EP0256049B1 - Process for producing a titanium-carbide containing wear-resistant coating on a metal base - Google Patents

Process for producing a titanium-carbide containing wear-resistant coating on a metal base Download PDF

Info

Publication number
EP0256049B1
EP0256049B1 EP87900795A EP87900795A EP0256049B1 EP 0256049 B1 EP0256049 B1 EP 0256049B1 EP 87900795 A EP87900795 A EP 87900795A EP 87900795 A EP87900795 A EP 87900795A EP 0256049 B1 EP0256049 B1 EP 0256049B1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
percent
heat treatment
percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP87900795A
Other languages
German (de)
French (fr)
Other versions
EP0256049A1 (en
Inventor
Hans-Theo Steine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECG Immobilier SA
Original Assignee
Castolin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4186733&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0256049(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Castolin SA filed Critical Castolin SA
Publication of EP0256049A1 publication Critical patent/EP0256049A1/en
Application granted granted Critical
Publication of EP0256049B1 publication Critical patent/EP0256049B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/937Sprayed metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component

Definitions

  • the present invention relates to a method for producing a wear-resistant layer on a metallic base body, in which a material in the form of sintered, agglomerated particles or alloy particles with a grain size of -150 / + 37 microns, which contain 10-50 weight percent TiC and im others consist of an Fe and / or Ni alloy or a Co alloy, is sprayed on by autogenous flame spraying in a thickness of at least 1 mm and the sprayed-on layer is then subjected to a heat treatment in the temperature range of 400-650 ° C, such that the layer after the heat treatment has a lamella structure with lamellae corresponding to the particle size.
  • the publication DE -A- 2208070 describes a method in which a metallic base body is provided with a thin, wear-resistant layer of up to a maximum of about 0.635 mm thick, the spraying being carried out by plasma flame spraying and the material used having a grain size of, for example, the order of magnitude. 44 / + 88 ⁇ m.
  • the layer is spray-quenched when sprayed on thanks to the cooling effect of the base body, and this results in a microstructure consisting of titanium carbide grains dispersed in a base material, the base material being formed by an austenite conversion product containing martensite. Even without further heat treatment, this leads to a relatively hard layer in which rounded titanium carbide grains are present as a result of the plasma spraying process.
  • the layers that can be produced in this way are very limited in their thickness, preferably from 0.381 mm to 0.254 mm and 0.127 mm, since otherwise the structure mentioned would result in very high internal stresses.
  • the small thickness corresponds to an equally limited lifespan.
  • the mechanical machinability is also very limited and the elasticity of the layer is extremely low due to the small grain size of the spray material and the structure made up of the smallest lamellae.
  • Wear-resistant coatings which were produced by flame spraying without melting and have a high hardness due to the incorporation of hard materials such as carbides, silicides, borides etc., or consist of hard alloys, show a strong sensitivity to crack formation due to the occurrence of internal stresses in the layer.
  • the achievable layer thickness is very limited.
  • the object of the invention is to provide a method for producing wear-resistant layers of great hardness, with the layers can be produced with a significantly longer life than that of the known layers and which also enables mechanical processing after spraying and is relatively problem-free with regard to internal stresses in the layer.
  • the layer material is melted practically homogeneously in the autogenous flame during the spraying process, the titanium carbide being dissolved in the matrix alloy.
  • the layer of austenitic character obtained in this way can be machined well.
  • the titanium carbide is then separated out in a very fine-grained and evenly distributed manner.
  • the layer has a lamellar structure with relatively large lamellae corresponding to the particle size, which results in greater elasticity of the layer. It should also be noted that the coefficient of expansion of the layer is very close to the coefficient of expansion of the matrix alloy.
  • a wear-resistant layer of 1.8 mm thickness was then also applied to the adhesive layer by autogenous Flame spraying with the usual parameters, applied without subsequent melting, whereby the composition of the wettable powder, in percent by weight, and the grain size were as follows: 33.0 TiC with a matrix alloy of 0.9 C, 1.0 Cr, 0.3 Cu, 0.5 Mo, 1.9 Mn, 1.0 Si, 0.2 V, balance Fe. Grain size -150 / + 37 ⁇ m.
  • the coated shaft was machined and brought to the finished size. It was then kept in a muffle furnace at 550 ° C. for five hours. The hardness of the coated shaft had a value of 420 Hv after the mechanical processing, and a hardness of 640 Hv was measured after the heat treatment.
  • the sliding surface of 100 x 100 mm of a sliding plate of 50 mm thickness was coated in the following way. After preparing the sliding surface by blasting with corundum, the plate was preheated to 100 ° C. and then an adhesive layer of 0.1 mm thick was applied. A commercially available adhesive layer powder (Castolin 51000) was applied by autogenous flame spraying.
  • a wear-resistant layer of 1.2 mm thickness was then also applied by autogenous flame spraying without subsequent melting, the composition of the wettable powder (grain size -150 / + 37 ⁇ m) in percent by weight being as follows: 32% TiC in a matrix alloy of 0.2 C, 0.5 Cr, 0.5 Cu, 6.0 Mo, 15.0 Ni, 0.7 Al, 9.0 Co, 0.7 Ti, 0.1 Nb, rest Fe.
  • the coated surface was machined.
  • the slide plate was then treated in a protective gas oven at 450 ° C. for four hours.
  • the hardness of the sliding surface before the thermal treatment was 450 Hv
  • the hardness measured after the heat treatment was 650 Hv.
  • An axis of 40.0 mm in diameter was treated in the following manner to achieve high wear resistance.
  • the axis was provided with a wear-resistant layer of 1.5 mm thickness by autogenous flame spraying under the usual working conditions, the composition of the spraying material in weight percent being chosen as follows: 33.0 TiC in a matrix alloy of 0.35 C, 2.0 Cr, 1.0 Cu, 2.0 Mo, balance Fe.
  • the grain size was in the range -150 / + 37 ⁇ m.
  • the surface was then machined and brought to the desired finished size by grinding, the surface layer retaining a thickness of 1 mm.
  • the finished part was held in a muffle furnace at 500 ° C. for five hours.
  • the hardness of the layer before the heat treatment was 400 Hv, after the heat treatment a hardness of 680 Hv was measured.
  • a wear part with the dimensions 200 x 60 x 30 mm was coated on one of the areas of 200 x 60 mm in the following manner.
  • the surface to be coated was prepared by blasting with corundum, on this surface a powdery spray material of grain size -150 / + 37 ⁇ m was made, in percent by weight, 16.5 TiC with a matrix alloy of 0.5 C, 14.0 Cr, 0 , 5 Cu, 14.0 Mo, 3.5 W, balance Ni applied by autogenous flame spraying without subsequent melting under normal conditions.
  • the wear-resistant layer had a thickness of 2.2 mm and was then machined, the thickness of the layer being 2.0 mm was brought.
  • the wearing part was then kept in a muffle furnace at 450 ° C. for five hours. The hardness was 380 Hv before the heat treatment and rose to 550 Hv after the heat treatment.
  • Example 4 The procedure of Example 4 was repeated analogously with a spray material of the composition, in percent by weight, 20.0 TiC in a matrix alloy of 0.5 C, 14.0 Cr, 0.5 Cu, 14.0 Mo, 5.0 W, Rest Co. The hardness of the heat-treated part reached 530 Hv.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

