EP0262390A1 - Method to operate premixing burners, and device for carrying out this method - Google Patents

Method to operate premixing burners, and device for carrying out this method Download PDF

Info

Publication number
EP0262390A1
EP0262390A1 EP87112359A EP87112359A EP0262390A1 EP 0262390 A1 EP0262390 A1 EP 0262390A1 EP 87112359 A EP87112359 A EP 87112359A EP 87112359 A EP87112359 A EP 87112359A EP 0262390 A1 EP0262390 A1 EP 0262390A1
Authority
EP
European Patent Office
Prior art keywords
flame
combustion
ionization current
burner
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87112359A
Other languages
German (de)
French (fr)
Other versions
EP0262390B1 (en
Inventor
Detlef Dr. Ing. Altemark
Robert Dr. Ing. Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EON Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Priority to AT87112359T priority Critical patent/ATE73218T1/en
Publication of EP0262390A1 publication Critical patent/EP0262390A1/en
Application granted granted Critical
Publication of EP0262390B1 publication Critical patent/EP0262390B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda

Definitions

  • the invention relates to a method for operating premix burners under normal or elevated pressure in which a gaseous or vaporous fuel and combustion air are preferably mixed with cooling gas in a mixing chamber and subsequently reacted in a combustion chamber to form a flame, and in which the combustion is carried out with a low flame temperature and thus flame speed due to specified boundary conditions.
  • NO x nitrogen oxides
  • the combustion of gaseous or liquid fuels is known to produce nitrogen oxides (NO x ) in the exhaust gas, which are undesirable both from the point of view of air pollution and from the point of view of the treatment goods coming into contact with burner exhaust gases.
  • NO x mainly forms on the one hand from the nitrogen bound in the fuel and on the other hand thermally from free nitrogen, which is contained in the air and possibly also in certain fuels, for example in natural gas.
  • Thermal NO x formation occurs primarily at high combustion temperatures, for example in natural gas from approx. 1600 ° C.
  • the object of the invention is to operate the premix burner as close as possible to the flame stability limit in order to minimize the NO x emission when the burnout is complete, and to reliably prevent the flame stability limit from being exceeded.
  • the invention is based on the knowledge that if the boundary conditions for a homogeneous flame development on the burner, as known from the above-mentioned document, are observed, the property values of the flame itself give the best and fastest conclusions about the combustion, in particular the desired low-emission combustion allow and are therefore particularly suitable as control variables.
  • the invention therefore provides that at least one variable (flame property) characteristic of the distance of the flame from the flame stability limit is monitored or measured on or in the burner flame and as a control variable for controlling the flow rate of at least one of the mixture components supplied to the mixing chamber is used in such a way that the combustion takes place as close as possible to the flame stability limit.
  • the selection of the medium, i.e. fuel, combustion air or cooling gas, the flow of which is influenced by the control depends on the application area of the burner.
  • the desired approach of combustion to the flame stability limit is best and quickest to monitor via a flame property, so that the use of the flame property as a control variable for the action on the ratio of the mixture media ensures a responsive control.
  • the following flame properties come into consideration as parameters which are characteristic of the distance of the flame from the flame stability limit and which are monitored and used as a control variable: the ionization current, pressure pulsations, temperatures and UV radiation of the flame.
  • the ionization current of the flame has proven to be the most advantageous control variable, since it follows changes in the flame without a time delay, can be detected quickly and can be easily measured both locally in the form of a point measurement and integrally over a certain range.
  • the ionization current can either be tapped at the flame monitoring device or, if the burner has ionization monitoring, or by means of at least one separate pair of electrodes, the ground electrode (cathode) being part of the burner.
  • the ionization current can also be detected using a large number of specially arranged electrodes or pairs of electrodes.
  • the signal for determining the flame stability limit can be improved by means of the modulation, that is to say a systematic change in the fuel / combustion air and possibly the cooling gas mixture ratio at the flame stability limit.
  • a ⁇ control may be provided as a follow-up control.
  • FIG. 1 shows the mean value of the ionization current I measured as a function of the air ratio ⁇ in the flame of a burner which is premixed more than stoichiometrically.
  • the characteristic fluctuations in the ionization current are suppressed by appropriate damping.
  • the mean of the ionization current initially decreases only slightly at an air ratio ⁇ > 1, but then increases increasingly sharply and reaches the value 0 when the air ratio ⁇ reaches the flame stability limit.
  • the average value of the ionization current changes very strongly near the flame stability limit with comparatively small changes in the air ratio ⁇ and is therefore particularly suitable as a control variable for a burner to be operated as close as possible to the flame stability limit.
  • the setpoint shown in FIG. 1 is only shown as an example.
  • the amplitude of the ionization current fluctuations of the flame (FIG. 2) can also be monitored.
  • the ionization current fluctuates increasingly around the decreasing mean value.
  • the amplitude of the ionization current fluctuations is therefore also suitable as a control variable for a burner operated close to the flame stability limit.
  • the measurement signal, the ionization current I is processed undamped.
  • the frequency spectrum of the ionization current fluctuations in the flame changes the closer one is to the flame stability limit.
  • the frequency spectrum of the ionization current fluctuations in the flame is therefore also suitable as a control variable.
  • a device according to the invention for performing the method is shown schematically in FIG. 3:
  • a premix burner 1 known from EP-B-0 021 035 has a mixing tube 2 in which fuel 3, combustion air 4 and cooling gas 5 are mixed to form a homogeneous gas mixture.
  • a conically enlarged burner head 6 Connected to the mixing tube 2 is a conically enlarged burner head 6 with a burner plate 7, which has a large main flame bore 8 and small bores 9 arranged in concentric circles around the bore 8.
  • a pre-combustion chamber with the burner mouth 10 connects to the burner plate 7 and is connected to a flame protection sleeve 12 shielding the flame 11.
  • An electrode 13 is arranged in the flame 11, e.g. together with an electrode 14 arranged on the burner wall forms a pair of electrodes for measuring the ionization current of the flame 1.
  • the electrodes 13 and 14 are connected to a transmitter 15, the output signal of which is fed to a controller 16 as a controlled variable.
  • the controller 16 converts the controlled variable via the actuators 17, 18, 19 into suitable changes in the mass flows of the mixture components 3, 4, 5 in such a way that combustion takes place as close as possible to the stability limit of the flame 11.
  • the invention therefore ensures a quiet, reliable and low-pollutant combustion over a wide power range, with the flame being reliably maintained close to the stability limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A pre-mixed burner fired at or above atmospheric pressure by a gaseous fuel or a fuel that is liquid at ambient temperature or a liquid fuel completely evaporated prior to combustion comprises a mixer wherein the fuel, combustion air and a cooling fluid are blended prior to combustion downstream of a burner plate. The combustion forms a flame at or near the limit of flame stability. The ionization current which is a characteristic property of each flame is measured by two electrodes which transmit signals to a controller controlling the flow of at least one of the fluids flowing to the mixer by corresponding valve actuation for safe burner operation at or near the limit of flame stability.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben von Vormischbrennern unter normalem oder erhöhtem Druck bei dem ein gas- oder dampfförmiger Brennstoff und Verbrennungsluft vorzugsweise mit Kühlgas in einer Mischkammer gemischt und nachfolgend in einer Brennkammer unter Bildung einer Flamme zur Reaktion gebracht werden, und bei dem die Verbrennung aufgrund vorgegebener Randbedingungen mit niedriger Flammentemperatur und damit Flammengeschwindigkeit durchgeführt wird.The invention relates to a method for operating premix burners under normal or elevated pressure in which a gaseous or vaporous fuel and combustion air are preferably mixed with cooling gas in a mixing chamber and subsequently reacted in a combustion chamber to form a flame, and in which the combustion is carried out with a low flame temperature and thus flame speed due to specified boundary conditions.

