EP0255526B1 - Verfahren zur speicherung und rückgabe von kälte sowie anlage zur durchführung dieses verfahrens - Google Patents

Verfahren zur speicherung und rückgabe von kälte sowie anlage zur durchführung dieses verfahrens Download PDF

Info

Publication number
EP0255526B1
EP0255526B1 EP87900634A EP87900634A EP0255526B1 EP 0255526 B1 EP0255526 B1 EP 0255526B1 EP 87900634 A EP87900634 A EP 87900634A EP 87900634 A EP87900634 A EP 87900634A EP 0255526 B1 EP0255526 B1 EP 0255526B1
Authority
EP
European Patent Office
Prior art keywords
liquid
cold
accumulating
piston
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87900634A
Other languages
English (en)
French (fr)
Other versions
EP0255526A1 (de
Inventor
Laszlo Simon
Jean Pfau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coldeco SA
Original Assignee
Coldeco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coldeco SA filed Critical Coldeco SA
Priority to AT87900634T priority Critical patent/ATE52136T1/de
Publication of EP0255526A1 publication Critical patent/EP0255526A1/de
Application granted granted Critical
Publication of EP0255526B1 publication Critical patent/EP0255526B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice

Definitions

  • the present invention relates to a cold accumulation and restitution process in which n accumulates, during the cold accumulation phases, in a storage enclosure containing a mass of liquid cold accumulator and coolant, a cluster of aggregates of crystals of this frozen liquid, these crystals being generated by the vaporization of a refrigerant placed in direct contact with cold accumulating and heat-transfer liquid taken from this enclosure, and in which, during the cold restitution phases, the cold accumulated in the storage enclosure at a use circuit by melting said crystals by circulating in a formed circuit a current of said liquid, successively through said mass and said use circuit.
  • the present invention also relates to a device for implementing this method comprising a storage enclosure containing a cold accumulating and heat-transfer liquid, at least partially in the form of a mass of rigid aggregates of crystals of this frozen liquid, these crystals being obtained by freezing this liquid by the vaporization of a refrigerant placed in direct contact with cold accumulating and coolant liquid, and means for injecting the refrigerant, at least partially in the liquid state, into this liquid.
  • a cold storage liquid generally consisting, as in the SIMON process, with water or with an aqueous solution, for example a eutectic solution or not of mineral salts such as sodium chloride or calcium chloride, is frozen on the external surface of an evaporator of refrigerant or a heat exchanger through which glycated water is cooled to a temperature below 0 ° C.
  • thermodynamic efficiency which constitutes an important quality factor, is higher than that of these traditional systems because, with this new process, the vaporization temperature of the refrigerant, which has a large surface of direct contact with the storage accumulator liquid. cold and coolant to be frozen, is very close to the freezing temperature of this liquid, whereas with other known systems, this vaporization temperature is several degrees centigrade lower than said freezing temperature because the heat exchanges between the fluid refrigerant and the coolant and coolant liquid are carried out through the entire thickness of the solid ice deposit, of low thermal conductivity, which covers the above-mentioned evaporator or heat exchanger.
  • cold storage systems are characterized by two other economically significant quality factors: their capacity C for cold storage per unit volume of space used by the installations (KJ / m 3 ) d on the one hand, and their cooling efficiency of the heat transfer liquid during the cold restitution phases on the other hand.
  • This ratio R (D), between 0 and 1, is independent of the temperature 01, but varies with the flow rate D.
  • the product C - p - D - R (D) - ( ⁇ 1- ⁇ o) is equal to the power cold extraction Pe (KW / h) of a heat transfer liquid with specific heat C and specific mass p.
  • Water (C p) 4, 18 MJ / m3.
  • the mass of ice formed in the enclosure has a porous microscopic structure but a heterogeneous and irregular macroscopic structure and a non-uniform thickness and height.
  • the mass of the ice mass frequently presents cavities and an irregular network of communicating free spaces, of varying shapes and sizes, up to several centimeters. These cavities and these free spaces are generally filled with gaseous refrigerant in the part of the heap which emerges from the mass of cold accumulating and coolant liquid contained in the enclosure, and this accumulating liquid and / or this gaseous fluid in the submerged part of said mass.
  • Structural rearrangements accompanied by cracks can also occur in the mass of the cluster during the phases of formation (accumulation of cold) and resorption of this mass (restitution of cold) under the effect of mechanical stresses caused by gas pockets or irregularities in the thickness and height of this mass, and / or be caused by the development of retaining forces of said mass by the walls of the accumulation enclosure, or by elements integral with this enclosure during the formation or absorption of this mass.
  • the main object of the present invention is to increase the capacity C for cold storage and the efficiency R (D) of cooling the cold storage and heat transfer fluid in systems operating according to the new known process for cold storage. It also aims to ensure a perfectly stable and reproducible operation of these systems.
  • the object of the invention is also to enable the restitution of cold with a higher flow rate D of cold accumulator and coolant than with known systems of the same design, therefore to restore the cold load accumulated in the storage enclosure in a shorter time, at high power, while maintaining a high efficiency R (D), that is to say by delivering the liquid at a temperature 02 close to 0 ° C.
  • D high efficiency
  • the method according to the invention is characterized in that, during the cold accumulation phases, a rigid piston is formed, constituted by a compact porous mass of said aggregates of crystals, of uniform thickness and height and of homogeneous structure, free of cavities, free spaces and other macroscopic defects of homogeneity of its structure, impregnated with cold accumulating and coolant liquid, up to a free level of said mass of accumulating liquid and coolant, by depositing said aggregates of crystals directly in said enclosure, on the upper surface of said cluster, by uniformly resorbing this piston from above, during the phases of restitution of cold, by uniformly sprinkling its upper surface with accumulating liquid of cold and coolant taken from the bottom of the storage enclosure and heated above its freezing temperature after passing through the user circuit ion, and in that the integrity of the structure of this piston is maintained by letting this piston slide freely, as a block, during the phases of cold accumulation and restitution, along the vertical walls of this enclosure , down during the cold accumulation phases and up
  • crystals of accumulating and coolant liquid are formed in a crystallization enclosure and a mixture of fluid consistency of crystals and liquid is uniformly poured over the entire upper surface of said piston.
  • said crystals of accumulator and coolant liquid are formed at the top of the storage enclosure in such a way that they are deposited uniformly over the entire upper surface of said piston.
  • the said mixture of crystals and liquid is poured out by spraying it and dispersing it uniformly over the surface of the piston, in the form of rain or mist, through a space containing refrigerant in gaseous state.