A sintered material, containing agglomerated particles or alloy particles consisting of 10-50% by weight of titanium carbide and an ion and/or nickel alloy or an alloy of cobalt, is applied by autogenous flame spraying in a thickness of at least 1 mm. It is then subjected to heat treatment at a temperature of between 400 and 650°C after possible machining. The process enables wear-resistant coats to be produced, having a considerable hardness and relatively large thickness, thus ensuring greater longevity, preventing internal stresses and offering the possibility of machining after spray application.

Description

Die vorliegende Erfindung hat ein Verfahren zur Herstellung einer verschleissfesten Schicht auf einem metallischen Grundkörper zum Gegenstand, bei dem ein Werkstoff in Form von gesinterten, agglomerierten Partikeln oder Legierungspartikeln einer Korngrösse von -150/+37 µm, die 10-50 Gewichtsprozent TiC enthalten und im übrigen aus einer Fe- und/oder Ni-Legierung oder einer Co-Legierung bestehen, durch autogenes Flammspritzen in einer Dicke von mindestens 1 mm aufgespritzt wird und die aufgespritzte Schicht danach eine Wärmebehandlung im Temperaturbereich von 400-650°C erfährt, derart, dass die Schicht nach der Wärmebehandlung eine Lamellenstruktur mit der Partikelgrösse entsprechenden Lamellen aufweist.The present invention relates to a method for producing a wear-resistant layer on a metallic base body, in which a material in the form of sintered, agglomerated particles or alloy particles with a grain size of -150 / + 37 microns, which contain 10-50 weight percent TiC and im others consist of an Fe and / or Ni alloy or a Co alloy, is sprayed on by autogenous flame spraying in a thickness of at least 1 mm and the sprayed-on layer is then subjected to a heat treatment in the temperature range of 400-650 ° C, such that the layer after the heat treatment has a lamella structure with lamellae corresponding to the particle size.

Die Druckschrift DE -A- 2208070 beschreibt ein Verfahren, bei dem ein metallischer Grundkörper mit einer dünnen verschleissfesten Schicht von bis zu maximal etwa 0,635 mm Dicke versehen wird, wobei das Aufspritzen durch Plasma-Flammspritzen erfolgt und der verwendete Werkstoff eine Korngrösse von beispielsweise grössenordnungsmässig -44/+88 µm aufweist.The publication DE -A- 2208070 describes a method in which a metallic base body is provided with a thin, wear-resistant layer of up to a maximum of about 0.635 mm thick, the spraying being carried out by plasma flame spraying and the material used having a grain size of, for example, the order of magnitude. 44 / + 88 µm.