Bei der Verbrennung gasförmiger oder flüssiger Brennstoffe entstehen bekanntlich Stickstoffoxide (NO x) im Abgas, die sowohl unter dem Gesichtspunkt der Luftverunreinigung, als auch unter dem Gesichtspunkt der Beeinträchtigung von mit Brennerabgasen in Berührung kommendem Behandlungsgut unerwünscht sind. NO x bildet sich hauptsächlich einerseits aus dem im Brennstoff gebundenen Stickstoff und andererseits thermisch aus freiem Stickstoff, der in der Luft und u.U. außerdem in bestimmten Brennstoffen, z.B. in Erdgas enthalten ist. Die thermische NO x-Bildung tritt vor allem bei hohen Verbrennungstemperaturen, bei Erdgas beispielsweise ab ca. 1600°C auf.The combustion of gaseous or liquid fuels is known to produce nitrogen oxides (NO x ) in the exhaust gas, which are undesirable both from the point of view of air pollution and from the point of view of the treatment goods coming into contact with burner exhaust gases. NO x mainly forms on the one hand from the nitrogen bound in the fuel and on the other hand thermally from free nitrogen, which is contained in the air and possibly also in certain fuels, for example in natural gas. Thermal NO x formation occurs primarily at high combustion temperatures, for example in natural gas from approx. 1600 ° C.

Aus der EP-B-00 21 035 ist ein gattungsgemäßes Verfahren bekannt, mit dem gas- oder dampfförmige Brennstoffe so verbrannt werden können, daß einerseits eine vollständige Verbrennung bei niedrigen Verbrennungstemperaturen unter Bildung von Abgasen mit extrem niedrigen NO x-Gehalten stattfindet, andererseits aber auch die Flamme über einen großen Leistungsbereich, inbesondere bei hohen spezifischen Leistungen stabil gehalten werden kann. Dies gelingt nach dem bekannten Verfahren durch Anwendung eines Kühlgases, das die Flammentemperatur vermindert und dennoch eine stabile Verbrennung zuläßt, bei gleichzeitiger Anwendung einer besonderen Flammengestaltung bei der Verbrennung des Gemisches und bei Abschirmung der Flamme bis zu deren vollständigen Ausbrand gegenüber äußeren Fremdgasen und äußeren Temperatureinflüssen.From EP-B-00 21 035 a generic method is known, can be burned with the gaseous or vaporous fuels so that one hand, a complete combustion at low combustion temperatures, forming waste gases having ultra low NO x takes place -contents, on the other hand the flame can also be kept stable over a wide power range, especially with high specific powers. This is achieved according to the known method by using a cooling gas which reduces the flame temperature and nevertheless permits stable combustion, while simultaneously using a special flame design in the Combustion of the mixture and shielding the flame until it is completely burned out against external foreign gases and external temperature influences.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, den Vormischbrenner zur Minimierung der NO x-Emission bei vollständigem Ausbrand möglichst dicht an der Grenze der Flammenstabilität zu betreiben und dabei ein Überschreiten der Flammenstabilitätsgrenze zuverlässig zu verhindern.Proceeding from this, the object of the invention is to operate the premix burner as close as possible to the flame stability limit in order to minimize the NO x emission when the burnout is complete, and to reliably prevent the flame stability limit from being exceeded.

