sink for a ferrite material employing metal oxides as the dielectric material
US3500256A (en) * 1968-02-19 1970-03-10 Philip S Carter Power limiter comprising a chain of ferrite-filled dielectric resonators
US3662291A (en) * 1970-06-19 1972-05-09 E & M Lab Waveguide ferrite circulator having conductive side of dielectric disc in contact with ferrite
US3749962A (en) * 1972-03-24 1973-07-31 Us Navy Traveling wave tube with heat pipe cooling
US4605915A (en) * 1984-07-09 1986-08-12 Cubic Corporation Stripline circuits isolated by adjacent decoupling strip portions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MAGNETICS, PROCEEDINGS INTERMAG CONF., Stuttgart, 20.-22. April 1966, Band MAG-2, Nr. 3, September 1966, Seiten 251-255, New York, US; W.H. VON AULOCK: "Selection of ferrite materials for microwave device applications" *

Also Published As

Publication number Publication date
EP0263240B1 (en) 1991-09-18
DE3773107D1 (en) 1991-10-24
CA1277726C (en) 1990-12-11
DE3633910A1 (en) 1988-04-07
US4794352A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
EP0142678B1 (en) Semiconductor rectifier
DE69721549T2 (en) FERROFLUID SEALING
EP0111218B1 (en) Electromagnet for nmr tomography
DE4335848A1 (en) Cooling arrangement for an AC machine
DE3045450C2 (en)
DE69126210T2 (en) SUPREME CONDUCTING MAGNETIC BEARINGS FOR HIGH TEMPERATURES
DE3332818A1 (en) SEALING DEVICE WITH MAGNETIC LIQUID
DE4436831A1 (en) Unit for magnetic orientation of rotor shaft
DE3501937A1 (en) MULTI-STAGE FERROFLUID SEAL WITH ONE POLE PIECE
DE3321321C2 (en)
EP0263240B1 (en) High-power high-frequency junction circulator
EP0263241B1 (en) High-power high frequency junction circulator
EP0263242B1 (en) Microwave junction-circulator
DE2806085C2 (en)
DE2307788C3 (en) Magnetron
DE3744143A1 (en) MAGNETIC STORAGE OF A ROTOR ON A STATOR
EP0563237B1 (en) Hollow electrical conductor coolable to extremely low temperatures
EP0279873B1 (en) Phase-shifter
DE4433064C1 (en) Impedance-matching arrangement for non-reciprocal ferrite coupler
WO2010094262A1 (en) Coil for a superconducting magnet bearing
DD248909A1 (en) SINGLE RINGING BODY WITH CARBON RING, ESPECIALLY FOR HIGH SPECIFIC LOADS
DE2402606A1 (en) Liq. cooling device for semiconductor discs - has heat sink surface, facing semiconductor disc, with wafer-like recesses as cooling channels
DE1766395A1 (en) Contact cooler
DE2855832C2 (en) Cryogenically cooled electrical machine
DE3910264A1 (en) Rotor of an electrical machine having a superconductive excitation winding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19880429

17Q First examination report despatched

Effective date: 19910123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3773107

Country of ref document: DE

Date of ref document: 19911024

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19930628

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: AFT ADVANCED FERRITE TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960716

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960920

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970702

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050702