EP0254649A1 - Procédé et dispositif de compensation de la dispersion en fréquence d'une antenne à balayage électronique, et son application à un système d'aide à l'atterrissage de type MLS - Google Patents

Procédé et dispositif de compensation de la dispersion en fréquence d'une antenne à balayage électronique, et son application à un système d'aide à l'atterrissage de type MLS Download PDF

Info

Publication number
EP0254649A1
EP0254649A1 EP87401738A EP87401738A EP0254649A1 EP 0254649 A1 EP0254649 A1 EP 0254649A1 EP 87401738 A EP87401738 A EP 87401738A EP 87401738 A EP87401738 A EP 87401738A EP 0254649 A1 EP0254649 A1 EP 0254649A1
Authority
EP
European Patent Office
Prior art keywords
frequency
antenna
function
angle
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87401738A
Other languages
German (de)
English (en)
Inventor
Daniel Brault
Guy Fremont
Bruno Letoquart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0254649A1 publication Critical patent/EP0254649A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • H01Q3/385Scan control logics

Definitions

  • the subject of the present invention is a method and a device for compensating the frequency dispersion of an electronic scanning antenna, more particularly intended for an MLS type landing aid system.
  • the MLS system (initials of the Anglo-Saxon expression “Microwave Landing System”) is a system making it possible to assist an airplane in landing by providing it with its position, in coordinates spherical in a coordinate system linked to the track: - its azimuth angle; - its elevation angle; - possibly other additional information, such as rear azimuth; - a certain number of data; - distance information, provided by an autonomous system called DME (for "Distance Measuring Equipment”).
  • DME for "Distance Measuring Equipment”
  • each of the preceding “functions” is broken down into two parts, issued successively: - a preamble, the role of which is to provide the aircraft with a identification of the function which will follow; this preamble is transmitted by a so-called “sectoral” antenna, that is to say a fixed antenna transmitting throughout the area, or sector, which the MLS system must cover; - the function itself: . in the case where this function is a datum, it is transmitted by the sectoral antenna; . in the case where this function is angular information, it is transmitted using an antenna with electronic scanning according to the principle known as the beating beam with time reference, described below in FIGS. 1 and 2.
  • Figure 1 is illustrated the principle of scanning intended to code, for example, the azimuth angle.
  • a Z we have, on the other hand, the diagram of a beam B, flat and vertical, said beating beam, emitted by an antenna with electronic scanning.
  • the beam B carries out at a constant angular speed a scanning then, after a stopping time (T o ), a scanning back and, this, in a scanning zone making an angle 2 ⁇ M (+ ⁇ M and - ⁇ M ) on the face.
  • T o stopping time
  • We have finally illustrated an airplane A V by way of example not correctly aligned with the axis PP ⁇ of the track, that is to say making an angle ⁇ A with the latter.
  • the beam scans the same angle in the other direction, from an instant t3 to an instant t4 (diagram 2a), that is to say from the angle + ⁇ M to the angle - ⁇ M (diagram 2b).
  • the signals received on board the aircraft A V are shown in diagram 2c, again as a function of time.
  • the airplane first receives the preamble, between instants 0 and t P. It then receives two pulses, marked 1 and 2, at times t5 and t6 which correspond to the moments when the beam passes over the airplane A V , in one direction then in the other.
  • each MLS station has a frequency chosen from a band ranging from 5.03 to 5.09 GHz.
  • the electronic scanning antenna is made up of a large number of radiating sources and it is generally calculated by the manufacturer at the central frequency of the band, namely 5.06 GHz.
  • the emission frequency is different from this center frequency
  • the real aiming angle of the beam is different from the angle calculated for the center frequency, and it turns out that the error thus made is greater than the errors tolerated by ICAO standards. This error must therefore be corrected.
  • One possible correction solution consists in recalculating the phase shifts to be made to each of the radiating sources for each emission frequency.
  • This solution is generally used in electronically scanned radars, since these usually include calculation means which can also recalculate the phase shifts.