  • said crystals are formed by dispersing uniformly above the surface of the piston, through a space surmounting this piston and containing said refrigerant in the gaseous state, rain, wet snow and / or a mist of coolant and coolant liquid particles which are partially frozen in said space by vaporizing in this space refrigerant in the liquid state, injected and expanded in this space.
  • said crystals are formed by creating, in said space containing refrigerant in the gaseous state, a rain and / or a mist of wet snow, this snow being obtained by partial freezing and spraying into said space of cold accumulator and coolant liquid brought into direct contact in at least one spray nozzle, with refrigerant at least partially in the expanded liquid state in said space.
  • said crystals are formed by creating, in said space containing refrigerant in the gaseous state, a rain and / or a mist of wet snow, this snow being obtained by relaxing a mixture of cold storage and coolant liquid and liquid refrigerant injected under pressure into said space, said mixture is formed by an emulsion of refrigerant liquid dispersed in the cold storage coolant liquid.
  • said crystals are formed by creating, in a space containing refrigerant in the gaseous state, a rain comprising particles of liquid refrigerant and particles of cold accumulating liquid and coolant and crystals of this liquid, this rain being obtained by spraying and relaxing refrigerant at least partially in the liquid state in this space and by spraying cold accumulating and coolant liquid in this same space, uniformly throughout the section of the enclosure.
  • the three variants of the third embodiment have, over the second embodiment, the significant advantage of a significantly lower cost due to their great simplicity due in particular to the absence of a crystallization enclosure.
  • the concentration of frozen cold storage coolant liquid crystals in the particles deposited on the surface of the piston can be much higher than in the first embodiment where this concentration is limited by the need to give a fluid consistency to the mixture of crystals and coolant and coolant liquid which must be transported by pumping between the crystallization chamber and the storage chamber. This results in lower pump energy consumption during the cold accumulation phases and a reduced installation cost.
  • the cold accumulator and heated coolant liquid coming from the operating circuit is mixed with cooled cold accumulator and coolant liquid drawn off at the bottom of the storage enclosure. , and the mixture of these liquids is distributed uniformly over the upper surface of said piston.
  • the cold accumulator and heated coolant liquid from the operating circuit is precooled by injecting refrigerant therein at least partially in the liquid state and causing at least partial vaporization of this fluid in the cold accumulating and coolant liquid, without causing its freezing, before distributing this liquid uniformly over the upper surface of the piston.
  • a mixture of cold accumulator and cooled coolant drawn off at the bottom of the storage enclosure is uniformly distributed over the upper surface of the piston. cold and coolant from the user circuit, precooled by injection and vaporization of refrigerant in this liquid.
  • the device for implementing the method defined above is characterized in that it comprises means for depositing said aggregates of crystals directly in said enclosure, above the free level of the liquid which it contains, so to create, during the cold accumulation phase, a piston constituted by a homogeneous, porous and compact cluster of said crystal aggregates, means for at least partially absorbing during the cold restitution phase, said piston from its upper part, these means comprising sprinkling and spraying members to distribute uniformly over the during this phase and on the upper surface of said piston, coolant and coolant liquid from the heating circuit heated during its passage through this circuit, and means to prevent the formation of cracks, free spaces and other macroscopic defects of homogeneity of the structure of said piston, during the phases of accumulation and / or melting of said crystals, these means allowing the free vertical displacement of the piston in said enclosure during these two phases .
  • the device comprises a crystallization enclosure and a separate storage enclosure, and sprinkling means for uniformly depositing from the top of the enclosure said crystals over its entire section of the piston, these means comprising at at least one dispensing member mounted at the top of the storage enclosure and supplied with coolant and coolant liquid containing, in the form of a suspension of fluid consistency, crystals of this frozen liquid, by a conduit opening above the free level of the coolant and heat transfer fluid contained in the storage enclosure.
  • the device may include conduits arranged to bring the cold accumulator and heated coolant liquid, taken at the outlet of the circuit of use Ec, to means for injecting refrigerant where this liquid is cooled. by the vaporization of refrigerant with which it is brought into contact, before being dispersed on the surface of the piston by the means for watering and / or spraying the liquid.
  • the means for uniformly dispersing from the top of said enclosure said crystals of frozen cold storage and coolant liquid may comprise at least one injector disposed in the space surmounting the upper surface of the piston, this injector comprising means for generating a central jet of refrigerant at least partially in the liquid state surrounded by a coaxial jet of cold accumulating and coolant liquid, these means being arranged to generate snow wet with crystals of this frozen liquid.
  • the means for uniformly dispersing from the top of the enclosure said crystals of frozen cold storage and coolant liquid comprise a mixer arranged to mix refrigerant with this liquid under pressure of the refrigerant under pressure and at least one expansion ramp for injecting this mixture into said space containing refrigerant in the gaseous state.
  • the means for uniformly depositing said crystals of liquid cold accumulator and frozen coolant from the top may include means for generating rain comprising particles of liquid refrigerant and particles of cold accumulating and coolant liquid and crystals of this liquid, these means being arranged in said space surmounting the upper surface of the piston and comprising at least one member for spraying uniformly in this space, cold accumulating and coolant liquid to form a rain and / or a mist of fine droplets of this liquid, and at least one injector member for injecting refrigerant at least partially in the liquid state into this atmosphere.
  • the internal side walls of the storage enclosure are preferably coated with a layer of a material which is anti-adherent to the cold-accumulating and heat-transfer liquid crystals.
  • the distribution member connected to the supply line of cold accumulating and coolant liquid cooled in the crystallization enclosure or of a mixture of this cooled liquid with liquid heated in the circuit d use is also connected, by a bypass conduit to the return line, to allow to selectively bring to said distribution member, either cold storage and heat transfer fluid heated in the circuit of use, or liquid cooled in the crystallization chamber, either a mixture of this cooled liquid with liquid heated in the circuit of use Ec, or a suspension or a gel of fluid consistency consisting of a mixture of cooled liquid and crystals of this liquid at l frozen state generated in the crystallization enclosure.
  • FIG. 1 illustrates a first embodiment of the cold generation, accumulation and storage device which essentially comprises a storage enclosure 10, surrounded by a thermal insulation sheath 11 and containing a freezable liquid 12 cold accumulator , for example water, which also serves as a heat-transfer liquid in a circuit of use Ec (shown partially) comprising at least one heat exchanger, and comprising an outlet pipe 13 for coolant and coolant liquid and a pipe back 14 of this heated liquid.