Bei diesem bekannten Verfahren ist es wesentlich, dass die Schicht beim Aufspritzen dank der Kühlwirkung des Grundkörpers drastisch abgeschreckt wird und dadurch eine Mikrostruktur entsteht, die aus in einer Grundmasse dispergierten Titankarbidkörnern besteht, wobei die Grundmasse durch ein Martensit enthaltendes Austenit-Umwandlungsprodukt gebildet wird. Dies führt bereits ohne weitere Wärmebehandlung zu einer relativ harten Schicht, in der infolge des Plasma-Spritzverfahrens abgerundete Titankarbidkörner vorhanden sind.In this known method, it is essential that the layer is spray-quenched when sprayed on thanks to the cooling effect of the base body, and this results in a microstructure consisting of titanium carbide grains dispersed in a base material, the base material being formed by an austenite conversion product containing martensite. Even without further heat treatment, this leads to a relatively hard layer in which rounded titanium carbide grains are present as a result of the plasma spraying process.

Die so herstellbaren Schichten sind jedoch in ihrer Dicke sehr begrenzt, vorzugsweise wird von 0,381 mm bis 0,254 mm und 0,127 mm gesprochen, da die erwähnte Struktur sonst sehr hohe innere Spannungen zur Folge hätte. Der geringen Dicke entspricht eine gleichermassen begrenzte Lebensdauer. Daneben sind auch der mechanischen Bearbeitbarkeit sehr enge Grenzen gesetzt und die Elastizität der Schicht ist infolge der kleinen Korngrösse des Spritzwerkstoffs und der dieser entsprechenden Struktur aus kleinsten Lamellen äusserst gering.However, the layers that can be produced in this way are very limited in their thickness, preferably from 0.381 mm to 0.254 mm and 0.127 mm, since otherwise the structure mentioned would result in very high internal stresses. The small thickness corresponds to an equally limited lifespan. In addition, the mechanical machinability is also very limited and the elasticity of the layer is extremely low due to the small grain size of the spray material and the structure made up of the smallest lamellae.

Verschleissfeste Beschichtungen, die durch Flammspritzen ohne Einschmelzen hergestellt wurden und durch Einlagerung von Hartstoffen, wie Karbiden, Siliciden, Boriden usw., eine hohe Härte aufweisen oder aus Hartlegierungen bestehen, zeigen eine starke Empfindlichkeit gegen Rissbildung infolge des Auftretens von inneren Spannungen in der Schicht. Die erzielbare Schichtdicke ist dadurch sehr beschränkt.Wear-resistant coatings, which were produced by flame spraying without melting and have a high hardness due to the incorporation of hard materials such as carbides, silicides, borides etc., or consist of hard alloys, show a strong sensitivity to crack formation due to the occurrence of internal stresses in the layer. The achievable layer thickness is very limited.

Das Problem der Rissbildung bei dickeren Schichten ist auch bei Verwendung des Plasma-Spritzverfahrens, wie es in der Druckschrift DE-A-2208070 vorgeschlagen wird, gravierend. Dazu kommen die relativ geringe Haftfestigkeit der Schicht und die Schwierigkeit einer mechanischen Nachbearbeitung, wenn mit diesem Verfahren eine grosse Härte erzielt werden soll.The problem of crack formation in thicker layers is also serious when using the plasma spraying method, as is proposed in the document DE-A-2208070. In addition, there is the relatively low adhesive strength of the layer and the difficulty of mechanical post-processing if a great hardness is to be achieved with this process.

Andererseits führt die Verwendung von selbstfliessenden Legierungen, die nach dem Einschmelzen eine hohe Härte erreichen, für viele Anwendungen zu übermässig hohen Temperaturen während des Einschmelzvorgangs, die sich auf das Grundmaterial im Hinblick auf einen Verzug, eine Versprödung und andere Beeinflussungen sehr ungünstig auswirken.On the other hand, the use of self-flowing alloys, which reach a high hardness after melting, leads to excessively high temperatures during the melting process for many applications, which have a very unfavorable effect on the base material with regard to warpage, embrittlement and other influences.

Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung verschleissfester Schichten von grosser Härte zu schaffen, mit dem Schichten von wesentlich höherer Lebensdauer als die der bekannten Schichten erzeugt werden können und das zudem eine mechanische Bearbeitung nach dem Aufspritzen ermöglicht und relativ problemlos bezüglich innerer Spannungen in der Schicht ist.The object of the invention is to provide a method for producing wear-resistant layers of great hardness, with the layers can be produced with a significantly longer life than that of the known layers and which also enables mechanical processing after spraying and is relatively problem-free with regard to internal stresses in the layer.

