JP2004359998A - Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member - Google Patents

Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member Download PDF

Info

Publication number
JP2004359998A
JP2004359998A JP2003158787A JP2003158787A JP2004359998A JP 2004359998 A JP2004359998 A JP 2004359998A JP 2003158787 A JP2003158787 A JP 2003158787A JP 2003158787 A JP2003158787 A JP 2003158787A JP 2004359998 A JP2004359998 A JP 2004359998A
Authority
JP
Japan
Prior art keywords
alloy
nickel
compound
dispersed
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003158787A
Other languages
Japanese (ja)
Inventor
Mitsuo Chikazaki
充夫 近崎
Jiro Kuniya
治郎 国谷
Yoshihisa Kiyotoki
芳久 清時
Akira Sakamoto
明 坂本
Satoshi Furusawa
智 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003158787A priority Critical patent/JP2004359998A/en
Priority to CA002469373A priority patent/CA2469373A1/en
Priority to US10/857,952 priority patent/US20040247477A1/en
Publication of JP2004359998A publication Critical patent/JP2004359998A/en
Priority to US11/635,681 priority patent/US20070081916A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a metallic member having an alloy layer of dispersing hard compound particles therein, on the surface, without using a jointing method such as welding. <P>SOLUTION: This method for manufacturing the metallic member comprises sealing the powder of the alloy containing a compound in a tubular container, and hot-isostatic-forming and/or hot-extruding the container in the state, to thereby divide the compound and metallically combine powders with each other. In the above step, the metallic member may be inserted into the container, or alternatively when the metallic member is tubular, the container is formed of the material of the metallic member. Then, the container is machined into the metallic member having the alloy layer with the hard compound particles dispersed therein, on the surface. The metallic member having the alloy layer with the hard compound particles dispersed therein, on the surface, is manufactured without using the jointing method such as welding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化合物粒子分散合金層を表面に有する金属部材の製造方法に係り、また摺動部材に関する。
【0002】
【従来の技術】
化合物分散合金層を表面に有する金属部材は、弁等の摺動部品に使用されている(例えば特許文献1,2参照)。
【0003】
特許文献1には、ほう化クロム粒子を分散させたクロム−ホウ素−けい素系のニッケル基合金により、弁の摺動面を形成することが記載されている。また、特許文献2には、粒状又は塊状の共晶炭化物が分散したコバルト基,ニッケル基又は鉄基合金により弁の摺動面を形成することが記載されている。
【0004】
【特許文献1】
特開平11−63251号公報(特許請求の範囲)
【特許文献2】
特開2001−288521号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
従来技術は、いずれも、合金中に硬質の化合物粒子を分散させることによって、耐摩耗性及び耐焼き付き性を高めたものである。硬質の化合物粒が分散した合金は、一般に延性が乏しく加工しにくい。したがって、弁の本体は加工性の良い他の金属で形成し、摺動面のみに化合物粒子分散合金層を形成することが行われる。化合物粒子分散合金層を形成する方法としては、溶接が最も一般的であるが、溶接を行うと溶融により粗大な化合物を含む凝固組織になってしまい、当初の微細な粒子の状態を保持できない。
【0006】
本発明の目的は、溶接等の接合手段を採らずに、化合物粒子分散合金層を金属部材の表面に形成することができるようにしたことにある。
【0007】
【課題を解決するための手段】
本発明は、表面に化合物粒子分散合金層を有する金属部材を、熱間静水圧成形(hot isostatic pressing)及び熱間押出し加工から選ばれた少なくとも一方よりなる熱間塑性加工によって製造することにある。
【0008】
前記熱間塑性加工を施すに当たっては、化合物を含む合金の粉末を用意して、これを容器に封入する。封入する際には、容器内に溜まっている気体主に空気を排気して、粉末の酸化を防ぐことが望ましい。粉末を容器に封入した状態で、熱間静水圧成形と熱間押出し加工の一方又は両方を施す。これらの塑性加工により、化合物は分断されて粒状又は塊状になる。また、粉末同士が金属的に結合する。容器が金属でできていれば、金属容器と粉末も金属的に結合する。粉末の一部が金属容器の内面に食い込む現象も起こる。前記熱間塑性加工が終了したならば、機械加工、例えばワイヤカットによる切削加工を行う。前記容器が筒状の金属容器であれば、化合物粒子分散合金層を内表面に有する筒状金属部材を製造することができる。
【0009】
また、粉末を容器内に封入するときに、同時に金属部材を挿入しておけば、金属部材の表面に化合物粒子分散合金層が形成された金属部材を製造することができる。管状の金属部材の内面に化合物粒子分散合金層を形成する場合には、管状の金属部材が容器を兼ねることができる。
【0010】
本発明は、弁の摺動面あるいは弁の軸,はめ輪,ブッシュ等に化合物粒子分散合金層を形成する方法として好適である。
【0011】
本発明の製造方法を実施する場合に好適な化合物粒子分散合金の例としては、けい化物とほう化物及び炭化物から選ばれた少なくとも1種を含むニッケル基,コバルト基或いは鉄基合金がある。
【0012】
ニッケル基合金としては、けい素を8重量%以下,ほう素を0〜4重量%,クロムを7〜30重量%,炭素を1.2 重量%以下,タングステンを0〜5重量%,鉄を42重量%以下かつニッケル量を超えない範囲で含み、残部がニッケルよりなるものが望ましい。
【0013】
また、合金粉末には、合金の溶湯より噴霧することによって製造されたアトマイズ粉末を用いることが望ましい。アトマイズ粉は、きれいな丸みを帯びた粒子になるので、容器に詰めるのに適する。噴霧方法としては、液体を噴霧する方法及びガスを噴霧する方法がいずれも適用可能であるが、不活性ガスを噴霧する方法が望ましい。水アトマイズは、粉末の表面が酸化されやすく、また、この酸化を伴うために丸い形状の粒子が得られにくい。不活性ガスアトマイズ粉は、酸化がなく、丸い形状の粒子が得られやすい。
【0014】
粉末を容器に封入する段階では、化合物を粒子状にしておく必要はない。アトマイズ粉では、溶湯が粉化されたのち凝固する過程で、化合物がデンドライト状に析出するが、それを用いることができる。たとえば、前記化学成分範囲のニッケル基合金よりなるアトマイズ粉は、けい化物と場合によってほう化物がデンドライト状に析出するが、それを用いることができる。デンドライト状の析出物は、熱間静水圧成形または熱間押出し加工の過程で、粒状又は塊状に分断される。
【0015】
本発明の方法によれば、溶接等の接合工程を経ずに、金属部材の表面に化合物粒子分散合金層を形成することができる。また、前記合金層は、金属部材の表面に形成される過程で溶融したりすることはないので、微細な粒状または塊状をした化合物粒子を分散させることができる。