  • This device also comprises a crystallization enclosure 15, also surrounded by a thermal insulation sheath 16, and containing the same freezable liquid 12 cold storage and heat transfer fluid.
  • the crystallization chamber is intended to produce a suspension or a gel of liquid consistency, of crystals of the freezable liquid 12 by direct injection, into this liquid, of a refrigerant injected at least partially in the liquid state, by an injector 17 connected to a pressure reducer 18 via a conduit 19, and disposed substantially at the base of the crystallization enclosure 15.
  • the refrigerant is vaporized at a height h1 above the injector 17 and at a distance h2 below the free surface of the column of cold accumulating and coolant liquid contained in the tubular element 1.
  • the vaporization of the refrigerant creates, by siphon effect, a rapid current of coolant and coolant 12 in closed circuit in the enclosure 15, and generates in the mass of this li quid microscopic crystals of this frozen liquid which, thanks to this fast current, form with this liquid a gel or a suspension of fluid consistency which is propelled as the arrow A through the mouth 20 of a conduit 21, by a pump 22 and a non-return valve 22 ', the outlet of which is connected to a distribution conduit 23 leading to the top of the storage enclosure 10.
  • a conduit 24 is connected to the top of the storage chambers 10 and of crystallization 15, and balances the pressures of the refrigerant in the gaseous state in these chambers.
  • the gaseous refrigerant recovered at the top of the enclosures 10 and 15 is sucked in the direction of the arrow B by a compressor Cr then liquefied in a condenser Cd.
  • the storage enclosure 10 is in the form of a vertical cylinder, of circular section or not, closed at both ends and the inner side walls of which are advantageously equipped with a layer of a material which is non-sticking to the crystals, for example a synthetic material lacquer with a smooth surface, intended to facilitate the displacement of a piston 27 formed by the deposition and by the aggregation of microscopic crystals in suspension in the cold accumulating and heat-carrying liquid 12, generated in the crystallization enclosure 15.
  • a material which is non-sticking to the crystals for example a synthetic material lacquer with a smooth surface
  • This piston consists of an upper layer 28 of aggregates of dry crystals or weakly impregnated with liquid 12, disposed above the free level 29 of this liquid in the storage enclosure, and of a porous mass 30 , compact of crystal aggregates impregnated with liquid 12, disposed below said free level 29.
  • This piston is the result of the uniform deposit, extending over the entire horizontal section of the enclosure, of the microscopic crystals contained in the homogeneous mixture of fluid consistency of these crystals with the cold accumulating and coolant liquid and in suspension in this liquid , by means of distributors 31, for example sprinkler and / or spray heads. Since the piston 27 is a porous mass, the crystals contained in this suspension are retained and form rigid aggregates directly at the upper surface 32 of the mass 28, and the liquid is drained through this mass 28, up to the level free 29.
  • the crystallization chamber produces the gel or the suspension of fluid consistency, the crystal concentration of which is advantageously between 0.1 and 2% and less than 25%, which is injected at through the distributors 31 in the space 33, surmounting the upper surface of the piston 27 in the form of a rain or a mist.
  • the crystals scattered by the distributors 31 accumulate on the upper surface 32 of the mass 28, the whole of the piston 27 tends to sink gradually into the liquid 12 contained in the storage enclosure 10.
  • the piston 27 can move freely as a unit towards the bottom of the enclosure in the direction of the arrow M, during the cold accumulation phase , this displacement in block making it possible to maintain the integrity of the structure of the piston, in particular preventing the formation of cracks or other free spaces in the mass of the piston.
  • the piston 27 which is gradually absorbed, will tend to move vertically upward in the direction of the arrow N.
  • the piston is moved in block to avoid the formation of cracks, breaks, etc., thanks to the cylindrical shape of the walls of the enclosure and, if necessary, thanks to the non-stick coating of the inner surface of these walls .
  • the melting of the crystals can create inhomogeneities in the upper zone of the piston.
  • the lower mass constitutes a real filter retaining the crystals possibly detached during this fusion, so that the piston remains constituted as a whole and moves in block.
  • the return conduit 14 of the use circuit comprises a first conduit 14a opening at the top of the storage enclosure 10 and provided with a series of distributors 34, for example in the form of heads of sprinkling and / or spraying, designed to uniformly distribute the heated liquid coming from the heat exchanger Ec, on the upper surface 32 of the piston 27, and a second pipe 14b opening at the bottom of the crystallization enclosure 15.
  • the line 14a is provided with a valve 14'a and line 14b is equipped with a valve 14'b, which makes it possible to independently divert all of the liquid heated on one or other of these lines, or to separate the return flow selectively between these two conduits.
  • These valves known per se, are either manual, or electrically or pneumatically operated.
  • a bypass duct 14 "a can be connected to the duct 23 carrying the dispensing member 31.
  • this dispensing member 31 is selectively supplied either by the mixture of fluid consistency of crystals and liquid, or by the liquid reheated from the Ec usage circuit.
  • the outlet pipe 13 to the use circuit, formed at the bottom of the storage enclosure 10 is connected to the inlet of a pump 35, the outlet of which is divided, into two pipes 13a and 13b.
  • the pipe 13a equipped with a valve 13'a defines the actual input of the use circuit.
  • Line 13b is divided into two branches 13c and 13d, the first of which 13c, fitted with a valve 13'c, opens at the bottom of the crystallization enclosure 15, with a view to injecting therein, if necessary, liquid to be frozen.
  • the second of which 13d, equipped with a valve 13'd and a non-return valve 13 "d is connected to the distribution duct 23 defined above.
  • the storage enclosure 10 advantageously comprises a grid 36 formed below the piston 27.
  • the refrigerant circuit comprises the conduit 24 mentioned above connected to the compressor Cr, itself connected to the condenser Cd whose outlet defined by the arrow C is connected to a distribution conduit 37 which supplies the injector (s) 17 through the valve adjustable expansion valve 18 as well as a sprayer boom 38 through an adjustable valve 39 which makes it possible, if necessary, to regulate the flow of refrigerant, to inject or to cut off this supply.
  • This sprayer boom makes it possible to spray or sprinkle liquid refrigerant on the upper surface of the piston 27, with a view to additional solidification of the mass of crystals in the upper zone of this piston.
  • a tubular element 1 is mounted inside the crystallization enclosure 15 and this element is surmounted by a deflector 2.
  • This tubular element forms a central chimney which makes it possible to channel the updraft, represented by the arrow D, of cooled liquid, charged with microscopic crystals in suspension of this frozen liquid, as well as the downward current, represented by the arrows E.
  • the upward current D is generated by siphon effect by the vaporization of the refrigerant in the upper zone of height h2 where form vapor bubbles of this fluid.