Dies wird erfindungsgemäss durch das eingangs angegebene Verfahren gemäss Patentanspruch 1 erzielt. Die Ansprüche 2 bis 10 beschreiben besondere Ausführungsformen des erfindungsgemässen Verfahrens.This is achieved according to the invention by the method specified at the outset according to claim 1. Claims 2 to 10 describe particular embodiments of the method according to the invention.

Es hat sich überraschenderweise herausgestellt, dass beim autogenen Flammspritzen, ohne nachträgliches Einschmelzen, von Titankarbid in einer metallischen Matrix, zunächst eine mechanisch gut bearbeitbare Schicht entsteht, die durch eine anschliessende Wärmebehandlung bei relativ niedriger Temperatur eine Aushärtung erfährt, wobei im Endzustand eine Härte von 500 bis 700 Hv entsteht.It has surprisingly been found that during autogenous flame spraying, without subsequent melting, of titanium carbide in a metallic matrix, a layer that is easy to process mechanically is first created, which is hardened by subsequent heat treatment at a relatively low temperature, with a hardness of 500 in the final state up to 700 Hv.

Im Gegensatz zu dem erwähnten Verfahren, das mittels Plasma-Flammspritzen durchgeführt wird, wird bei dem vorliegenden Verfahren der Schichtwerkstoff während des Spritzvorganges in der autogenen Flamme praktisch homogen geschmolzen, wobei das Titankarbid in der Matrixlegierung gelöst ist. Die derart erhaltene Schicht von austenitischem Charakter lässt sich mechanisch gut bearbeiten. Bei der darauffolgenden Wärmebehandlung wird das Titankarbid dann sehr feinkörnig und gleichmässig verteilt ausgeschieden.In contrast to the mentioned method, which is carried out by means of plasma flame spraying, in the present method the layer material is melted practically homogeneously in the autogenous flame during the spraying process, the titanium carbide being dissolved in the matrix alloy. The layer of austenitic character obtained in this way can be machined well. In the subsequent heat treatment, the titanium carbide is then separated out in a very fine-grained and evenly distributed manner.

Die Schicht weist eine Lamellenstruktur mit relativ grossen, der Partikelgrösse entsprechenden Lamellen auf, wodurch eine grössere Elastizität der Schicht entsteht. Ferner ist zu bemerken, dass der Ausdehnungskoeffizient der Schicht sehr nahe dem Ausdehnungskoeffizienten der Matrixlegierung ist.The layer has a lamellar structure with relatively large lamellae corresponding to the particle size, which results in greater elasticity of the layer. It should also be noted that the coefficient of expansion of the layer is very close to the coefficient of expansion of the matrix alloy.

Bei dem vorliegenden Verfahren treten demnach praktisch keine inneren Spannungen auf und es lässt sich daher eine Schichtdicke bis über 3 mm erzielen, wobei die Wärmebehandlung ohne Schwierigkeiten durchführbar ist.Accordingly, in the present method there are practically no internal stresses and it is therefore possible to achieve a layer thickness of over 3 mm, the heat treatment being able to be carried out without difficulty.

Die anschliessenden Beispiele veranschaulichen die Ergebnisse des erfindungsgemässen Verfahrens.The following examples illustrate the results of the method according to the invention.

Beispiel 1example 1

Eine Welle von 50 mm Durchmesser, die einer sehr starken Verschleissbeanspruchung standhalten soll, wurde zunächst in folgender Weise beschichtet.
Nach einer Vorbereitung durch Strahlen mit Korund wurde die Welle auf 150°C vorgewärmt und anschliessend eine Haftschicht von 0,1 mm Dicke aufgebracht. Dabei wurde ein Pulver der Zusammensetzung, in Gewichtsprozent, 95,0 Ni, 5,0 Al mit einem autogenen Flammspritzgerät in üblicher Weise aufgespritzt.
Auf die Haftschicht wurde sodann eine verschleissfeste Schicht von 1,8 mm Dicke ebenfalls durch autogenes Flammspritzen mit den üblichen Parametern, ohne nachträgliches Einschmelzen aufgebracht, wobei die Zusammensetzung des Spritzpulvers, in Gewichtsprozent, und die Korngrösse wir folgt waren :
33,0 TiC mit einer Matrixlegierung von 0,9 C, 1,0 Cr, 0,3 Cu, 0,5 Mo, 1,9 Mn, 1,0 Si, 0,2 V, Rest Fe. Korngrösse -150/+37 µm.
Die beschichtete Welle wurde spanabhebend bearbeitet und auf das Fertigmass gebracht.
Anschliessend wurde sie während fünf Stunden in einem Muffelofen auf 550°C gehalten. Die Härte der beschichteten Welle hatte nach der mechanischen Bearbeitung einen Wert von 420 Hv, nach der Wärmebehandlung wurde eine Härte von 640 Hv gemessen.
A shaft with a diameter of 50 mm, which should withstand very heavy wear, was first coated in the following way.
After preparation by blasting with corundum, the shaft was preheated to 150 ° C. and then an adhesive layer 0.1 mm thick was applied. A powder of the composition, in percent by weight, 95.0 Ni, 5.0 Al, was sprayed on in a conventional manner with an autogenous flame spraying device.
A wear-resistant layer of 1.8 mm thickness was then also applied to the adhesive layer by autogenous Flame spraying with the usual parameters, applied without subsequent melting, whereby the composition of the wettable powder, in percent by weight, and the grain size were as follows:
33.0 TiC with a matrix alloy of 0.9 C, 1.0 Cr, 0.3 Cu, 0.5 Mo, 1.9 Mn, 1.0 Si, 0.2 V, balance Fe. Grain size -150 / + 37 µm.
The coated shaft was machined and brought to the finished size.
It was then kept in a muffle furnace at 550 ° C. for five hours. The hardness of the coated shaft had a value of 420 Hv after the mechanical processing, and a hardness of 640 Hv was measured after the heat treatment.