【0016】
熱間静水圧成形または熱間押出し加工は、一般に知られている方法で行うことができる。例えば、熱間静水圧成形方法としては、アルゴンガスなどの不活性ガスを圧力媒体とし、粉末を封入した容器を所定の温度と圧力の下で加圧処理する方法が知られているが、この方法を適用することができる。また、熱間押出し加工方法としては、ダイスを用いて素材を押し出すことが知られているが、この方法を適用して、粉末を封入した容器を押し出すことができる。
【0017】
本発明によれば、熱間静水圧成形及び熱間押出し加工から選ばれた少なくとも一方よりなる熱間塑性加工によって化合物粒子分散合金層が形成され、かつその塑性加工時に摺動部材の本体と一体化された摺動部材が提供される。
【0018】
本発明の摺動部材は、各種弁に用いることができる。また、スイング弁(swingcheck valve)やちょう型弁(butterfly valve)の軸,はめ輪或いはブッシュ等に用いることができる。
【0019】
摺動部材に用いる場合には、炭素鋼,低合金鋼またはステンレス鋼よりなる部材の表面に、けい化物粒子,ほう化物粒子及び炭化物粒子の少なくとも1種を分散したニッケル基合金,コバルト基合金または鉄基合金の層を形成することが望ましい。粒状または塊状の前記化合物粒子が分散したニッケル基合金,コバルト基合金または鉄基合金は、耐摩耗性及び耐焼き付き性が優れており、摺動部材に適する。また、摺動部材に用いる場合、化合物粒子分散合金層の表面に更に硬質のセラミックス皮膜をコーティングして耐摩耗性を高めてもよい。セラミックス材料には、窒化クロム(CrN),窒化チタン(TiN),炭化チタン(TiC)或いは炭化ハフニウム(HfC)などを用いることができる。
【0020】
【発明の実施の形態】
実施例1
重量%でけい素6.1%,ほう素1.1%,クロム19.7%,炭素0.32%,タングステン2.0%,鉄7.6%を含み、残部がニッケルと同伴する不純物よりなるニッケル基合金の粉末を不活性ガスアトマイズ法により製造した。粒度分布が70〜250メッシュの前記ニッケル基合金粉末を、外径145mmφ,内径
123mmφの炭素鋼S12C製の中空円筒形状をした容器に充填し、常温で圧縮成形してから容器を密封した。その後、約950℃の温度で熱間静水圧成形を行い、更に950℃の温度で熱間押出し加工を行った。熱間押出し加工は、押し出し圧力が約5,000kg/cm,ステム速度が20mm/秒の条件で行った。容器は、外径が60mmφになるまで加工された。その後、機械加工を施して、各種試験片を切り出し各種の試験を行った。
【0021】
ニッケル基合金は、粉末同士が相互に金属的に結合していた。また、ニッケル基合金粉末は、炭素鋼製の容器とも金属的に結合していた。更に粉末の一部は、炭素鋼製の円筒容器の内部まで食い込み、容器と強固に結合していた。また、炭素鋼製の円筒状容器の内面に形成されたニッケル基合金層は、アトマイズ粉の状態ではデンドライト状になっていた化合物が、粒径10μm以下の粒状または塊状をした化合物に粒子に分断されていた。化合物は主にけい化物であり、一部ほう化物も含まれていた。
【0022】
各種試験では、本実施例によって製造されたニッケル基合金層から溶接棒を切り出して、肉盛溶接を行ったものと比較した。
【0023】
まず、本発明の実施例によるニッケル基合金層は、肉盛溶接材に比べて、延性が3倍以上も優れていた。また、本発明によるものは、肉盛溶接材に比べて、ノッチ無し衝撃試験では約2.5 倍、Uノッチ衝撃試験では約1.4 倍も高い衝撃値を示した。硬さは本発明材及び肉盛溶接材ともにHv550〜600の範囲内であった。
【0024】
沸騰硫酸と硫酸銅を含む水溶液中に試験片を72時間浸漬するストラウス試験(JISG0575)を行い、試験後に断面を観察したところ、本発明によるものは侵食深さが最大で10μm以下であり、肉盛溶接材の最大侵食深さ約200μmに比べて、耐食性が優れていた。
【0025】
表面に窒化クロム膜をコーティングした析出硬化型ステンレス鋼SUS630を摺動相手材に用いて、面圧2000kg/cm ,摺動速度300mm/分の条件で高温水中における摩擦係数を測定したところ、本発明材は0.34 であり、肉盛溶接材は0.43 であった。これより、本発明材は、回転摺動部或いは往復摺動部を有するスイング弁やちょう型弁の軸,はめ輪等に使用するのに適することが確認された。
【0026】
実施例2
重量%でけい素6.0%,ほう素1.6%,クロム20.0%,炭素0.7%,タングステン1.6%,鉄5.0%を含み、残部がニッケルと同伴する不純物よりなるニッケル基合金の不活性ガスアトマイズ粉を、外径145mmφ,内径123mmφの低合金鋼F11A(1.5クロム−0.5モリブデン鋼)製の中空円筒形状をした容器に充填して密封し、約900℃の温度で熱間静水圧成形及び熱間押出し加工を行って、外径70mmφに加工した。機械加工により円筒状容器を切断したところ、内径は56mmφであり、金属組織のマトリクスに粒径10μm以下の粒状または塊状のけい化物粒子とほう化物粒子等が分散しているニッケル基合金が詰まっていた。低合金鋼製の円筒状容器とその内部に詰まっているニッケル基合金との間のせん断強度を測定したところ、15kg/mm以上であった。せん断強度が低い場合には、剥離等が生じやすくなり、スイング弁のはめ輪には適用しにくくなる。本実施例材は、合金層と低合金鋼との界面に15kg/mm のせん断力が負荷されても破断せず、例えばはめ輪の摺動相手材である逆止弁の軸との摩擦係数を0.5とすれば、約3,000気圧(3000kg/cm)の面圧に耐えられることが確認された。
【0027】
本実施例材から、外径68mmφ,内径50mmφ,長さ160mmのスイング逆止弁のはめ輪を機械加工により製作した。低合金鋼製の円筒の内側には厚さ3mmのニッケル基合金層が形成されている。
【0028】
一方、スイング逆止弁の軸として、析出硬化型ステンレス鋼SUS630
(17−4PH)の表面に窒化クロム膜を約10μmの厚さに蒸着によりコーティングした、外径50mmφの軸を作製した。
【0029】
更に、外径70mmφの本実施例材から、長さ150mmのものを切り出し、950〜1000℃の温度で軸方向に垂直に熱間プレスして外径を100mmφ以上に拡張し、これから弁体ブッシュを機械加工により製作した。
【0030】
本実施例品は、肉盛溶接材に比べて、機械的衝撃に強く割れにくく、また耐食性も良好であった。
【0031】
【発明の効果】
本発明によれば、粒状または塊状の化合物粒子が分散する合金層を表面に有する金属部材を、溶接等の接合方法を経ずに製造することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a metal member having a compound particle-dispersed alloy layer on the surface, and also relates to a sliding member.
[0002]
[Prior art]
A metal member having a compound-dispersed alloy layer on its surface is used for sliding parts such as valves (for example, see Patent Documents 1 and 2).
[0003]
Patent Document 1 describes that a sliding surface of a valve is formed by a chromium-boron-silicon-based nickel-based alloy in which chromium boride particles are dispersed. Patent Literature 2 describes that a sliding surface of a valve is formed of a cobalt-based, nickel-based, or iron-based alloy in which granular or massive eutectic carbide is dispersed.
[0004]
[Patent Document 1]
JP-A-11-63251 (Claims)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-288521 (Claims)
[0005]
[Problems to be solved by the invention]
In each of the prior arts, hard compound particles are dispersed in an alloy to improve wear resistance and seizure resistance. Alloys in which hard compound particles are dispersed generally have poor ductility and are difficult to process. Therefore, the main body of the valve is formed of another metal having good workability, and the compound particle dispersed alloy layer is formed only on the sliding surface. As a method of forming the compound particle dispersed alloy layer, welding is the most common method. However, when welding is performed, a solidified structure containing a coarse compound is formed by melting, and the initial fine particle state cannot be maintained.