Bei der Lösung dieser Aufgabe geht die Erfindung von der Erkenntnis aus, daß bei der aus der oben genannten Druckschrift bekannten Einhaltung der Randbedingungen für eine homogene Flammenentwicklung am Brenner die Eigenschaftwerte der Flamme selbst die besten und raschesten Rückschlüsse auf die Verbrennung, insbesondere die angestrebte schadstoffarme Verbrennung zulassen und daher als Regelgrößen besonders geeignet sind.In solving this problem, the invention is based on the knowledge that if the boundary conditions for a homogeneous flame development on the burner, as known from the above-mentioned document, are observed, the property values of the flame itself give the best and fastest conclusions about the combustion, in particular the desired low-emission combustion allow and are therefore particularly suitable as control variables.

Die Erfindung sieht daher zur Lösung der ihr zugrundeliegenden Aufgabe vor, daß wenigstens eine für den Abstand der Flamme von der Flammenstabilitätsgrenze charakteristische Größe (Flammeneigenschaft) an oder in der Brennerflamme überwacht oder gemessen und als Regelgröße zur Regelung des Mengenstroms mindestens einer der der Mischkammer zugeführten Gemischkomponenten derart verwendet wird, daß die Verbrennung möglichst nahe an der Flammenstabilitätsgrenze abläuft. Die Auswahl des Mediums, also Brennstoff, Verbrennungsluft oder Kühlgas, dessen Mengenstrom durch die Regelung beeinflußt wird, richtet sich nach dem Anwendungsbereich des Brenners. Die angestrebte Annäherung der Verbrennung an die Flammenstabilitätsgrenze ist über eine Flammeneigenschaft am besten und raschesten zu überwachen, so daß die Verwendung der Flammeneigenschaft als Regelgröße für die Einwirkung auf das Mengenverhältnis der Gemischmedien eine reaktionsschnelle Regelung gewährleistet.To achieve the object on which it is based, the invention therefore provides that at least one variable (flame property) characteristic of the distance of the flame from the flame stability limit is monitored or measured on or in the burner flame and as a control variable for controlling the flow rate of at least one of the mixture components supplied to the mixing chamber is used in such a way that the combustion takes place as close as possible to the flame stability limit. The selection of the medium, i.e. fuel, combustion air or cooling gas, the flow of which is influenced by the control, depends on the application area of the burner. The desired approach of combustion to the flame stability limit is best and quickest to monitor via a flame property, so that the use of the flame property as a control variable for the action on the ratio of the mixture media ensures a responsive control.

Die Erfindung macht die Betriebsweise des Brenners unabhängig von

  • a) der Teillaststufe des Brenners;
  • b) der Änderung der Brennstoffzusammensetzung (ggf. in Verbindung mit einer λ-Regelung);
  • c) von Temperatur- und Druckänderungen in den dem Brenner zugeführten Medienströmen (z.B. Brenngas, Luft, Kühlgas) und
  • d) dem Druck in der Brennkammer.
The invention makes the operation of the burner independent of
  • a) the part-load level of the burner;
  • b) the change in the fuel composition (possibly in conjunction with a λ control);
  • c) temperature and pressure changes in the media streams fed to the burner (for example fuel gas, air, cooling gas) and
  • d) the pressure in the combustion chamber.

Als für den Abstand der Flamme von der Flammenstabilätsgrenze charakteristische Größen, die erfindungsgemäß überwacht und als Regelgröße verwendet werden, kommen die folgenden Flammeneigenschaften in Betracht : Der Ionisationsstrom, Druckpulsationen, Temperaturen und UV-Strahlung der Flamme.The following flame properties come into consideration as parameters which are characteristic of the distance of the flame from the flame stability limit and which are monitored and used as a control variable: the ionization current, pressure pulsations, temperatures and UV radiation of the flame.