Beispiel 2Example 2

Die Gleitfläche von 100 x 100 mm einer Gleitplatte von 50 mm Dicke wurde in folgender Weise beschichtet.
Nach einer Vorbereitung der Gleitfläche durch Strahlen mit Korund wurde die Platte auf 100°C vorgewärmt und anschliessend eine Haftschicht von 0,1 mm Dicke ausgebracht. Dabei wurde ein handelsübliches Haftschicht-Pulver (Castolin 51000) durch autogenes Flammspritzen aufgetragen. Im Anschluss daran wurde eine verschleissfeste Schicht von 1,2 mm Dicke ebenfalls durch autogenes Flammspritzen ohne nachträgliches Einschmelzen aufgebracht, wobei die Zusammensetzung des Spritzpulvers (Korngrösse -150/+37 µm) in Gewichtsprozent die folgende war :
32% TiC in einer Matrixlegierung von 0,2 C, 0,5 Cr, 0,5 Cu, 6,0 Mo, 15,0 Ni, 0,7 Al, 9,0 Co, 0,7 Ti, 0,1 Nb, Rest Fe. Die beschichtete Oberfläche wurde spanabhebend bearbeitet. Danach wurde die Gleitplatte während vier Stunden in einem Schutzgazofen bei 450°C behandelt. Die Härte der Gleitfläche vor der thermischen Behandlung betrug 450 Hv, die nach der Wärmebehandlung gemessene Härte betrug 650 Hv.
The sliding surface of 100 x 100 mm of a sliding plate of 50 mm thickness was coated in the following way.
After preparing the sliding surface by blasting with corundum, the plate was preheated to 100 ° C. and then an adhesive layer of 0.1 mm thick was applied. A commercially available adhesive layer powder (Castolin 51000) was applied by autogenous flame spraying. A wear-resistant layer of 1.2 mm thickness was then also applied by autogenous flame spraying without subsequent melting, the composition of the wettable powder (grain size -150 / + 37 µm) in percent by weight being as follows:
32% TiC in a matrix alloy of 0.2 C, 0.5 Cr, 0.5 Cu, 6.0 Mo, 15.0 Ni, 0.7 Al, 9.0 Co, 0.7 Ti, 0.1 Nb, rest Fe. The coated surface was machined. The slide plate was then treated in a protective gas oven at 450 ° C. for four hours. The hardness of the sliding surface before the thermal treatment was 450 Hv, the hardness measured after the heat treatment was 650 Hv.

Beispiel 3Example 3

Eine Achse von 40,0 mm Durchmesser wurde zur Erzielung einer hohen Verschleissfestigkeit in folgender Weise behandelt.
Nach einer Vorbereitung der Oberfläche durch Strahlen mit Korund wurde die Achse durch autogenes Flammspritzen unter den üblichen Arbeitsbedingungen mit einer verschleissfesten Schicht von 1,5 mm Dicke versehen, wobei die Zusammensetzung des Spritzwerkstoffes in Gewichtsprozent wie folgt gewählt wurde : 33,0 TiC in einer Matrixlegierung von 0,35 C, 2,0 Cr, 1,0 Cu, 2,0 Mo, Rest Fe. Die Korngrösse war im Bereich -150/+37 µm.
Die Oberfläche wurde anschliessend spanabhebend bearbeitet und durch Schleifen auf das gewünschte Fertigmass gebracht, wobei die Oberflächenschicht eine Dicke von 1 mm behielt.
An axis of 40.0 mm in diameter was treated in the following manner to achieve high wear resistance.
After preparation of the surface by blasting with corundum, the axis was provided with a wear-resistant layer of 1.5 mm thickness by autogenous flame spraying under the usual working conditions, the composition of the spraying material in weight percent being chosen as follows: 33.0 TiC in a matrix alloy of 0.35 C, 2.0 Cr, 1.0 Cu, 2.0 Mo, balance Fe. The grain size was in the range -150 / + 37 µm.
The surface was then machined and brought to the desired finished size by grinding, the surface layer retaining a thickness of 1 mm.