  • a small part A of this current is sucked by the pump 22 and the largest part, represented by the arrows F, is recycled inside the tubular element 1.
  • the deflector 2 on the one hand, and the fact of placing the mouth 20 in the middle or lower zone of the crystallization enclosure 15 makes it possible to ensure maximum degassing of the liquid, that is to say an effective separation of the refrigerant in the vapor state of the liquid.
  • the device described above can operate in several distinct modes:
  • the pumps 35 and 22 are switched on as well as the compressor Cr.
  • valves 13'a and 13'd are closed as well as the valves 14'a and 14'b.
  • the 13'c valve is open.
  • the liquid taken from the bottom of the enclosure 10 circulates through the crystallization enclosure 15.
  • a variant consists in closing the valve 14'a and in opening the valve 14'b.
  • the hot liquid injected into the crystallization chamber 15 reduces the quantity of crystals generated in the latter and deposited on the piston.
  • Pump 35 is started, pump 22 and compressor C r are started.
  • valves 13'c, 13'd and 14'b are closed.
  • valves 13'a and 14'a are open.
  • the hot liquid coming from the heat exchanger is spilled by the distributors 34.
  • the pumps 35 and 22 are switched on as well as the compressor Cr.
  • valves 13'c, 13'd and 14'a are closed.
  • the valves 13'a and 14'b are open.
  • the enclosure 15 is used to cool the liquid heated in the heat exchanger without producing crystals.
  • This operating mode is advantageous because on the one hand, the production of cold during the restitution phase is done with a higher thermodynamic efficiency than during the accumulation phase because the vaporization takes place at a higher temperature, and on the other hand, it makes it possible to reduce the dimensioning of the accumulation enclosure 10 for a maximum total amount of cold absorbed by the circuit of use during a restitution phase. This reduction is notable when the cold restitution power Pr is of the order of twice the cold production power Pp in the crystallization enclosure 15.
  • the temperature of the fluid supplied by the distributors 31 is lowered which, during the cold restitution phases , improves the cooling efficiency R (D) of the liquid by lowering the temperature 02 of this liquid conveyed to the heat exchanger of the cold use circuit.
  • FIGS. 2 and 3 illustrate a means other than a crystallization enclosure making it possible to generate crystals of frozen cold storage and coolant liquid and to distribute them uniformly on the surface of the piston formed inside the storage enclosure 86 to directly form rigid aggregates.
  • These means comprise at least one, but preferably several nozzles 84 each constituted by a body 70 provided with an opening 71 oriented towards said piston and comprising a chamber 72 in communication with said opening.
  • This chamber contains an injector 73 connected by a conduit 74 to a distribution conduit 75 for pressurized refrigerant.
  • the chamber 72 is moreover connected by the intermediary of a conduit 76 to a distribution conduit 77 of cold accumulator and coolant liquid under pressure, this conduit being thermally insulated by a sheath 78.
  • the injector 73 generates a jet 79 , relatively fine, of refrigerant at least partially in the liquid state.
  • This jet is oriented towards the opening 71 and is surrounded by a coaxial jet 80 of coolant and coolant liquid.
  • This liquid feeds the chamber 72 at a temperature sufficient to prevent icing of the injector 73.
  • the refrigerant evaporates and causes the freezing of the cold-storage and heat-transfer liquid in the form of '' a wet snow which spreads evenly on the upper surface of the piston.
  • the atmosphere surmounting the piston is made of refrigerant in the gaseous state, and is collected by a suitable evacuation duct, mounted at the upper end of the storage enclosure and connected for example to the suction of a Cr compressor.
  • the liquid is heated in the operating circuit and sprayed by the nozzles 84 in the form of a rain of liquid distributed uniformly over the upper surface of the piston 85.
  • the flow of hot liquid from the operating circuit is then high enough to prevent its partial freezing by the liquid refrigerant which it vaporizes in the nozzles 84, while cooling, before watering the upper surface of the piston 85 by a fine rain.
  • the valve 81 is closed and the valves 82 and 83 are open.
  • the compressor Cr is triggered, and the pump Pc is started.
  • Cold liquid transmitted by the valve 82 is mixed with the hot liquid coming from the use circuit Ec, which pre-cools the latter before its spraying and its passage through the piston 85 and lowers, as explained previously with reference to FIG. 1, the temperature 02 of the liquid sent to the heat exchanger.
  • a refrigerant injector 90 generates by the vaporization of this fluid at the top of the storage enclosure 91, above the piston of liquid crystal cold accumulator and frozen coolant (not shown), a cold gaseous atmosphere in which is injected with cold accumulator and coolant liquid supplied by a conduit 92 thermally insulated by an insulation sheath 93 and sprayed through a series of sprayers 94.
  • These means make it possible to generate fine snow, composed of a mixture of crystals of this frozen liquid and fine droplets of this liquid and of liquid refrigerant, which is deposited on the upper surface of the piston on which these crystals directly form said rigid aggregates.
  • FIG. 5 Another means of generating wet snow is illustrated in FIG. 5.
  • a conduit 102 makes it possible to inject refrigerant at least partially in the liquid state coming from a pressure reducer 103, in the conduit 100 to allow the spraying of a mixture of cold accumulator and coolant liquid and refrigerant in the state liquid through the sprayer-distributor 101.
  • the conduits 100 and 102 can advantageously be arranged so that said mixture is produced in the form of an emulsion of microscopic particles of refrigerant liquid dispersed in the cold accumulating and heat-transfer liquid.
  • the formation of this emulsion can be facilitated by the addition, at a very low concentration, of an emulsifying agent in this liquid.
  • the purpose of this emulsion is to intensify and facilitate the vaporization of the refrigerant in the space filled with gaseous refrigerant and thereby to increase the thermodynamic efficiency of the installation.
  • FIG. 6 illustrates an embodiment of the accumulation chambers illustrated in all the variants described above. They consist of at least one enclosure 110 of masonry or the like, for example of reinforced concrete, of parallelepiped shape.
  • This enclosure 110 is preferably arranged in the basement or buried and thermally insulated on its outer walls by panels 111. The necessary sealing of the enclosure is achieved by the inner coating of the walls by means of a synthetic material.
  • the distribution members 112 carried by a bell 113 which also allows access to the interior of the enclosure, ensure uniform spraying and / or watering of the upper surface of the piston 115, as indicated above with reference to the figures 1 to 5, by heated liquid coming from a circuit of use and / or mixtures of consistency of this liquid and crystals of this liquid generated by vaporization of the refrigerant.
  • These members 112 comprise tubulars for evacuating the gaseous refrigerant released in the accumulation enclosure 110.
  • the cooled heat transfer liquid is taken from the base of the enclosure and directed by conduits 114 to the use circuit.
  • This system has the advantage of avoiding costly transportation and on-site fabrication of sealed metal enclosures. Thanks to the parallelepiped shape of the piston, we obtain a maximum capacity of accumulation per unit of space used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (22)