  • the values of the phase shifts are usually stored in read only memories and changing the values of the phase shifts involves replacing the memory. This is obviously a drawback, particularly in terms of flexibility and cost.
  • the subject of the present invention is a method making it possible to compensate for this error by modifying the scanning speed (v) of the beam; in this way, the measured time ⁇ t is modified (see expression (1) above) and, consequently, the corresponding value of the angle ⁇ is corrected.
  • the scanning speed can be modified by taking into account only the transmission frequency or by taking into account both the transmission frequency and the angle scanned.
  • the angle measurement ( ⁇ A ) carried out by the aircraft is reduced to a measurement of time: the angle is a linear function of time ⁇ t which separates the two receptions ( pulses 1 and 2, FIG. 2c) of the beam B.
  • the frequency dispersion of the antenna is compensated for by the modification of the scanning speed (v) of the beam, as illustrated in FIGS. 3.
  • FIG. 3a the preceding diagram 2b is reproduced in dotted lines, illustrating the angle values scanned as a function of time.
  • the signals received on board the aircraft (pulses 1 and 2) are reproduced in dotted lines as illustrated in FIG. 2c.
  • the effects of a change in the scanning speed of the beam B are also shown in solid lines: the outgoing beam covers the angle 2 ⁇ M of a time t 1c at time t 2c ; in the same way, the return beam covers the same angle for the same duration, going from an instant t 3c to an instant t 4c .
  • diagram 3b there is also shown in solid line a pulse 1 c corresponding to the passage of the outgoing beam and a pulse 2 c corresponding to the passage of the return beam, at times respectively t 5c and t 6c .
  • the duration which separates these two pulses 1c and 1b is noted ⁇ t c . It is less than the preceding duration ⁇ t, for the same angle ⁇ A. It therefore appears that the same duration ⁇ t then corresponds to an angle different from ⁇ A (lower in the case of FIGS. 3).
  • the clock frequency of the logic circuit controlling the scanning of the beam is varied.
  • this correction is made, in a first, simplified embodiment, solely as a function of the transmission frequency (f).
  • the correction is made both as a function of the frequency f and as a function of the angle ⁇ .
  • a correction is therefore made only as a function of the transmission frequency f .
  • FIG. 4 shows the variation of the angle ⁇ over time: - in dotted lines, the theoretical curve: linear variation; - in solid line, the real variation: the error ⁇ is zero for ⁇ equal to zero; it then goes through a maximum, noted ⁇ 1 MAX ; it is canceled for the value ⁇ 1 then increases again for the higher values of the angle ⁇ , up to ⁇ 2 MAX for ⁇ M.
  • the value ⁇ 1 of the angle ⁇ is chosen so that the values ⁇ 1 MAX and ⁇ 2MAX are substantially the same. In other words the value ⁇ 1 is a mean value which minimizes the error ⁇ .
  • a value is chosen for ⁇ 1, which minimizes the error ⁇ for small angles, while retaining the value ⁇ 2MAX below the ICAO limits.
  • FIG. 5 recalls the general organization of an angle station of an MLS system, azimuth or site for example.
  • This station essentially comprises a transmitter 10, two antennas: a sectoral antenna 30 and an antenna with electronic scanning 40, and control circuits (20 and 50).
  • the transmitter 10 conventionally comprises, in cascade: - a frequency generator providing a carrier frequency of approximately 5 GHz according to the ICAO standard; a phase modulator, performing a DPSK phase modulation with two states (0, ⁇ ) making it possible to transmit the preamble and the data on command from a logic control device 50, such as a microprocessor; - an on / off control device, also controlled by the microprocessor 50; - a power transmitter.
  • the transmitter 10 supplies a signal, via the switch 20, either to the sector antenna 30 for the transmission of the preamble and the data, or to the scanning antenna 40.
  • the latter is typically broken down into: a power divider 41, dividing the power received from the switch 20 into N; - N digital phase shifters 42, supplied by the divider 41; - N radiating elements 43, supplied by the preceding phase shifters; a scanning logic circuit 44, supplying the phase shifters 42 with the values of the phase shifts to be introduced, in order to carry out an electronic scanning from static radiating elements.