Nach der mechanischen Bearbeitung wurde das fertige Teil in einem Muffelofen während fünf Stunden auf 500°C gehalten. Die Härte der Schicht vor der Wärmebehandlung betrug 400 Hv, nach der Wärmebehandlung wurde eine Härte von 680 Hv gemessen.After the mechanical processing, the finished part was held in a muffle furnace at 500 ° C. for five hours. The hardness of the layer before the heat treatment was 400 Hv, after the heat treatment a hardness of 680 Hv was measured.

Beispiel 4Example 4

Ein Verschleissteil mit den Abmessungen 200 x 60 x 30 mm wurde auf einer der Flächen von 200 x 60 mm in folgender Weise beschichtet.
Die zu beschichtende Fläche wurde durch Strahlen mit Korund vorbereitet, auf diese Fläche wurde ein pulverförmiger Spritzwerkstoff der Korngrösse -150/+37 µm aus, in Gewichtsprozent, 16,5 TiC mit einer Matrixlegierung von 0,5 C, 14,0 Cr, 0,5 Cu, 14,0 Mo, 3,5 W, Rest Ni durch autogenes Flammspritzen ohne nachträgliches Einschmelzen unter üblichen Bedingungen aufgetragen. Die verschleissfeste Schicht hatte eine Dicke von 2,2 mm und wurde anschliessend mechanisch bearbeitet, wobei die Dicke der Schicht auf 2,0 mm gebracht wurde. Danach wurde das Verschleissteil in einem Muffelofen während fünf Stunden auf 450°C gehalten. Die Härte betrug vor der Wärmebehandlung 380 Hv und stieg nach der Wärmebehandlung auf 550 Hv.
A wear part with the dimensions 200 x 60 x 30 mm was coated on one of the areas of 200 x 60 mm in the following manner.
The surface to be coated was prepared by blasting with corundum, on this surface a powdery spray material of grain size -150 / + 37 µm was made, in percent by weight, 16.5 TiC with a matrix alloy of 0.5 C, 14.0 Cr, 0 , 5 Cu, 14.0 Mo, 3.5 W, balance Ni applied by autogenous flame spraying without subsequent melting under normal conditions. The wear-resistant layer had a thickness of 2.2 mm and was then machined, the thickness of the layer being 2.0 mm was brought. The wearing part was then kept in a muffle furnace at 450 ° C. for five hours. The hardness was 380 Hv before the heat treatment and rose to 550 Hv after the heat treatment.

Beispiel 5Example 5

Das Verfahren von Beispiel 4 wurde analog wiederholt mit einem Spritzwerkstoff der Zusammensetzung, in Gewichtsprozent, 20,0 TiC in einer Matrixlegierung von 0,5 C, 14,0 Cr, 0,5 Cu, 14,0 Mo, 5,0 W, Rest Co. Die Härte des wärmebehandelten Teils erreichte den Wert von 530 Hv.The procedure of Example 4 was repeated analogously with a spray material of the composition, in percent by weight, 20.0 TiC in a matrix alloy of 0.5 C, 14.0 Cr, 0.5 Cu, 14.0 Mo, 5.0 W, Rest Co. The hardness of the heat-treated part reached 530 Hv.

Claims (10)