Der Ionisationsstrom der Flamme hat sich als die vorteilhafteste Regelgröße erwiesen, da er Änderungen in der Flamme ohne Zeitverzögerung folgt, schnell erfaßbar und sowohl lokal in Form einer Punktmessung als auch integral über einen bestimmten Bereich einfach meßbar ist. Der Ionisationsstrom kann entweder - bei vorhandener Ionisationsüberwachung des Brenners - an der Flammenüberwachungseinrichtung oder mittels wenigstens eines separaten Elektrodenpaares abgegriffen werden, wobei die Masse-Elektrode (Kathode) Teil des Brenners sein kann. Der Ionisationsstrom kann aber auch mittels einer Vielzahl speziell angeordneter Elektroden oder Elektrodenpaare erfaßt werden.The ionization current of the flame has proven to be the most advantageous control variable, since it follows changes in the flame without a time delay, can be detected quickly and can be easily measured both locally in the form of a point measurement and integrally over a certain range. The ionization current can either be tapped at the flame monitoring device or, if the burner has ionization monitoring, or by means of at least one separate pair of electrodes, the ground electrode (cathode) being part of the burner. However, the ionization current can also be detected using a large number of specially arranged electrodes or pairs of electrodes.

Durch die Modulation, also systematische Veränderung des Brennstoff/Verbrennungsluft ggf. Kühlgas-Mischungsverhältnisses an der Flammenstabilitätsgrenze kann das Signal zur Ermittlung der Flammenstabilitätsgrenze verbessert werden.The signal for determining the flame stability limit can be improved by means of the modulation, that is to say a systematic change in the fuel / combustion air and possibly the cooling gas mixture ratio at the flame stability limit.

Sofern der Brenner nicht mit Luftüberschuß, sondern mit einem anderen Kühlgas, z.B. Abgas, betrieben wird, ist ggf. eine λ-Regelung als Folgeregelung vorgesehen.If the burner does not use excess air, but a different cooling gas, e.g. Exhaust gas is operated, a λ control may be provided as a follow-up control.

Die überraschende Erkenntnis, daß die Regelung eines nahe an der Flammenstabilitätsgrenze betriebenen Brenners durch Messung eines Eigenschaftswertes der Flamme des Brenners und einen von der Meßgröße abhängigen Eingriff in die Größe mindestens eines Mengenstromes der Gemischkomponenten möglich ist, wird anhand der Figuren 1 bis 3 am bevorzugten Beispiel der Ionisationsstrommessung näher erläutert.The surprising finding that the control of a burner operated close to the flame stability limit is possible by measuring a property value of the flame of the burner and an intervention in the size of at least one mass flow of the mixture components, which is dependent on the measured variable, is shown in FIGS. 1 to 3 using the preferred example ionization current measurement explained in more detail.

In Figur 1 ist der Mittelwert des in Abhängigkeit von der Luftzahl λ in der Flamme eines überstöchiometrisch vormischenden Brenners gemessenen Ionisationsstromes I dargestellt. Die charakterististischen Schwankungen des Ionisationsstromes sind durch entsprechende Dämpfung unterdrückt. Der Mittelwert

Figure imgb0001
des Ionisationsstromes nimmt bei einer Luftzahl λ > 1 zunächst nur wenig, dann aber zunehmend stark ab und erreicht den Wert 0, wenn die Luftzahl λ die Flammenstabilitätsgrenze erreicht. Der Mittelwert des Ionisationsstromes ändert sich nahe der Flammenstabilitätsgrenze bei vergleichsweise kleinen Änderungen der Luftzahl λ also sehr stark und ist deshalb als Regelgröße für einen möglichst nahe der Flammenstabilitätsgrenze zu betreibenden Brenner besonders geeignet. Der in der Figur 1 dargestellte Sollwert ist lediglich beispielhaft eingezeichnet.FIG. 1 shows the mean value of the ionization current I measured as a function of the air ratio λ in the flame of a burner which is premixed more than stoichiometrically. The characteristic fluctuations in the ionization current are suppressed by appropriate damping. The mean
Figure imgb0001
of the ionization current initially decreases only slightly at an air ratio λ> 1, but then increases increasingly sharply and reaches the value 0 when the air ratio λ reaches the flame stability limit. The average value of the ionization current changes very strongly near the flame stability limit with comparatively small changes in the air ratio λ and is therefore particularly suitable as a control variable for a burner to be operated as close as possible to the flame stability limit. The setpoint shown in FIG. 1 is only shown as an example.

Anstelle des Mittelwertes des Ionisationsstromes der Flamme kann aber auch die Amplitude der Ionisationsstromschwankungen der Flamme (Figur 2) überwacht werden. Bei Annäherung an die Flammenstabilitätsgrenze des Brenners schwankt der Ionisationsstrom nämlich zunehmend um den abnehmenden Mittelwert.Instead of the mean value of the ionization current of the flame, the amplitude of the ionization current fluctuations of the flame (FIG. 2) can also be monitored. When the flame stability limit of the burner is approached, the ionization current fluctuates increasingly around the decreasing mean value.