[0006]
An object of the present invention is to be able to form a compound particle-dispersed alloy layer on the surface of a metal member without using a joining means such as welding.
[0007]
[Means for Solving the Problems]
An object of the present invention is to produce a metal member having a compound particle dispersed alloy layer on its surface by hot plastic working comprising at least one selected from hot isostatic pressing and hot extrusion. .
[0008]
In carrying out the hot plastic working, an alloy powder containing a compound is prepared and sealed in a container. At the time of encapsulation, it is desirable to evacuate mainly the gas accumulated in the container to prevent oxidation of the powder. With the powder enclosed in a container, one or both of hot isostatic pressing and hot extrusion are performed. Due to these plastic workings, the compound is divided into granules or aggregates. Further, the powders are metallically bonded to each other. If the container is made of metal, the metal container and the powder also combine metallically. A phenomenon that a part of the powder digs into the inner surface of the metal container also occurs. When the hot plastic working is completed, machining, for example, cutting by wire cutting is performed. When the container is a cylindrical metal container, a cylindrical metal member having a compound particle-dispersed alloy layer on the inner surface can be manufactured.
[0009]
In addition, when the metal member is inserted at the same time when the powder is sealed in the container, a metal member having the compound particle-dispersed alloy layer formed on the surface of the metal member can be manufactured. When the compound particle-dispersed alloy layer is formed on the inner surface of the tubular metal member, the tubular metal member can also serve as the container.
[0010]
The present invention is suitable as a method for forming a compound particle-dispersed alloy layer on a sliding surface of a valve or a valve shaft, a ferrule, a bush, or the like.
[0011]
An example of a compound particle dispersed alloy suitable for carrying out the production method of the present invention is a nickel-based, cobalt-based or iron-based alloy containing at least one selected from silicides, borides and carbides.
[0012]
As the nickel-based alloy, silicon is 8% by weight or less, boron is 0 to 4% by weight, chromium is 7 to 30% by weight, carbon is 1.2% by weight or less, tungsten is 0 to 5% by weight, iron is Desirably, the content is not more than 42% by weight and does not exceed the nickel amount, and the balance is made of nickel.
[0013]
It is desirable to use atomized powder produced by spraying from a molten alloy as the alloy powder. Atomized flour is suitable for packing in containers as it becomes clean, rounded particles. As a spraying method, any of a method of spraying a liquid and a method of spraying a gas can be applied, but a method of spraying an inert gas is preferable. In the water atomization, the surface of the powder is easily oxidized, and because of this oxidation, it is difficult to obtain round particles. The inert gas atomized powder is not oxidized, and round particles are easily obtained.
[0014]
At the stage of enclosing the powder in the container, it is not necessary to keep the compound in particulate form. In the atomized powder, the compound precipitates in the form of dendrite in the process of solidifying the molten metal after it is pulverized, and it can be used. For example, in the atomized powder composed of a nickel-based alloy having the above-mentioned chemical composition range, silicide and, in some cases, boride precipitate in the form of dendrite. The dendrite-like precipitate is divided into granules or blocks in the course of hot isostatic pressing or hot extrusion.
[0015]
According to the method of the present invention, a compound particle-dispersed alloy layer can be formed on the surface of a metal member without performing a joining step such as welding. Further, since the alloy layer is not melted in the process of being formed on the surface of the metal member, fine granular or massive compound particles can be dispersed.