  • FIG. 6 shows an embodiment of the scanning logic circuit (44) carrying out the compensation according to the invention.
  • the scanning logic circuit controls the phase shifters 42 so as to produce a succession of pointing of the lobe, adjacent to each other, thus simulating continuous scanning.
  • the phase shifters 42 are for example 4-bit digital phase shifters; in this case, they each allow a phase shift between 0 and 360 °, in steps of 22.5 °.
  • the positions of the N phase shifters for successive pointing (not usual: 0.1 to 0.2 °) are calculated beforehand and generally stored in a PROM type read-only memory (446 in FIG. 6), in the form of words of 4 bits.
  • Each of the N phase shifters is identified by an address and the function of the scanning logic 44 is to successively supply the values of the phase shifts (data bus 447) with their respective addresses (bus addresses 448) to the phase shifters 42.
  • the block 44 further comprises: - a clock generator 441, which has the function of supplying the frequency F; a sequencing logic circuit 442, controlling the triggering and the operating mode of a set of counters 443, controlled by the device 50 for controlling the station; - the assembly 443 comprising two counters: . an up-down counter 445 for pointing the lobe, receiving the frequency F and which provides at all times the value of the pointing of the lobe; the latter is used by the memory 446 as the address (partial, see below) of a datum which it supplies (bus 447) to the phase shifters 42; .
  • an up-down counter 444 for the addresses of the phase shifters: for a given pointing of the lobe (information provided by the counter 445), it allows the successive addressing of the N phase shifters; its frequency is therefore N times greater than that of counter 445; for this purpose, it also receives the frequency F.
  • the clock signal generator 441 supplies a clock signal whose frequency F depends on the transmission frequency f .
  • the various values of the possible transmission frequency f are grouped together to simplify, so as to minimize the number of possible clock frequencies; for example, we can choose twenty groups of ten frequencies f each.
  • the clock generator 441 is conventional, except that it is capable of supplying different frequencies F on the control of the frequency f or of the selector 440; it can be constituted for example by a quartz clock, where the single quartz is replaced by a set of switchable quartz under the previous order; it is also possible to use a logic synthesizer: the frequency F can be selected for example by coding wheels.
  • expression (6) shows that the variation of the frequency F which cancels the error d ⁇ is also a function of the angle ⁇ .
  • dF is therefore varied not only as a function of the transmission frequency f but also as a function of the angle ⁇ , as illustrated in FIG. 7.
  • FIG. 7 represents, in a similar manner to that of FIG. 4, the variation of the pointing angle ⁇ as a function of time.
  • the theoretical curve is, as before, shown in dotted lines and the actual curve, in solid lines. The latter is in the form of a succession of segments I1, I2 ... I n . Indeed, it appears in this figure 7 that we no longer choose an average angle ⁇ 1 as in the first embodiment but intervals I1, I2 ... I n .
  • an angle ⁇ I is chosen for which the frequency correction dF to be applied for the entire interval is calculated: which corresponds to expression (7) above for the interval I i and the angle ⁇ Ii , with i varying from 1 to n .
  • the length of the interval I as well as the angle ⁇ I must be chosen so as to minimize the residual pointing error.
  • the calculation of dF is made for a given angular interval (of index i ) and for a given emission frequency interval (denoted f i ).
  • the residual pointing error, as a function of the angle ⁇ and the frequency f is then, for the values ⁇ Ii and f i :
  • FIG. 8 shows an embodiment of this correction as a function of the transmission frequency and the pointing angle at the level of the scanning logic circuit 44.
  • a third counter marked 451, controlled by the sequencer 442, a clock 449 at fixed frequency, the pulses of which are counted by the three counters, and a correction memory 450.
  • the transmission frequency f and the angle ⁇ select an address of the memory 450, of the PROM type for example, which contains the loading values (N) of the up-down counter 451, which counts from N to zero at rhythm of the clock 449.
  • the counter 451 goes to zero, it sends a signal (INHIB) which inhibits the counting of counters 444 and 445 on my clock period. In this way, the scanning speed is varied, the lower the number N, the lower the number.