1. Verfahren zur Speicherung und Rückgabe von Kälte, bei dem in den Phasen der Kältespeicherung in einem Speicherraum, der eine Masse von kältespeichernder und wärmeabführender Flüssigkeit enthält, ein Haufen von Kristallen aus dieser gefrorenen Flüssigkeit gespeichert werden, wobei diese Kristalle durch die Verdampfung eines kälteerzeugenden Mediums entstehen, das mit kältespeichernder und wärmeabführender Flüssigkeit, die aus diesem Raum entnommen wird, in unmittelbare Berührung gebracht wird, und bei dem in den Phasen der Kälterückgabe die Kälte, die in dem Speicherraum gespeichert ist, durch Schmelzung der besagten Kristalle in dem Speicherraum an einen Verwendungskreislauf zurückgegeben wird, indem in einem geschlossenen Kreislauf eine Menge der besagten Flüssigkeit der Reihe nach durch den besagten Haufen und durch den besagten Verwendungskreislauf strömt, dadurch gekennzeichnet, daß in den Phasen der Kältespeicherung ein starrer Kolben aus einem porösen, kompakten Haufen der besagten Anhäufungen von Kristallen mit einer gleichmäßigen Dicke und Höhe und von homogenem Gefüge, ohne Vertiefungen, freien Räumen und anderen makroskopischen Fehlern im Gefüge, der mit der kältespeichernden und wärmeabführenden Flüssigkeit gesättigt ist, bis zu der Höhe eines freien Pegels der besagten Masse der speichernden und wärmeabführenden Flüssigkeit gebildet wird, daß die besagten Anhäufungen von Kristallen unmittelbar in dem besagten Raum auf der oberen Fläche des besagten Haufens abgelagert werden, daß in den Phasen der Kälterückgabe dieser Kolben von oben her gleichmäßig resorbiert wird, indem seine obere Fläche mit kältespeichernder und wärmeabführender Flüssigkeit, die unten aus dem Speicherraum entnommen und nach ihrer Durchströmung durch den Verwendungskreislauf oberhalb ihrer Gefriertemperatur erwärmt wird, gleichmäßig begossen wird, und daß die Vollständigkeit dieses Kolbens aufrechterhalten wird, indem dieser Kolben in den Phasen der Kältespeicherung und der Kälterückgabe entlang der senkrechten Wandungen dieses Raums, nach unten in den Phasen der Kältespeicherung und nach oben in den Phasen der Kälterückgabe wie ein Block frei gleitet.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Kristalle von der speichernden und wärmeabführenden Flüssigkeit in einem Kristallisierungsraum gebildet werden und daß ein Gemisch von dünnflüssiger Konsistenz aus Kristallen und aus Flüssigkeit auf die gesamte obere Fläche des besagten Kolbens gegossen wird.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Kristalle von der speichernden und wärmeabführenden Flüssigkeit im oberen Bereich des Speicherraums derart gebildet werden, daß sie sich auf der gesamten oberen Fläche des besagten Kolbens gleichmäßig ablagern.
4. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß das Besagte Gemisch aus Kristallen und aus Flüssigkeit ausgegossen wird, indem es oberhalb der Oberfläche des Kolbens als Sprühregen oder als Nebel durch einen Raum, der ein gasförmiges kälteerzeugendes Medium enthält, zerstäubt und gleichmäßig verteilt wird.
5. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß die besagten Kristalle gebildet werden, indem oberhalb der Oberfläche des Kolbens durch einen Raum über diesem Kolben, der das besagte gasförmige, kälteerzeugende Medium enthält, ein Sprühregen, ein nasser Schnee und/oder ein Nebel von Partikeln aus der kältespeichernden und wärmeabführenden Flüssigkeit gleichmäßig verteilt wird, dessen teilweises Gefrieren in dem besagten Raum erfolgt, indem in diesem Raum kälteerzeugendes Medium im flüssigen Zustand, das im besagten Raum eingespritzt und entspannt wird, verdampft.
6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß die besagten Kristalle gebildet werden, indem in dem besagten Raum der gasförmiges kälteerzeugendes Medium enthält, ein Sprühregen und/oder ein Nebel aus nassem Schnee erzeugt wird, wobei dieser Schnee durch das teilweise Einfrieren und das Spritzen in den besagten Raum von kältespeichernder und wärmeabführender Flüssigkeit entsteht, die in mindestens einer Spritzdüse mit kälteerzeugendem Medium mindestens teilweise im flüssigen Zustand, das in dem besagten Raum entspannt wird, unmittelbar in Berührung kommt.
7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß die besagten Kristalle gebildet werden, indem in dem besagten Raum, der gasförmiges kälteerzeugendes Medium enthält, ein Sprühregen und/oder ein Nebel aus nassem Schnee erzeugt wird, wobei dieser Schnee durch das Entspannen eines Gemisches aus kältespeichernder und wärmeabführender Flüssigkeit und aus flüssigem, kälteerzeugendem Medium, das unter Druck in den besagten Raum eingespritzt wird, entsteht.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß das besagte Gemisch durch eine Emulsion von kälteerzeugender Flüssigkeit, die in die kältespeichernde und wärmeabführende Flüssigkeit verteilt wird, gebildet wird.
9. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß die besagten Kristalle gebildet werden, indem in einem Raum, der gasförmiges kälteerzeugendes Medium enthält, ein Sprühregen erzeugt wird, der Partikel aus flüssigem kälterzeugendem Medium und Partikel aus kältespeichernder und wärmeabführender Flüssigkeit und Kristalle aus dieser Flüssigkeit enthält, wobei dieser Sprühregen entsteht, indem kälterzeugendes Medium mindestens teilweise in flüssigem Zustand in diesem Raum zerstäubt und entspannt wird, und indem kältespeichernde und wärmeabführende Flüssigkeit in diesem Raum gleichmäßig durch den gesamten Querschnitt des Raums hindurch zerstäubt wird.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in den Phasen der Kälterückgabe der erwärmten, kältespeichernden und wärmeabführrenden Flüssigkeit aus dem Verwendungskreislauf gekühlte Flüssigkeit, die unten aus dem Speicherraum abgezogen wird, beigemischt wird und daß das Gemisch aus diesen Flüssigkeiten auf der oberen Fläche des besagten Kolbens gleichmäßig verteilt wird.
11. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in den Phasen der Kälterückgabe die erwärmte kältespeichernde und wärmeabführende Flüssigkeit aus dem Verwendungskreislauf vorgekült wird, indem kälterzeugendes Medium mindestens teilweise im flüssigen Zustand eingespritzt wird und indem eine mindestens teilweise Verdampfung dieses Mediums in die Flüssigkeit eingeleitet wird, ohne dessen Einfrieren herbeizuführen, bevor diese Flüssigkeit auf der oberen Fläche des besagten Kolbens gleichmäßig verteilt wird.
12. Verfahren gemäß den Ansprüchen 10 und 11, dadurch gekennzeichnet, daß in den Phasen der Kälterückgabe auf der oberen Fläche des Kolbens eine Gemisch gleichmäßig verteilt wird, das aus kältespeichernder und wärmeabführender Flüssigkeit, die unten aus dem Speicherraum abgezogen wird, und aus Flüssigkeit aus dem Verwendungskreislauf, die durch Einspritzen und Verdampfung vom kälteerzeugende Medium in dieser Flüssigkeit vorgekühlt ist, besteht.
13. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß es in die Rückgabe eines Teils der Kälte, die in dem Speicherraum gespeichert ist, während einer Phase der Speicherung von Kälte in diesem Raum an den besagten Verwendungskreislauf besteht, indem kälteerzeugende und wärmeabführende Flüssigkeit, die unten aus dem Raum abgezogen wird, durch diesen Verwendungskreislauf und durch den Kolben strömt, wobei gleichzeitig die besagten Kristalle auf der oberen Fläche des Kolbens gleichmäßig verteilt werden.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß eine ergänzende Erstarrung der Masse des Kolbens vorgenommen wird, indem durch Zerstäuben oder Begießen vom oberen Bereich des Speicherraums her, der gasförmiges, kälteerzeugendes Medium enthält, flüssiges, kälteerzeugendes Medium auf der oberen Fläche des Kolbens derart gleichmäßig verteilt wird, daß dieses flüssige Medium in die oberen Schichten der porösen Masse des Kolbens eindringt und, indem er verdampft, die kältespeichernde und wärmeabführende Flüssigkeit gefriert, die von den Anhäufungen der Kristalle, die diese Masse bilden, und oberhalb des besagten freien Pegels der Flüssigkeit in dem Speicherraum zurückgehalten wird.