[0016]
Hot isostatic pressing or hot extrusion can be carried out by generally known methods. For example, as a hot isostatic pressing method, a method is known in which an inert gas such as argon gas is used as a pressure medium, and a container in which powder is sealed is subjected to pressure treatment at a predetermined temperature and pressure. The method can be applied. As a hot extrusion method, it is known that a material is extruded using a die. However, this method can be applied to extrude a container enclosing a powder.
[0017]
According to the present invention, the compound particle-dispersed alloy layer is formed by hot plastic working comprising at least one selected from hot isostatic pressing and hot extrusion, and is integrated with the main body of the sliding member during the plastic working. A sliding member is provided.
[0018]
The sliding member of the present invention can be used for various valves. Further, it can be used for a shaft, a ferrule or a bush of a swing check valve or a butterfly valve.
[0019]
When used as a sliding member, a nickel-based alloy, a cobalt-based alloy or a nickel-based alloy in which at least one of silicide particles, boride particles and carbide particles is dispersed on the surface of a member made of carbon steel, low alloy steel or stainless steel. It is desirable to form a layer of an iron-based alloy. Nickel-based alloys, cobalt-based alloys, or iron-based alloys in which the granular or massive compound particles are dispersed have excellent wear resistance and seizure resistance, and are suitable for sliding members. When used for a sliding member, the surface of the compound particle-dispersed alloy layer may be further coated with a hard ceramic film to enhance wear resistance. As the ceramic material, chromium nitride (CrN), titanium nitride (TiN), titanium carbide (TiC), hafnium carbide (HfC), or the like can be used.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Example 1
Impurities containing 6.1% by weight of silicon, 1.1% of boron, 19.7% of chromium, 0.32% of carbon, 2.0% of tungsten, and 7.6% of iron in weight% with the balance being nickel A nickel-based alloy powder was produced by an inert gas atomizing method. The nickel-base alloy powder having a particle size distribution of 70 to 250 mesh was filled in a hollow cylindrical container made of carbon steel S12C having an outer diameter of 145 mmφ and an inner diameter of 123 mmφ, and was compression-molded at room temperature, and then the container was sealed. Thereafter, hot isostatic pressing was performed at a temperature of about 950 ° C., and hot extrusion was performed at a temperature of 950 ° C. The hot extrusion was performed under the conditions of an extrusion pressure of about 5,000 kg / cm 2 and a stem speed of 20 mm / sec. The container was processed until the outer diameter became 60 mmφ. Then, it machined and cut out various test pieces and performed various tests.
[0021]
In the nickel-based alloy, the powders were metallically bonded to each other. In addition, the nickel-based alloy powder was also metallically bonded to a carbon steel container. Further, a part of the powder penetrated into the inside of the cylindrical container made of carbon steel, and was strongly bonded to the container. In addition, in the nickel-based alloy layer formed on the inner surface of the cylindrical container made of carbon steel, the compound which was in the form of dendrite in the state of atomized powder was divided into particles having a particle size of 10 μm or less into particles or aggregates. It had been. The compound was mainly a silicide, and a part was also a boride.
[0022]
In various tests, a welding rod was cut out from the nickel-based alloy layer manufactured according to the present example, and compared with the one obtained by overlay welding.
[0023]