  • the angular information ( ⁇ ) is taken at the output of the counter 445 destined for the memory 450.
  • the different possible frequencies f can be grouped into groups, upstream of the memory 450.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention a pour objet un procédé et un dispositif de correction en fonction de la fréquence de l'erreur de pointage dans une antenne à balayage électronique, dans le cadre d'un système d'aide à l'atterrissage de type MLS. Le procédé consiste à compenser l'erreur de pointage en modifiant la vitesse de balayage du faisceau en fonction de la fréquence d'émission et, dans une variante de réalisation, également en fonction de l'angle de pointage.

Description

  • La présente invention a pour objet un procédé et un dispositif de compensation de la dispersion fréquence d'une antenne à balayage électronique, plus particulièrement destinés à un système d'aide à l'atterrissage de type MLS.
  • On rappelle que le système MLS (initiales de l'expression anglo-saxonne "Microwave Landing System", système d'atterrissage micro-onde) est un système permettant d'aider un avion à l'atter­rissage en lui fournissant sa position, en coordonnées sphériques dans un repère lié à la piste :
        - son angle d'azimut ;
        - son angle de site ;
        - éventuellement d'autres informations annexes, telles qu'azimut arrière ;
        - un certain nombre de données ;
        - une information de distance, fournie par un système autonome appelé DME (pour "Distance Measuring Equipment", équipement de mesure de distance).
  • Ces différentes informations, appelées "fonctions", sont émises en permanence à partir du sol en multiplexage temporel sur une même fréquence, voisine de 5 GHz, selon des caractéristiques normalisées par l'OACI (Organisation de l'Aviation Civile Interna­tionale), annexe 10, paragraphe 3.11. Ces informations sont déco­dées par chaque avion intéressé.
  • Chacune des "fonctions" précédentes se décompose en deux parties, émises successivement :
        - un préambule, dont le rôle est de fournir à l'avion une identification de la fonction qui va suivre ; ce préambule est émis par une antenne dite "sectorielle", c'est-à-dire une antenne fixe émettant dans l'ensemble de la zone, ou secteur, que le système MLS doit couvrir ;
        - la fonction proprement dite :
          . dans le cas où cette fonction est une donnée, elle est émise par l'antenne sectorielle ;
          . dans le cas où cette fonction est une information angulaire, elle est émise à l'aide d'une antenne à balayage électro­nique selon le principe dit du faisceau battant à référence tempo­relle, décrit ci-après figures 1 et 2.
  • Sur la figure 1 est illustré le principe du balayage destiné à coder, par exemple, l'angle d'azimut.
  • D'une station azimut, selon ce qui précède, sont émis deux rayonnements différents par deux antennes distinctes que, pour simplifier, on a représentées en un même point AZ.
  • Partant du point AZ on a donc, d'une part, le diagramme d'émission du préambule, noté PZ, émis par l'antenne sectorielle dans toute la zone de couverture du système MLS.
  • De ce point AZ on a, d'autre part, le diagramme d'un faisceau B, plat et vertical, dit faisceau battant, émis par une antenne à balayage électronique. Le faisceau B effectue à vitesse angulaire constante un balayage aller puis, après un temps d'arrêt (To), un balayage retour et, ce, dans une zone de balayage faisant un angle 2ϑM (+ ϑM et - ϑM) sur la figure. On a illustré également, respectivement par une flèche AL et une flèche R, les trajets de balayage aller et balayage retour du faisceau B. On a enfin figuré un avion AV, à titre d'exemple non correctement aligné avec l'axe PPʹ de la piste, c'est-à-dire faisant un angle ϑA avec ce dernier.
  • Sur le diagramme de la figure 2a, on a illustré les émissions successives des antennes de la station azimut, en fonction du temps.
  • D'un instant zéro jusqu'à un instant tP est donc émis le préambule par l'antenne sectorielle. Ensuite, d'un instant t₁ à un instant t₂, le faisceau B émis par l'antenne à balayage décrit d'angle 2ϑM (faisceau aller AL). On a représenté sur le diagramme 2b, toujours en fonction du temps, la valeur de l'angle (ϑ) ainsi balayé, qui passe de -ϑM à +ϑM pendant la durée t₁ à t₂.