15. Anlage für die Anwendung des Verfahrens gemäß Anspruch 1, bestehend aus einem Speicherraum (10, 86, 119), der eine kälteerzeugende und wärmeabführende Flüssigkeit mindestens teilweise in der Gestalt eines Haufens von Anhäufungen von Kristallen dieser gefrorenen Flüssigkeit enthält, wobei diese Kristalle durch Einfrieren dieser Flüssigkeit durch die Verdampfung eines kälteerzeugenden Mediums enstehen, das mit der Flüssigkeit in unmittelbare Beruhrung gebracht wird, und aus Einspritzeinrichtungen (17,84,102) für das Einspritzen des kälteerzeugenden Mediums mindestens teilweise in flüssiger Form in die kältespeichernde und wärmeabführende Flüssigkeit, dadurch gekennzeichnet, daß sie Einrichtungen für die Ablagerung der besagten Anhäufungen von Kristallen unmittelbar in den besagten Raum oberhalb des freien Pegels der Flüssigkeit, die er enthält, um in der Phase der Kältespeicherung einen Kolben (27, 85, 115) aus einem homogenen, porösen und kompakte Haufen der besagten Anhäufungen von Kristallen entstehen zu lassen, Einrichtungen für das mindestens teilweise Resorbieren in der Phase der Kälterückgabe des besagten Kolbens von seinem oberen Teil her, wobei diese Einrichtungen Organe für das Begießen und das Zerstäuben (34, 84, 94, 101, 112) im Hinblick auf eine gleichmäßige Verteilung, während dieser Phase und auf der oberen Fläche des besagten Kolbens, von der Flüssigkeit aus dem Verwendungskreislauf, die bei der Durchströmunng dieses Kreislaufs erwärmt wird, und Einrichtungen für ein Vorbeugen der Bildung von Rissen, freien Räumen und anderen makroskopischen Fehlern in dem Gefüge des besagten Kolbens während der Phasen der Speicherung und/oder der Verschmelzung der besagten Kristalle, wobei diese Einrichtungen die freie, senkrechte Bewegung des Kolbens wie ein Block in dem besagten Raum während dieser beiden Phasen gestattet, enthält.
16. Anlage gemäß Anspruch 15, mit einem getrennten Raum für die Kristallbildung und einem getrennten Raum für die Speicherung, dadurch gekennzeichnet, daß sie Einrichtungen für das Begießen enthält, damit die besagten Kristalle auf dem gesamten Querschnitt des Kolbens vom oberen Bereich des Raums her gleichmäßig abgelagert werden, wobei diese Einrichtungen mindestens ein Verteilorgan (31) enthalten, das im oberen Bereich des Speicherraums (10) angeordnet ist und mit kältespeichernder und wärmeabführender Flüssigkeit, die in Form einer Suspension von dünnflüssiger Konsistenz Kristalle von dieser gefrorenen Flüssigkeit enthält, über eine Leitung (23), die oberhalb des freien Pegels (32) der Flüssigkeit in dem Speicherraum mündet, zugeführt wird.
17. Anlage gemäß Anspruch 16, dadurch gekennzeichnet, daß sie Leitungen (14b) enthält, die für die Zuführung der erwärmten, kältespeichernden und wärmeabführenden Flüssigkeit, die am Auslauf des Verwendungskreislaufes (Ec) entnommen wird, zu den Einrichtungen für das Einspritzen vom kälteerzeugenden Medium (17) eingerichtet sind, wo diese Flüssigkeit durch die Verdampfung des kälteerzeugenden Mediums gekühlt wird, mit dem sie in Berührung gebracht wird, bevor sie von den Einrichtungen für das Begießen und/oder für das Zerstäuben der Flüssigkeit (31) auf der Oberfläche des Kolbens verteilt wird.
18. Anlage gemäß Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen für die gleichmäßige Verteilung vom oberen Bereich des besagten Raums her die besagten Kristalle der kältespeichernden und wärmeabführenden Flüssigkeit mindestens einen Injektor (73) enthalten, die in dem Raum oberhalb der oberen Fläche des Kolbens angeordnet sind, wobei dieser Injektor Teile für die Erzeugung eines mittleren Strahls (79) vom kälteerzeugenden Medium mindestens teilweise im flüssigen Zustand, der von einem koaxialen Strahl (80) von der kältespeichernden und wärmeabführenden Flüssigkeit umgeben ist, enthält, wobei diese Teile eingerichtet sind, um einen nassen Schnee aus den Kristallen dieser gefrorenen Flüssigkeit zu erzeugen.
19. Anlage gemäß Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen für die gleichmäßige Verteilung, vom oberen Bereich des Raums her, der besagten Kristalle der kälteerzeugenden und wärmeabführenden Flüssigkeit aus einem Mischer (101), der eingerichtet ist, um mit dieser Flüssigkeit unter Druck kälteerzeugendes Medium unter Druck zu vermischen, und mindestens aus einem Entupannungsrohr (101) für das Einspritzen dieses Gemisches in den besagten Raum, der gasförmiges kälteerzeugendes Medium enthält, bestehen.
20. Anlage gemäß Anspruch 15, dadurch gekennzeichnet, daß die Einrichtungen für das gleichmäßige Ablagern von oben her der besagten Kristalle der gefrorenen, kältespeichernden und wärmeabführenden Flüssigkeit mit Vorrichtungen für die Erzeugung eines Sprühregens versehen sind, der Partikel aus dem flüssigen kälteerzeugenden Medium und Partikel aus der Flüssigkeit und Kristalle von dieser Flüssigkeit enthält, wobei diese Vorrichtungen in dem Raum oberhalb der oberen Fläche des Kolbens angeordnet sind und mindestens ein Organ (94) für das gleichmäßige Zerstäuben in diesem Raum von kälteerzeugender und wärmeabführender Flüssigkeit, um einen Regen und/oder einen Nebel aus feinen Tröpfchen dieser Flüssigkeit zu erzeugen, und mindestens einen Injektor (90) für das Einspritzen von kälteerzeugendem Medium mindestens teilweise in flüssiger Form in diesem Raum aufweist.
21. Anlage gemäß Anspruch 15, dadurch gekennzeichnet, daß die inneren seitlichen Wandungen des Speicherraums (10, 80) mit einer Schicht von einem Mittel versehen sind, an dem die Kristalle der gefrorenen kältespeichernden und wärmeabführendenn Flüssigkeit nicht haften.
22. Anlage gemäß Anspruch 16, dadurch gekennzeichnet, daß das Verteilorgan (31), das mit der Leitung (23) für die Zufuhr von kälteerzeugender und wärmeabführender Flüssigkeit in den Kristallisationsraum (15) oder für die Zufuhr von einem Gemisch dieser gekühlten Flüssigkeit mit Flüssigkeit, die in dem Verwendungskreislauf (Ec) erwärmt wird, verbunden ist, über eine Abzweigleitung, (14"a) mit der Rückleitung (14a) ebenfalls verbunden ist, um dem besagten Verteilorgan (31) entweder die kältespeichernde und wärmeabführende Flüssigkeit, die in dem Kristallisationsraum (15) gekühlt wurde, oder ein Gemisch von dieser gekühlten Flüssigkeit mit der Flüssigkeit, die in dem Verwendungskreislauf (Ec) erwärmt wurde, oder eine Suspension oder ein Gel von flüssiger Konsistenz aus einem Gemisch von dieser kältespeichernden und wärmeabführenden gekühlten Flüssigkeit mit Kristallen dieser Flüssigkeit im gefrorenen Zustand, die in dem Kristallisationsraum (15) erzeugt werden, wahlweise zuführen zu können.
EP87900634A 1986-01-18 1987-01-16 Verfahren zur speicherung und rückgabe von kälte sowie anlage zur durchführung dieses verfahrens Expired - Lifetime EP0255526B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87900634T ATE52136T1 (de) 1986-01-18 1987-01-16 Verfahren zur speicherung und rueckgabe von kaelte sowie anlage zur durchfuehrung dieses verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18086 1986-01-18
CH180/86 1986-01-18