First, the nickel-based alloy layer according to the example of the present invention was more than three times more ductile than the build-up welding material. In addition, the steel according to the present invention exhibited an impact value about 2.5 times higher in the notch impact test and about 1.4 times higher in the U notch impact test as compared with the overlay welding material. The hardness was in the range of Hv550 to 600 for both the material of the present invention and the build-up welded material.
[0024]
A Strauss test (JIS G0575) was performed in which the test piece was immersed in an aqueous solution containing boiling sulfuric acid and copper sulfate for 72 hours, and the cross section was observed after the test. The erosion depth of the test piece according to the present invention was 10 μm or less at the maximum. The corrosion resistance was superior to the maximum erosion depth of the welded material of about 200 μm.
[0025]
Using a precipitation hardening stainless steel SUS630 having a surface coated with a chromium nitride film as a sliding partner, the friction coefficient in high-temperature water was measured under the conditions of a surface pressure of 2000 kg / cm 2 and a sliding speed of 300 mm / min. The invented material was 0.34, and the build-up welded material was 0.43. From this, it was confirmed that the material of the present invention is suitable for use in a shaft of a swing valve or a butterfly valve having a rotary sliding portion or a reciprocating sliding portion, a ferrule, and the like.
[0026]
Example 2
Impurities containing 6.0% by weight of silicon, 1.6% of boron, 20.0% of chromium, 0.7% of carbon, 1.6% of tungsten, and 5.0% of iron by weight%, with the balance being nickel. An inert gas atomized powder of a nickel-based alloy comprising a hollow cylindrical container made of low alloy steel F11A (1.5 chromium-0.5 molybdenum steel) having an outer diameter of 145 mmφ and an inner diameter of 123 mmφ is sealed and sealed. Hot isostatic pressing and hot extrusion were performed at a temperature of about 900 ° C. to obtain an outer diameter of 70 mmφ. When the cylindrical container was cut by machining, the inner diameter was 56 mmφ, and the matrix of the metal structure was clogged with a nickel-based alloy in which granular or massive silicide particles having a particle size of 10 μm or less and boride particles were dispersed. Was. When the shear strength between the cylindrical container made of low alloy steel and the nickel-based alloy packed in the inside thereof was measured, it was 15 kg / mm 2 or more. When the shear strength is low, peeling or the like is likely to occur, and it is difficult to apply to a ferrule of a swing valve. The material of the present embodiment does not break even when a shearing force of 15 kg / mm 2 is applied to the interface between the alloy layer and the low alloy steel, for example, friction with the shaft of a check valve, which is a sliding partner of the ferrule. It was confirmed that when the coefficient was set to 0.5, it could withstand a surface pressure of about 3,000 atmospheres (3000 kg / cm 2 ).
[0027]
A ferrule of a swing check valve having an outer diameter of 68 mmφ, an inner diameter of 50 mmφ, and a length of 160 mm was manufactured from the material of this example by machining. A nickel-based alloy layer having a thickness of 3 mm is formed inside a low alloy steel cylinder.
[0028]
On the other hand, a precipitation hardening stainless steel SUS630 is used as a shaft of the swing check valve.
A shaft having an outer diameter of 50 mmφ was prepared by coating the surface of (17-4PH) with a chromium nitride film to a thickness of about 10 μm by vapor deposition.
[0029]
Further, a material having a length of 150 mm was cut out from the material of the present example having an outer diameter of 70 mmφ, and hot-pressed vertically in the axial direction at a temperature of 950 to 1000 ° C. to expand the outer diameter to 100 mmφ or more. Was manufactured by machining.
[0030]
The product of the present example was strong against mechanical impact, was hard to crack, and had good corrosion resistance as compared with the overlay welding material.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the metal member which has the alloy layer in which a granular or massive compound particle disperse | distributes on a surface can be manufactured, without going through joining methods, such as welding.