Daher ist die Amplitude der Ionisationsstromschwankungen ebenfalls als Regelgröße für einen nahe der Flammenstabilitätsgrenze betriebenen Brenner geeignet. In diesem Fall wird das Meßsignal, der Ionisationsstrom I, also ungedämpft verarbeitet. In ähnlicher Weise wie die Amplitude ändert sich auch das Frequenzspektrum der Ionisationsstromschwankungen in der Flamme, je näher man sich an der Flammenstabilitätsgrenze befindet. Daher ist auch das Frequenzspektrum der Ionisationsstromschwankungen in der Flamme als Regelgröße geeignet.The amplitude of the ionization current fluctuations is therefore also suitable as a control variable for a burner operated close to the flame stability limit. In this case, the measurement signal, the ionization current I, is processed undamped. In a similar way to the amplitude, the frequency spectrum of the ionization current fluctuations in the flame changes the closer one is to the flame stability limit. The frequency spectrum of the ionization current fluctuations in the flame is therefore also suitable as a control variable.

Eine erfindungsgemäße Vorrichtung zum Durchführen des Verfahrens ist in Figur 3 schematisch dargestellt : Ein au er EP-B-0 021 035 bekannter Vormischbrenner 1 weist ein Mischrohr 2 auf, in dem Brennstoff 3, Verbrennungsluft 4 und Kühlgas 5 zu einem homogenen Gasgemisch gemischt werden. An das Mischrohr 2 schließt ein konisch erweiterter Brennerkopf 6 mit einer Brennerplatte 7 an, die eine große Hauptflammen-Bohrung 8 und in konzentrischen Kreisen um die Bohrung 8 angeordnete kleine Bohrungen 9 aufweist. An die Brennerplatte 7 schließt sich eine Vorbrennkammer mit dem Brennermund 10 an, der mit einer die Flamme 11 abschirmenden Flammenschutzhülle 12 verbunden ist. In der Flamme 11 ist eine Elektrode 13 angeordnet, die z.B. zusammen mit einer an der Brennerwand angeordneten Elektrode 14 ein Elektrodenpaar zur Messung des Ionisationsstromes der Flamme 1 bildet.A device according to the invention for performing the method is shown schematically in FIG. 3: A premix burner 1 known from EP-B-0 021 035 has a mixing tube 2 in which fuel 3, combustion air 4 and cooling gas 5 are mixed to form a homogeneous gas mixture. Connected to the mixing tube 2 is a conically enlarged burner head 6 with a burner plate 7, which has a large main flame bore 8 and small bores 9 arranged in concentric circles around the bore 8. A pre-combustion chamber with the burner mouth 10 connects to the burner plate 7 and is connected to a flame protection sleeve 12 shielding the flame 11. An electrode 13 is arranged in the flame 11, e.g. together with an electrode 14 arranged on the burner wall forms a pair of electrodes for measuring the ionization current of the flame 1.

Die Elektroden 13 und 14 sind mit einem Meßumformer 15 verbunden, dessen Ausgangssignal als Regelgröße einem Regler 16 zugeführt wird. Der Regler 16 setzt die Regelgröße über die Stellglieder 17, 18, 19 in geeignete Änderungen der Mengenströme der Gemischkomponenten 3, 4, 5 derart um, daß eine Verbrennung möglichst nahe an der Stabilitätsgrenze der Flamme 11 stattfindet.The electrodes 13 and 14 are connected to a transmitter 15, the output signal of which is fed to a controller 16 as a controlled variable. The controller 16 converts the controlled variable via the actuators 17, 18, 19 into suitable changes in the mass flows of the mixture components 3, 4, 5 in such a way that combustion takes place as close as possible to the stability limit of the flame 11.

Die Erfindung gewährleistet daher eine leise, zuverlässige und schadstoffarme Verbrennung über einen großen Leistungsbereich, wobei die Erhaltung der Flamme nahe der Stabilitätsgrenze zuverlässig gewährleistet ist. The invention therefore ensures a quiet, reliable and low-pollutant combustion over a wide power range, with the flame being reliably maintained close to the stability limit.

Claims (14)