Publications (2)

Publication Number Publication Date
EP0255526A1 EP0255526A1 (de) 1988-02-10
EP0255526B1 true EP0255526B1 (de) 1990-04-18

Family

ID=4181096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87900634A Expired - Lifetime EP0255526B1 (de) 1986-01-18 1987-01-16 Verfahren zur speicherung und rückgabe von kälte sowie anlage zur durchführung dieses verfahrens

Country Status (6)

Country Link
US (1) US4894077A (de)
EP (1) EP0255526B1 (de)
JP (1) JPS63503239A (de)
AT (1) ATE52136T1 (de)
DE (1) DE3762372D1 (de)
WO (1) WO1987004509A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619202B1 (fr) * 1987-08-07 1989-12-22 Cemagref Installation frigorifique avec dispositif de stockage du froid par chaleur latente
JPH083392B2 (ja) * 1988-08-04 1996-01-17 株式会社日立製作所 濃度差蓄冷熱発生装置
JPH07104083B2 (ja) * 1990-12-28 1995-11-13 鹿島建設株式会社 冷媒噴出式氷利用蓄熱方法及び装置
AU1666092A (en) * 1991-05-04 1992-12-21 Hydrodynamique S.A. Holding Method and device providing isothermal compression of a compressible fluid
GB9212444D0 (en) * 1992-06-11 1992-07-22 Electricity Ass Tech Cold storage apparatus
US7452371B2 (en) * 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
AU3100900A (en) * 1998-11-18 2000-06-05 James G. Boyko Direct-contact ice-generation device
FR2795810B1 (fr) * 1999-06-30 2001-08-31 Mc Internat Procede d'echange thermique par un fluide frigoporteur diphasique liquide solide
US7891211B2 (en) * 2005-06-24 2011-02-22 Denso Corporation Cold storage tank unit and refrigeration cycle apparatus using the same
US20070227710A1 (en) * 2006-04-03 2007-10-04 Belady Christian L Cooling system for electrical devices
CH699431B1 (fr) * 2006-04-20 2010-03-15 Heig Vd Haute Ecole D Ingenier Procédé d'accumulation et de restitution de froid et dispositif pour la mise en œuvre de ce procédé.
CN100538221C (zh) * 2007-10-12 2009-09-09 邹杰 一种动态冰蓄冷方法及设备
US9671171B2 (en) 2009-09-17 2017-06-06 Bluelagoon Technologies Ltd. Systems and methods of thermal transfer and/or storage
CN102822614B (zh) * 2009-09-17 2017-02-08 蓝瑚科技有限公司 传热和/或储热的系统及方法
CN102042649A (zh) * 2010-12-29 2011-05-04 广东迪奥技术工程有限公司 一种恒定低温出水的动态冰蓄冷融冰系统
CN104684344A (zh) * 2013-11-29 2015-06-03 国际商业机器公司 Pcm冷却设备,冷却系统和控制该系统的方法和单元
US20150192314A1 (en) * 2014-01-05 2015-07-09 Norman Davis Machine to Make, Store and Use Ice
CN108332468B (zh) * 2017-09-06 2020-05-12 广州黄岩机电科技有限公司 一种制冰装置
US10234186B1 (en) * 2017-11-09 2019-03-19 James Chun Koh Apparatus for manufacturing powdered ice with salinity