Claims (18)

表面に化合物粒子分散合金層を有する金属部材の製造方法において、前記化合物を含む合金の粉末を筒状の金属容器に封入し、その状態で熱間静水圧成形及び熱間押出し加工から選ばれた少なくとも一方よりなる熱間塑性加工を施し、該熱間塑性加工により前記化合物を分断し前記粉末同士及び前記粉末と前記金属容器とを金属的に結合し、その後、機械加工を施して前記化合物粒子が分散した合金層を内表面に有する筒状金属部材を製造することを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。In the method for producing a metal member having a compound particle-dispersed alloy layer on the surface, an alloy powder containing the compound is sealed in a cylindrical metal container and selected from hot isostatic pressing and hot extrusion in that state. At least one of the hot plastic working is performed, the compound is divided by the hot plastic working, and the powders and the powder and the metal container are metallically bonded. A method for manufacturing a metal member having a compound particle-dispersed alloy layer, comprising manufacturing a cylindrical metal member having an alloy layer in which is dispersed on the inner surface. 請求項1において、前記化合物を含む合金が、けい化物とほう化物及び炭化物から選ばれた少なくとも1種よりなる前記化合物を含むニッケル基合金,コバルト基合金及び鉄基合金のいずれかよりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。2. The alloy according to claim 1, wherein the alloy containing the compound is any one of a nickel-based alloy, a cobalt-based alloy, and an iron-based alloy containing the compound composed of at least one selected from silicides, borides, and carbides. A method for producing a metal member having a compound particle-dispersed alloy layer as a feature. 請求項2において、前記ニッケル基合金が、けい素8重量%以下、ほう素0〜4重量%,クロム7〜30重量%,炭素1.2 重量%以下,タングステン0〜5重量%,鉄42重量%以下でニッケル量を超えない範囲、及び残部がニッケルよりなるニッケル基合金よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。3. The nickel-based alloy according to claim 2, wherein the nickel-based alloy is 8% by weight or less of silicon, 0 to 4% by weight of boron, 7 to 30% by weight of chromium, 1.2% by weight or less of carbon, 0 to 5% by weight of tungsten, and iron 42. A method for producing a metal member having a compound particle-dispersed alloy layer, characterized in that it is made of a nickel-based alloy consisting of nickel in a range not exceeding the amount of nickel by weight% or less and the balance being nickel. 請求項1において、前記粉末が、前記合金の溶湯より噴霧することによって製造された合金粉末よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。2. The method according to claim 1, wherein the powder comprises an alloy powder produced by spraying from a molten alloy. 請求項4において、前記噴霧によって製造された合金粉末が、不活性ガス噴霧により製造されたガスアトマイズ粉よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。5. The method according to claim 4, wherein the alloy powder produced by spraying comprises gas atomized powder produced by inert gas spraying. 請求項4において、前記合金粉末が、粉末製造過程でデンドライト状に析出した化合物を含む合金粉末よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。5. The method according to claim 4, wherein the alloy powder comprises an alloy powder containing a compound precipitated in a dendrite shape during a powder manufacturing process. 請求項1において、前記合金粉末を前記金属容器に封入する際に該容器内のガス排気を行うことを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。2. The method for manufacturing a metal member having a compound particle-dispersed alloy layer according to claim 1, wherein when the alloy powder is sealed in the metal container, gas is exhausted from the container. 表面に化合物粒子分散合金層を有する金属部材の製造方法において、前記化合物を含む合金の粉末及び前記金属部材を容器に封入し、その状態で熱間静水圧成形及び熱間押出し加工から選ばれた少なくとも一方よりなる熱間塑性加工を施し、該熱間塑性加工により前記化合物を分断し前記粉末同士及び前記粉末と前記金属部材とを金属的に結合し、その後、機械加工を施して前記化合物粒子が分散した合金層を表面に有する金属部材を製造することを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。In the method for producing a metal member having a compound particle-dispersed alloy layer on the surface, an alloy powder containing the compound and the metal member are sealed in a container, and in that state, selected from hot isostatic pressing and hot extrusion. Hot plastic working comprising at least one of the above, the compound is divided by the hot plastic working, and the powders and the powder and the metal member are metallically bonded; A method for producing a metal member having a compound particle-dispersed alloy layer, comprising: producing a metal member having an alloy layer having a surface dispersed therein. 請求項8において、前記化合物を含む合金が、けい化物とほう化物及び炭化物から選ばれた少なくとも1種よりなる前記化合物を含むニッケル基合金,コバルト基合金及び鉄基合金のいずれかよりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。