1. Verfahren zum Betreiben von Vormischbrennern unter normalem oder erhöhtem Druck, bei dem ein gas- oder dampfförmiger Brennstoff und Verbrennungsluft vorzugsweise zusammen mit Kühlgas in einer Mischkammer gemischt und nachfolgend in einer Brennkammer unter Bildung einer Flamme zur Reaktion gebracht werden, und bei dem die Verbrennung aufgrund vorgegebener Randbedingungen mit niedriger Flammentemperatur und damit Flammengeschwindigkeit durchgeführt wird,
dadurch gekennzeichnet,
daß wenigstens eine für den Abstand der Flamme von der Flammenstabilitätsgrenze charakteristische Größe (Flammeneigenschaft) an oder in der Brennerflamme überwacht oder gemessen und als Regelgröße zur Regelung des Mengenstroms mindestens einer der der Mischkammer zugeführten Gemischkomponenten derart verwendet wird, daß die Verbrennung möglichst nahe an der Flammenstabilitätsgrenze abläuft.
1. A method for operating premix burners under normal or elevated pressure, in which a gaseous or vaporous fuel and combustion air are preferably mixed together with cooling gas in a mixing chamber and subsequently reacted in a combustion chamber to form a flame, and in which the combustion is carried out with a low flame temperature and thus flame speed due to specified boundary conditions,
characterized by
that at least one variable characteristic of the distance of the flame from the flame stability limit (flame property) on or in the burner flame is monitored or measured and used as a control variable for regulating the flow rate of at least one of the mixture components supplied to the mixing chamber in such a way that the combustion is as close as possible to the flame stability limit expires.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Ionisationsstrom der Flamme gemessen und aus dem Ionisationsstrom ein Regelsignal zur Regelung des Mengenstroms abgeleitet wird.2. The method according to claim 1, characterized in that the ionization current of the flame is measured and a control signal for regulating the mass flow is derived from the ionization current. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Mittelwert des Ionisationsstromes der Flamme zur Regelung des Mengenstroms verwendet wird.3. The method according to claim 2, characterized in that the average value of the ionization current of the flame is used to regulate the mass flow. 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Amplitude der Ionisationsstromschwankungen der Flamme bestimmt und als Regelgröße zur Regelung des Mengenstroms verwendet wird.4. The method according to claim 2, characterized in that the amplitude of the ionization current fluctuations of the flame is determined and used as a control variable for regulating the mass flow. 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß des Frequenzspektrum der Ionisationsstromschwankungen der Flamme bestimmt und als Regelgröße zur Regelung des Mengenstroms verwendet wird.5. The method according to claim 2, characterized in that the frequency spectrum of the ionization current fluctuations Flame determined and used as a control variable for controlling the flow rate. 6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Ionisationsstrom an einer Ionisationsüberwachungsvorrichtung des Brenners abgegriffen wird.6. The method according to any one of claims 2 to 5, characterized in that the ionization current is tapped at an ionization monitoring device of the burner. 7. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Ionisationsstrom eines in der Brennkammer angeordneten Elektrodenpaares gemessen wird.7. The method according to any one of claims 2 to 5, characterized in that the ionization current of a pair of electrodes arranged in the combustion chamber is measured. 8. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Ionisationsstrom mittels mehrerer in der Brennkammer verteilter Elektroden oder Elektrodenpaare gemessen wird.8. The method according to any one of claims 2 to 5, characterized in that the ionization current is measured by means of several electrodes or pairs of electrodes distributed in the combustion chamber. 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Druckpulsationen der Flamme gmessen und als Regelsignal zur Regelung des Mengenstroms verwendet werden.9. The method according to claim 1, characterized in that the pressure pulsations of the flame gmessen and used as a control signal for controlling the flow rate. 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Flammentemperatur gemessen und als Regelsignal zur Regelung des Mengenstroms verwendet wird.10. The method according to claim 1, characterized in that the flame temperature is measured and used as a control signal for regulating the mass flow. 1 1. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die UV-Strahlung der Flamme gemessen und als Regelsignal zur Regelung des Mengenstroms verwendet wird.1 1. The method according to claim 1, characterized in that the UV radiation of the flame is measured and used as a control signal for controlling the flow rate. 12. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß mindestens einer der aufgrund des Meßsignales nicht geregelten Mengenströme in Abhängigkeit von der Änderung des aufgrund des Meßsignales geänderten Mengenstromes folge-geregelt wird.12. The method according to any one of claims 2 to 5, characterized in that at least one of the flow rates not regulated due to the measurement signal is sequence-controlled depending on the change in the flow rate changed due to the measurement signal. 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß zur Ermittlung des Signals der Flammenstabilitätsgrenze das Brennstoff/Verbrennungsluft/Kühlgas-Mischungsverhältnis moduliert wird.13. The method according to any one of claims 1 to 12, characterized in that the fuel / combustion air / cooling gas mixture ratio is modulated to determine the signal of the flame stability limit. 14. Vorrichtung zum Durchführen des Verfahrens nach einem der Ansprüche 1 bis 13, bestehend aus einem Vormischbrenner mit einer Mischkammer für Ausgangskomponenten und einer nachgeordneten Brennkammer, gekennzeichnet durch mindestens einen in der Brennkammer angeordneten Meßwertaufnehmer (13, 14) zum Messen einer für den Abstand der Flamme von der Flammenstabilitätsgrenze charakteristischen Größe (Flammeneigenschaft), mindestens ein Stellglied (17, 18, 19) zum Einstellen des Mengenstromes mindestens einer der Vormischkammer (2) zugeführten Gemischkomponente sowie einen Regler (16) zum Erzeugen eines Regelsignals für das Stellglied in Abhängigkeit von dem Meßsignal.14. Device for performing the method according to one of claims 1 to 13, consisting of a premix burner with a mixing chamber for starting components and a downstream combustion chamber, characterized by at least one arranged in the combustion chamber transducer (13, 14) for measuring one for the distance Flame of the characteristic flame stability limit (flame property), at least one actuator (17, 18, 19) for adjusting the flow rate of at least one mixture component fed to the premixing chamber (2) and a controller (16) for generating a control signal for the actuator depending on the Measurement signal.
EP87112359A 1986-09-04 1987-08-26 Method to operate premixing burners, and device for carrying out this method Expired - Lifetime EP0262390B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87112359T ATE73218T1 (en) 1986-09-04 1987-08-26 METHOD OF OPERATING PREMIX BURNER AND APPARATUS FOR CARRYING OUT THESE METHOD.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863630177 DE3630177A1 (en) 1986-09-04 1986-09-04 METHOD FOR OPERATING PRE-MIXING BURNERS AND DEVICE FOR CARRYING OUT THIS METHOD
DE3630177 1986-09-04