1. Method for producing a wear resistant layer on a metallic base part according to which a material in the form of sintered agglomerated particles or alloy particles of a grain size of -150/+37 µm, which contains 10 to 50 percent by weight of TiC and consists for the remainder of an Fe- and/or Ni- alloy or of a Co-alloy, is sprayed onto the base by autogenous flamme spraying to a thickness of at least 1mm and the sprayed layer is afterwards subjected to a heat treatment at a temperature in the range of 400 to 650 °C so that after the heat treatment the layer comprises a lamellar structure having lamellae corresponding to the particle size.
2. Method according to claim 1, characterized in that the Fe- and/or Ni- alloy contains at least two alloy additives from the following elements and in the indicated ranges of percentage by weight :
0-1 C, 0-25 Cr, 0-20 Mo, 0-15 Co, 0-2 Cu, 0-2 Al, 0-1,5 Nb, 0-1 V, 0-2 Ti, 0-4 W, 0-2 Si.
3. Method according to claim 1, characterized in that the particles contain 30 to 35 percent by weight TiC and are constituted for the remainder of an Fe- alloy which contains at least two alloy additives from the following elements and in the indicated ranges of percentage by weight :
0,1-0,8 C, 2-22 Cr, 0,1-4 Mo, 0,5-2 Cu, 0-1 Al, 0-0,5 V, 0-1 Ti, 0-2 Mn, 0-1,5 Si, 0-1 Ni.
4. Method according to claim 1, characterized in that the particles contain 20 to 35 percent by weight of TiC and are constituted for the remainder of an Fe- alloy which contains at least two alloy additives from the following elements and in the indicated ranges of percentage by weight :
0-0,8 C, 0-20 Cr, 2-15 Mo, 0-15 Co, 0,5-1 Cu, 0-1,5 Al, 0-1 Nb, 0-1 Ti, 5-16 Ni.
5. Method according to claim 2, characterized in that the particles contain 15 to 30 percent by weight of TiC and are constituted for the remainder of an Ni- alloy containing alloy additives from the following elements and in the indicated ranges of percentage by weight :
0-0,5 C, 14-25 Cr, 2-16 Mo, 0-1 Cu, 0-1 Al, 0-1 Nb, 0-2 Ti, 0-3,5 W.
6. Method according to claim 1, characterized in that the Co- alloy contains at least two alloy additives from the following elements and in the indicated ranges of percentage by weight :
0-1 C, 0-25 Cr, 0-20 Mo, 0-2 Mn, 0-2 Cu, 0-2 Al, 0-1,5 Nb, 0-1 V, 0-2 Ti, 0-5 W, 0-2 Si.
7. Method according to claim 6, characterized in that the particles contain 15 to 33 percent by weight of TiC and are constituted for the remainder of a Co- alloy which contains alloy additives from the following elements and in the indicated ranges of percentage by weight :
0-1 C, 14-25 Cr, 2-16 Mo, 0-1 Cu, 0-1 Al, 0-1 Nb, 0-2 Ti, 0-5 W.
8. Method according to one of claims 1 to 7, characterized in that the alloy contains an addition of less than 3 percent, preferably less than 1 percent by weight of ZrO₂.
9. Method according to one of claims 1 to 8, characterized in that the heat treatment is effected in the temperature range from 400 to 600 °C during a period of treatment of 1 to 10 hours.
10. Method according to claim 9, characterized in that the heat treatment is effected in the temperature range from 450 to 550 °C during a period of treatment from 1 to 5 hours.
EP87900795A 1986-02-04 1987-02-04 Process for producing a titanium-carbide containing wear-resistant coating on a metal base Revoked EP0256049B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH425/86A CH670103A5 (en) 1986-02-04 1986-02-04
CH425/86 1986-02-04

Publications (2)

Publication Number Publication Date
EP0256049A1 EP0256049A1 (en) 1988-02-24
EP0256049B1 true EP0256049B1 (en) 1991-12-04

Family

ID=4186733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87900795A Revoked EP0256049B1 (en) 1986-02-04 1987-02-04 Process for producing a titanium-carbide containing wear-resistant coating on a metal base

Country Status (5)

Country Link
US (1) US4806394A (en)
EP (1) EP0256049B1 (en)
CH (1) CH670103A5 (en)
DE (1) DE3774956D1 (en)
WO (1) WO1987004732A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035957A (en) * 1981-11-27 1991-07-30 Sri International Coated metal product and precursor for forming same
JPH0778242B2 (en) * 1993-02-12 1995-08-23 日本ユテク株式会社 Method for manufacturing wear resistant composite metal member
US6087022A (en) * 1996-06-05 2000-07-11 Caterpillar Inc. Component having a functionally graded material coating for improved performance
US6048586A (en) * 1996-06-05 2000-04-11 Caterpillar Inc. Process for applying a functional gradient material coating to a component for improved performance
DE19640787C1 (en) 1996-10-02 1998-04-16 Fraunhofer Ges Forschung Wear-resistant parts for process valves
DE19640788C1 (en) * 1996-10-02 1997-11-20 Fraunhofer Ges Forschung Coating powder used e.g. in thermal spraying
US5798002A (en) * 1996-12-02 1998-08-25 Gugel; Saveliy M. Method of and device for producing carbide and carbon solid solution containing surface layers
EP1450973B1 (en) * 2001-12-04 2006-04-12 Magotteaux International S.A. Cast part with enhanced wear resistance
JP2004359998A (en) * 2003-06-04 2004-12-24 Hitachi Ltd Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member
EP1559806A1 (en) * 2004-01-28 2005-08-03 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Iron containing coating applied by thermal spraying on a sliding surface,especially on cylinder bores of engine blocks
WO2013101561A1 (en) 2011-12-30 2013-07-04 Scoperta, Inc. Coating compositions
CA2944782A1 (en) * 2014-04-30 2015-11-05 Oerlikon Metco (Us) Inc. Titanium carbide overlay and method of making
MY190226A (en) * 2014-07-24 2022-04-06 Oerlikon Metco Us Inc Hardfacing alloys resistant to hot tearing and cracking
MX2018002635A (en) 2015-09-04 2019-02-07 Scoperta Inc Chromium free and low-chromium wear resistant alloys.
AU2019363613A1 (en) 2018-10-26 2021-05-20 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035144A1 (en) * 1980-05-16 1981-11-26 Metallurgical Industries, Inc., Tinton Falls, N.J. EROSION-RESISTANT ORDER ALLOY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA659644A (en) * 1963-03-19 J. Dittrich Ferdinand Production of carbide-containing sprayweld coatings
FR1357986A (en) * 1963-05-21 1964-04-10 Soudure Electr Autogene Method of applying a covering of materials to a part by spraying
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
US3779720A (en) * 1971-11-17 1973-12-18 Chromalloy American Corp Plasma sprayed titanium carbide tool steel coating
US3896244A (en) * 1971-11-17 1975-07-22 Chromalloy American Corp Method of producing plasma sprayed titanium carbide tool steel coatings
US3941903A (en) * 1972-11-17 1976-03-02 Union Carbide Corporation Wear-resistant bearing material and a process for making it
GB2050424B (en) * 1979-05-09 1983-06-15 Special Metals Corp Nickel-cobalt-chromium base alloy
US4395279A (en) * 1981-11-27 1983-07-26 Gte Products Corporation Plasma spray powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035144A1 (en) * 1980-05-16 1981-11-26 Metallurgical Industries, Inc., Tinton Falls, N.J. EROSION-RESISTANT ORDER ALLOY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Vol. 9, No. 160 (C-289)(1883), 04 July 1985 & JP,A,6033364 (KOUEI SEIKOU K.K.) 20 February 1985 *