9. The method according to claim 8, wherein the alloy containing the compound is any one of a nickel-based alloy, a cobalt-based alloy, and an iron-based alloy containing the compound consisting of at least one selected from silicides, borides, and carbides. A method for producing a metal member having a compound particle-dispersed alloy layer as a feature. 請求項9において、前記ニッケル基合金が、けい素8重量%以下,ほう素0〜4重量%,クロム7〜30重量%,炭素1.2 重量%以下,タングステン0〜5重量%,鉄42重量%以下でニッケル量を超えない範囲、及び残部がニッケルよりなるニッケル基合金よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。10. The nickel-based alloy according to claim 9, wherein the nickel-based alloy is 8% by weight or less of silicon, 0 to 4% by weight of boron, 7 to 30% by weight of chromium, 1.2% by weight or less of carbon, 0 to 5% by weight of tungsten, and 42% of iron. A method for producing a metal member having a compound particle-dispersed alloy layer, characterized in that it is made of a nickel-based alloy consisting of nickel in a range not exceeding the amount of nickel by weight% or less and the balance being nickel. 請求項8において、前記粉末が、前記合金の溶湯より噴霧することによって製造された合金粉末よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。9. The method according to claim 8, wherein the powder comprises an alloy powder produced by spraying from a melt of the alloy. 請求項11において、前記噴霧によって製造された合金粉末が、不活性ガス噴霧により製造されたガスアトマイズ粉よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。12. The method according to claim 11, wherein the alloy powder produced by spraying comprises gas atomized powder produced by inert gas spraying. 請求項11において、前記合金粉末が、粉末製造過程でデンドライト状に析出した化合物を含む合金粉末よりなることを特徴とする化合物粒子分散合金層を有する金属部材の製造方法。The method according to claim 11, wherein the alloy powder comprises an alloy powder containing a compound precipitated in a dendrite shape during a powder manufacturing process. 化合物粒子が分散した合金層を摺動面に有する摺動部材において、前記化合物粒子が分散した合金層が熱間静水圧成形及び熱間押出し加工から選ばれた少なくとも一方よりなる熱間塑性加工によって得られ、該熱間塑性加工時に前記摺動部材と一体化されていることを特徴とする摺動部材。In a sliding member having an alloy layer in which compound particles are dispersed on a sliding surface, the alloy layer in which the compound particles are dispersed is formed by hot plastic working comprising at least one selected from hot isostatic pressing and hot extrusion. A sliding member obtained and integrated with the sliding member during the hot plastic working. 請求項14において、前記合金層がニッケル基合金,コバルト基合金及び鉄基合金のいずれかよりなり、前記化合物粒子としてけい化物,ほう化物及び炭化物から選ばれた少なくとも1種を含むことを特徴とする摺動部材。15. The method according to claim 14, wherein the alloy layer is made of any one of a nickel-based alloy, a cobalt-based alloy, and an iron-based alloy, and the compound particles include at least one selected from a silicide, a boride, and a carbide. Sliding member. 請求項15において、前記ニッケル基合金が、けい素8重量%以下,ほう素0〜4重量%,クロム7〜30重量%,炭素1.2 重量%以下,タングステン0〜5重量%,鉄42重量%以下でニッケル量を超えない範囲、及び残部がニッケルよりなるニッケル基合金よりなることを特徴とする摺動部材。16. The nickel-based alloy according to claim 15, wherein the nickel-based alloy is 8 wt% or less of silicon, 0 to 4 wt% of boron, 7 to 30 wt% of chromium, 1.2 wt% or less of carbon, 0 to 5 wt% of tungsten, and iron 42. A sliding member comprising a nickel-based alloy comprising nickel in a range of not more than weight% and not exceeding a nickel amount, and the balance being nickel. 請求項14において、前記金属部材が、炭素鋼,低合金鋼及びステンレス鋼から選ばれた1つよりなることを特徴とする摺動部材。15. The sliding member according to claim 14, wherein the metal member is made of one selected from carbon steel, low alloy steel, and stainless steel. 請求項14において、前記合金層の表面に該合金層よりも硬質のセラミックス皮膜のコーティング層を有することを特徴とする摺動部材。15. The sliding member according to claim 14, further comprising a ceramic coating layer harder than the alloy layer on the surface of the alloy layer.
JP2003158787A 2003-06-04 2003-06-04 Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member Pending JP2004359998A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003158787A JP2004359998A (en) 2003-06-04 2003-06-04 Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member
CA002469373A CA2469373A1 (en) 2003-06-04 2004-05-31 The production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
US10/857,952 US20040247477A1 (en) 2003-06-04 2004-06-02 Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
US11/635,681 US20070081916A1 (en) 2003-06-04 2006-12-08 Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158787A JP2004359998A (en) 2003-06-04 2003-06-04 Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member