Publications (2)

Publication Number Publication Date
EP0262390A1 true EP0262390A1 (en) 1988-04-06
EP0262390B1 EP0262390B1 (en) 1992-03-04

Family

ID=6308943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112359A Expired - Lifetime EP0262390B1 (en) 1986-09-04 1987-08-26 Method to operate premixing burners, and device for carrying out this method

Country Status (4)

Country Link
US (1) US4859171A (en)
EP (1) EP0262390B1 (en)
AT (1) ATE73218T1 (en)
DE (2) DE3630177A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226163A (en) * 1988-11-10 1990-06-20 Vaillant Joh Gmbh & Co Air/fuel ratio control for a burner
EP0643265A1 (en) * 1993-09-13 1995-03-15 Ruhrgas Aktiengesellschaft Method and device for controlling excess-air premix gas burners
US7513117B2 (en) 2004-07-29 2009-04-07 Alstom Technology Ltd Method for operating a furnace
CN107402274A (en) * 2016-05-20 2017-11-28 保时捷股份公司 Filter releases measurement assembly and storage tank releases measurement assembly

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073104A (en) * 1985-09-02 1991-12-17 The Broken Hill Proprietary Company Limited Flame detection
ES2017123A6 (en) * 1989-05-26 1991-01-01 Gabas Cebollero Carlos Support bracket to be attached to automobile sun visors.
EP0861402A1 (en) * 1995-11-13 1998-09-02 Gas Research Institute Flame ionization control apparatus and method
DE19631821C2 (en) * 1996-08-07 1999-08-12 Stiebel Eltron Gmbh & Co Kg Method and device for safety flame monitoring in a gas burner
ES2158400T3 (en) * 1996-05-09 2001-09-01 Stiebel Eltron Gmbh & Co Kg PROCEDURE FOR THE OPERATION OF A GAS BURNER.
US6299433B1 (en) 1999-11-05 2001-10-09 Gas Research Institute Burner control
US7096722B2 (en) * 2002-12-26 2006-08-29 Woodward Governor Company Method and apparatus for detecting combustion instability in continuous combustion systems
US7908847B2 (en) * 2004-01-13 2011-03-22 Emcon Technologies Llc Method and apparatus for starting up a fuel-fired burner of an emission abatement assembly
US7241135B2 (en) 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner
US8046988B2 (en) * 2006-02-28 2011-11-01 Caterpillar Inc. System having multiple valves operated by common controller
US8821154B2 (en) * 2010-11-09 2014-09-02 Purpose Company Limited Combustion apparatus and method for combustion control thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155145A (en) * 1959-10-05 1964-11-03 Hupp Corp Control circuit for gas burner
EP0021035A1 (en) * 1979-06-29 1981-01-07 Ruhrgas Aktiengesellschaft Operating process for premix burners and burner for carrying out the process
EP0071067A1 (en) * 1981-07-24 1983-02-09 Kabushiki Kaisha Toshiba Combustion control device
EP0146690A1 (en) * 1983-08-22 1985-07-03 Honeywell Inc. Flame sensing system
NL8403840A (en) * 1984-12-18 1986-07-16 Tno Control for gas-fired boiler - uses ionisation detector and programmed logic for highest fuel economy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2324821A (en) * 1939-02-08 1943-07-20 Gen Electric Measuring and control method and apparatus
US2352143A (en) * 1940-04-27 1944-06-20 Brown Instr Co Control apparatus
US3768955A (en) * 1972-06-26 1973-10-30 Universal Oil Prod Co Reactant ratio control process
DE2448430A1 (en) * 1973-10-30 1975-05-07 Satronic Ag PROCEDURE FOR SPARK AND FLAME MONITORING ON BURNERS
GB1461653A (en) * 1974-05-23 1977-01-19 Land Pyrometers Ltd Burner control
GB1495015A (en) * 1975-09-01 1977-12-14 British Petroleum Co Monitoring and/or control of burners
US4043742A (en) * 1976-05-17 1977-08-23 Environmental Data Corporation Automatic burner monitor and control for furnaces
DE2950689A1 (en) * 1979-12-17 1981-06-25 Servo-Instrument, in Deutschland Alleinvertrieb der BEAB-Regulatoren GmbH u. Co KG, 4050 Mönchengladbach CONTROL DEVICE FOR THE COMBUSTION AIR AMOUNT OF A FIREPLACE
US4477245A (en) * 1982-09-03 1984-10-16 The Babcock & Wilcox Company Flame monitoring safety, energy and fuel conservation system
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155145A (en) * 1959-10-05 1964-11-03 Hupp Corp Control circuit for gas burner
EP0021035A1 (en) * 1979-06-29 1981-01-07 Ruhrgas Aktiengesellschaft Operating process for premix burners and burner for carrying out the process
EP0071067A1 (en) * 1981-07-24 1983-02-09 Kabushiki Kaisha Toshiba Combustion control device
EP0146690A1 (en) * 1983-08-22 1985-07-03 Honeywell Inc. Flame sensing system
NL8403840A (en) * 1984-12-18 1986-07-16 Tno Control for gas-fired boiler - uses ionisation detector and programmed logic for highest fuel economy