Also Published As

Publication number Publication date
WO1987004732A1 (en) 1987-08-13
EP0256049A1 (en) 1988-02-24
CH670103A5 (en) 1989-05-12
US4806394A (en) 1989-02-21
DE3774956D1 (en) 1992-01-16

Similar Documents

Publication Publication Date Title
EP0256049B1 (en) Process for producing a titanium-carbide containing wear-resistant coating on a metal base
EP3102711B1 (en) Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
DE2621472C2 (en) Use of a hard alloy for cutting, shearing or deforming tools
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
DE2846122C2 (en) Sintered alloy for the manufacture of sliding elements for engines
DE3015897C2 (en) Wear-resistant sintered alloy
DE19780253C2 (en) Cast iron and piston ring
DE3937526C2 (en) Wear-resistant titanium alloy, process for its production and its use
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
DE3015898A1 (en) WEAR-RESISTANT SINTER ALLOY FOR USE IN COMBUSTION ENGINES
DE4203869C2 (en) Heavy-duty, coated components made of a material that consists of the intermetallic phase titanium aluminide
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
DE3041565C2 (en)
DE3708035A1 (en) WEAR-RESISTANT, SINTERED IRON-BASED ALLOY
EP2664684A2 (en) Chromium steel with high hardness and corrosion resistance and use of the same for protection of metallic substrates
DE2210935A1 (en) MEASURES MADE FROM TITANIUM CARBIDE AND A STEEL BASE MEASUREMENT FOR THE SURFACE HARDENING OF METAL SUBSTRATES
DE2208070A1 (en) PLASMA FLAME-INJECTED TITANIUM CARBIDE TOOL STEEL COATINGS ON METAL SUBSTRATES, THE COMPOSITE MATERIALS AND THE PROCESS FOR THEIR PRODUCTION
EP0948659B1 (en) Coating powder and method for its production
EP1190108A1 (en) Casting material for indefinite rollers with a sleeve part and method for producing the same
DE3017310A1 (en) WEAR-RESISTANT FERRO INSERTER
DE1246352B (en) Powder mixture for aluminizing workpieces made of high-alloy steels or alloys based on at least one of the metals cobalt, nickel or chromium
DE1521193B2 (en) Method of preventing refractory grains from falling out of the surface of a composite sintered metal article
DE3619664C2 (en)
DE2411017C2 (en) Steel-bonded titanium carbide alloy with a low coefficient of friction and high resistance to thermal shocks
DE60310283T3 (en) High temperature element for a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19880125

17Q First examination report despatched

Effective date: 19890717

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3774956

Country of ref document: DE

Date of ref document: 19920116

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THYSSEN EDELSTAHLWERKE AG

Effective date: 19920606

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FRIED. KRUPP AG

Effective date: 19920825

Opponent name: THYSSEN EDELSTAHLWERKE AG

Effective date: 19920606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930204

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930304

Year of fee payment: 7

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THYSSEN EDELSTAHLWERKE AG * 920825 FRIED. KRUPP A

Effective date: 19920606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19941021