Publications (1)

Publication Number Publication Date
JP2004359998A true JP2004359998A (en) 2004-12-24

Family

ID=33487447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158787A Pending JP2004359998A (en) 2003-06-04 2003-06-04 Method for manufacturing metallic member having compound-particle-dispersed alloy layer, and slide member

Country Status (3)

Country Link
US (2) US20040247477A1 (en)
JP (1) JP2004359998A (en)
CA (1) CA2469373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370751B1 (en) * 2008-04-24 2014-03-06 바디코트 아이엠티 인코포레이티드 Composite preform having a controlled fraction of porosity in at least one layer and methods for manufacture and use

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE533991C2 (en) * 2008-11-06 2011-03-22 Uddeholms Ab Process for the manufacture of a compound product having an area of durable coating, such a compound product and the use of a steel material to provide the coating
EP2399696B1 (en) * 2009-02-18 2017-09-27 IHI Corporation Electrode manufacturing method and electric discharge surface treatment used therein
JP5427674B2 (en) 2010-04-01 2014-02-26 日立Geニュークリア・エナジー株式会社 Wear-resistant valve seat
US20120039739A1 (en) * 2010-08-10 2012-02-16 David Krauter Cutter rings and method of manufacture

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950141A (en) * 1970-11-02 1976-04-13 Glyco-Metall-Werke Daden & Loos Gmbh Sliding friction bearings
DE2323242C3 (en) * 1973-05-09 1978-03-09 Robert Bosch Gmbh, 7000 Stuttgart Method and device for producing a wear-resistant hard metal layer on a metal object
US4389439A (en) * 1981-07-02 1983-06-21 Turbine Metal Technology, Inc. Erosion resistant tubular apparatus for handling slurries
DE3377584D1 (en) * 1982-09-16 1988-09-08 Rabewerk Clausing Heinrich Method of applying protective coatings to the surfaces of tools and devices
US4999336A (en) * 1983-12-13 1991-03-12 Scm Metal Products, Inc. Dispersion strengthened metal composites
CH670103A5 (en) * 1986-02-04 1989-05-12 Castolin Sa
JPS63162801A (en) * 1986-12-26 1988-07-06 Toyo Kohan Co Ltd Manufacture of screw for resin processing machine
DK173348B1 (en) * 1996-06-07 2000-08-07 Man B & W Diesel As Exhaust valve for an internal combustion engine
JP3978004B2 (en) * 2000-08-28 2007-09-19 株式会社日立製作所 Corrosion-resistant and wear-resistant alloys and equipment using them
ATE517708T1 (en) * 2001-12-05 2011-08-15 Baker Hughes Inc CONSOLIDATED HARD MATERIAL AND APPLICATIONS
JP2003207059A (en) * 2002-01-11 2003-07-25 Hitachi Ltd Valve and its manufacturing method
US6749894B2 (en) * 2002-06-28 2004-06-15 Surface Engineered Products Corporation Corrosion-resistant coatings for steel tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370751B1 (en) * 2008-04-24 2014-03-06 바디코트 아이엠티 인코포레이티드 Composite preform having a controlled fraction of porosity in at least one layer and methods for manufacture and use

Also Published As

Publication number Publication date
CA2469373A1 (en) 2004-12-04
US20040247477A1 (en) 2004-12-09
US20070081916A1 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US11649526B2 (en) Degradable metal matrix composite
US10272497B2 (en) Cladded articles and methods of making the same
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
CA2844517C (en) Nanostructured powder metal compact
US5711366A (en) Apparatus for processing corrosive molten metals
JP6124877B2 (en) FeNi binder with versatility
EP1997575A1 (en) Consolidated hard material and applications
JP2008502794A (en) Wear member made of diamond-containing composite material
KR20030061340A (en) Valve and Manufacturing Method Thereof
JP5703272B2 (en) Abrasion resistant material
JP2007527952A5 (en)
US20070081916A1 (en) Production of the metallic parts with the alloyed layer containing dispersed compound particles, and the wear-proof parts
JP2018531795A (en) Friction stir welding tool
US11000921B2 (en) Composite welding rods and associated cladded articles
JP2002507487A (en) Erosion resistant coating
JPH04105787A (en) Filler metal for surface reforming of aluminum material
JP7103548B2 (en) Ni—Cr—Mo alloy member, Ni—Cr—Mo alloy powder, and composite member
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
CA2939189C (en) Brazing and soldering alloy wires
JP2562445B2 (en) Abrasion resistant composite roll
JP2001032001A (en) Self-lubricating metal and its production
JPH115191A (en) Cermet cladding metal parts and manufacture thereof
JPH11100633A (en) Heat-insulating member and its production
JPH06271967A (en) Composite aluminum alloy material with high strength at high temperature
JP2002292459A (en) Surface reforming casting method for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508