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 3, Nr. 53 (M-58), 8. Mai 1979; & JP-A-54 30 537 (HITACHI NETSUKIGU K.K.) 03.07.1979 *
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 112 (M-215)[1257], 17. May 1983; & JP-A-58 33 025 (MATSUSHITA DENKI SANGYO K.K.) 26.02.1983 *
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 199 (M-240)[1344], 3. September 1983; & JP-A-58 99 613 (MITSUBISHI JUKOGYO K.K.) 14.06.1983 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 135 (M-386)[1858], 11. Juni 1985; & JP-A-60 16 218 (RINNAI K.K.) 28.01.1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 172 (M-397)[1895], 17. July 1985; & JP-A-60 44 724 (MATSUSHITA DENKI SANGYO K.K.) 09.03.1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 187 (M-401)[1910], 3. August 1985; & JP-A-60 53 716 (ISEKI NOKI K.K.) 27.03.1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 209 (M-407)[1932], 27. August 1985; & JP-A-60 69 428 (BABCOCK HITACHI K.K.) 20.04.1985 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 55 (M-362)[1778], 09. März 1985; & JP-A-59 189 216 (MATSUSHITA DENKI SANGYO K.K.) 26.10.1984 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226163A (en) * 1988-11-10 1990-06-20 Vaillant Joh Gmbh & Co Air/fuel ratio control for a burner
EP0643265A1 (en) * 1993-09-13 1995-03-15 Ruhrgas Aktiengesellschaft Method and device for controlling excess-air premix gas burners
US7513117B2 (en) 2004-07-29 2009-04-07 Alstom Technology Ltd Method for operating a furnace
CN107402274A (en) * 2016-05-20 2017-11-28 保时捷股份公司 Filter releases measurement assembly and storage tank releases measurement assembly

Also Published As

Publication number Publication date
US4859171A (en) 1989-08-22
ATE73218T1 (en) 1992-03-15
DE3777053D1 (en) 1992-04-09
DE3630177A1 (en) 1988-03-10
EP0262390B1 (en) 1992-03-04

Similar Documents

Publication Publication Date Title
EP0262390B1 (en) Method to operate premixing burners, and device for carrying out this method
DE69314903T2 (en) Thermal nozzle combustion process
EP1621811B1 (en) Operating Method for a Combustion Apparatus
DE19918901C1 (en) Device for setting the oxidant / fuel mixture in the feed line of a burner
EP1251244B1 (en) Method for suppressing combustion fluctuations in a gas turbine
DE69606640T2 (en) METHOD AND DEVICE FOR CONTROLLING STAGE COMBUSTION PLANTS
DE102019101329A1 (en) Method and device for controlling the mixing ratio of combustion air and fuel gas in a combustion process
EP3978805B1 (en) Combustion device with air ratio regulation device, and heating apparatus
EP0021035B1 (en) Operating process for premix burners and burner for carrying out the process
DE69010973T2 (en) Burner.
DE69917395T2 (en) Combustion process for burning a fuel
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
EP3663648A1 (en) Method and device for regulating the mixing ratio of combustion air and combustion gas in a combustion process
EP0884529A2 (en) Gas burner for boiler
DE19734574B4 (en) Method and device for controlling a burner, in particular a fully premixing gas burner
DE29612014U1 (en) Gas burner
DE3918855A1 (en) Controlled gas burner for heating boiler - has additional airflow provided by regulated blower to maintain programmed flame temperature
EP3969812B1 (en) Method for monitoring a burner and/or a burner behavior, and burner unit
EP4133214B1 (en) Method for operating a buner assembly and burner assembly for carrying out the method
DE2018187A1 (en) Method and device for preventing flashbacks in a burner system
DE2509588A1 (en) IGNITION BURNER FOR MONITORING THE ATMOSPHERE SURROUNDING A BURNER DEVICE
DE19828111A1 (en) Procedure for operating over-stoichiometric premixing atmospheric gas burner
EP0434599A1 (en) Premixing gas burner
DE4331048A1 (en) Method and device for operating an over-stoichiometric premixing gas burner
DE102006006661A1 (en) Post-combustion installation used as thermal or regenerative post-combustion installation comprises electronic control/regulating device for controlling fuel-pressurized fluid ratio

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19880804

17Q First examination report despatched

Effective date: 19900629

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920304

Ref country code: BE

Effective date: 19920304

REF Corresponds to:

Ref document number: 73218

Country of ref document: AT

Date of ref document: 19920315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3777053

Country of ref document: DE

Date of ref document: 19920409

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920615

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930714

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930720

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940826

Ref country code: AT

Effective date: 19940826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980713

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980720

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980728

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990722

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050826