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020719A (en) * 1934-06-12 1935-11-12 Girdler Corp Process and apparatus for solidifying material in finely subdivided form
FR2279052A1 (fr) * 1974-03-01 1976-02-13 Commissariat Energie Atomique Procede d'accumulation thermique et accumulateur thermique a chaleur latente de fusion et a contact direct
US4099557A (en) * 1975-02-21 1978-07-11 Commissariat A L'energie Atomique Method of heat accumulation and a thermal accumulator for the application of said method
CH628417A5 (de) * 1978-01-06 1982-02-26 Laszlo Simon Anlage zum speichern von kontinuierlich erzeugter kaelte und zum stossweisen abgeben mindestens eines teils der gespeicherten kaelte.
FR2462683A1 (fr) * 1979-08-02 1981-02-13 Commissariat Energie Atomique Procede d'accumulation thermique et accumulateur thermique a chaleur latente de fusion et a contact direct
US4294083A (en) * 1980-04-07 1981-10-13 Barton King Air conditioning system
US4302944A (en) * 1980-07-15 1981-12-01 Westinghouse Electric Corp. Thermal storage method and apparatus
CH659314A5 (de) * 1982-10-27 1987-01-15 Sulzer Ag Als direkt wirkender verdampfer ausgebildeter energiespeicher.
US4554797A (en) * 1983-01-21 1985-11-26 Vladimir Goldstein Thermal storage heat exchanger systems of heat pumps
US4480445A (en) * 1983-01-21 1984-11-06 Vladimir Goldstein Thermal storage heat exchanger systems of heat pumps
US4509344A (en) * 1983-12-08 1985-04-09 Chicago Bridge & Iron Company Apparatus and method of cooling using stored ice slurry
JPS60126530A (ja) * 1983-12-08 1985-07-06 Hitachi Zosen C B I Kk 冷却方法及び装置
US4712387A (en) * 1987-04-03 1987-12-15 James Timothy W Cold plate refrigeration method and apparatus

Also Published As

Publication number Publication date
US4894077A (en) 1990-01-16
JPS63503239A (ja) 1988-11-24
DE3762372D1 (de) 1990-05-23
WO1987004509A1 (fr) 1987-07-30
ATE52136T1 (de) 1990-05-15
EP0255526A1 (de) 1988-02-10

Similar Documents

Publication Publication Date Title
EP0255526B1 (de) Verfahren zur speicherung und rückgabe von kälte sowie anlage zur durchführung dieses verfahrens
WO2004080892A1 (ja) スラッシュ窒素の製造方法及びその装置
WO1987004510A1 (fr) Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en oeuvre de ce procede
EP0412111A1 (de) Vorrichtung zur herstellung von eiskugeln und anwendung derselben zwecks oberflächenbehandlung.
US6405541B1 (en) Method and device for the production of slush from liquefied gas
RU2079317C1 (ru) Генератор для установки газового пожаротушения
EP3594601A1 (de) Thermisches speichersystem anhand von phasenwechselmaterial (pcm), das eine kontrollvorrichtung der kristallisation durch gaseinspritzung umfasst
CA1272038A (fr) Procede et installation de refroidissement, au moyen d'un fluide frigorigene d'une poudre
EP0629826B1 (de) Verfahren und Vorrichtung zur Speicherung eines Kälteträgermediums am Schmelzpunkt
EP0993252B1 (de) Verfahren und einrichtung zum tauchformen für diverse werkstücke
JPH0730984B2 (ja) 室内スキー場における造雪方法
FR2476132A1 (fr) Appareil pour fabriquer du laitier vitreux
CH635669A5 (fr) Machine pour la fabrication de glacons.
WO2015107282A1 (fr) Système de protection thermique pour un réservoir cryogénique d'engin spatial
EP0171304B1 (de) Einrichtung zur Herstellung von gefrorenen Formen und Formkernen
JP2603817Y2 (ja) 白煙発生装置
BE1001214A5 (fr) Procede de refroidissement de l'atmosphere d'un tunnel par un vehicule et vehicule pour ce procede.
CA1209780A (fr) Procede et installation de fabrication de pieces metalliques par moulage en sable ou analogue
FR2584174A1 (fr) Procede de generation, d'accumulation et de restitution de frigories et dispositif pour la mise en oeuvre de ce procede
EP1688071A1 (de) System zum Kochen und zum Abkühlen von Nahrungsmitteln durch Eintauchen in ein flüssiges Wärmeübertragungsmittel
FR2589220A1 (fr) Perfectionnements de rampe pour ecrans fluides
CA2451082A1 (fr) Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique
CH530601A (fr) Procédé de conservation de produits périssables
WO2005068040A1 (fr) Procede continu de cristallisation partielle d’une solution et dispositif de mise en oeuvre
CN107367100B (zh) 一种利用液氮人工造雪的系统及方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880824

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900418

Ref country code: NL

Effective date: 19900418

Ref country code: AT

Effective date: 19900418

REF Corresponds to:

Ref document number: 52136

Country of ref document: AT

Date of ref document: 19900515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3762372

Country of ref document: DE

Date of ref document: 19900523

ITF It: translation for a ep patent filed

Owner name: DOTT. FRANCO CICOGNA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: COLDECO S.A.

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970106

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970107

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980728

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980730

Year of fee payment: 12

BERE Be: lapsed

Owner name: S.A. COLDECO

Effective date: 19980131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: COLDECO S.A.,C/O PIRETTI SA 15, RUE DES VOISINS,1205 GENEVE (CH) TRANSFER- COLDECO SA C/O FIDUCIAIRE SFAELLOS,36, RUE DE CAROUGE,1205 GENEVE (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990316

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050116