  • Après une durée T₀, le faisceau balaie le même angle dans l'autre sens, d'un instant t₃ à un instant t₄ (diagramme 2a), c'est-à-­dire de l'angle +ϑM à l'angle -ϑM (diagramme 2b).
  • On a figuré sur le diagramme 2c les signaux reçus à bord de l'avion AV, toujours en fonction du temps. L'avion reçoit tout d'abord le préambule, entre les instants 0 et tP. Il reçoit ensuite deux impulsions, repérées 1 et 2, à des instants t₅ et t₆ qui correspondent aux moments où le faisceau passe sur l'avion AV, dans un sens puis dans l'autre. La durée séparant les instants t₅ et t₆ (Δt) est caractéristique de l'angle ϑA d'azimut de l'avion AV :

        ϑA =
    Figure imgb0001
    . (Δt - To)      (1)
  • Il a été dit dessus que l'émission des fonctions MLS se faisait sur une fréquence voisine de 5 GHz. Plus précisément, chaque station MLS dispose d'une fréquence choisie dans une bande allant de 5,03 à 5,09 GHz.
  • L'antenne à balayage électronique est, comme il est connu, constituée d'un grand nombre de sources rayonnantes et elle est en général calculée par le constructeur à la fréquence centrale de la bande, à savoir 5,06 GHz. Lorsque la fréquence d'émission est différente de cette fréquence centrale, l'angle de pointage réel du faisceau est différent de l'angle calculé pour la fréquence centrale, et il s'avère que l'erreur ainsi commise est supérieure aux erreurs tolérées par les normes OACI. Cette erreur doit donc être corrigée.
  • Une solution possible de correction consiste à recalculer les déphasages à apporter à chacune des sources rayonnantes pour chaque fréquence d'émission. Cette solution est généralement utilisée dans les radars à balayage électronique, du fait que ceux-ci comportent habituellement des moyens de calcul qui peuvent assurer en outre le recalcul des déphasages. Dans le cas du système MLS, on ne dispose pas de tels moyens de calcul ; les valeurs des déphasages sont habituellement stockées dans des mémoires mortes et le changement des valeurs des déphasages implique le remplacement de la mémoire. Ceci est évidemment un inconvénient, notamment sur le plan de la souplesse et du coût.
  • La présente invention a pour objet un procédé permettant de compenser cette erreur en modifiant la vitesse de balayage (v) du faisceau ; de la sorte, le temps Δt mesuré est modifié (voir expres­sion (1) ci-dessus) et, par suite, la valeur correspondante de l'angle ϑ est corrigée.
  • Selon les différents modes de réalisation de l'invention, la vitesse de balayage peut être modifiée en tenant compte seulement de la fréquence d'émission ou en tenant compte à la fois de la fréquence d'émission et de l'angle balayé.
  • D'autres objets, particularités et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les dessins annexés sur lesquels :
    • - la figure 1, déjà décrite, illustre le principe du codage de l'angle azimut par un faisceau battant ;
    • - les figures 2, a à c, déjà décrites, sont des diagrammes explicatifs relatifs à la figure précédente ;
    • - les figures 3, a et b, illustrent schématiquement le principe de correction selon l'invention ;
    • - la figure 4 est une courbe explicative ;
    • - la figure 5 est un schéma synoptique d'une station MLS ;
    • - la figure 6 représente un mode de réalisation du dispositif selon l'invention ;
    • - la figure 7 est un schéma explicatif ;
    • - la figure 8 représente un autre mode de réalisation du dispositif selon l'invention.
  • Sur ces différentes figures, les mêmes références se rappor­tent aux mêmes éléments.
  • Il a été indiqué ci-dessus (expression 1) que la mesure d'angle (ϑA) effectuée par l'avion se ramène à une mesure de temps : l'angle est une fonction linéaire du temps Δt qui sépare les deux réceptions (impulsions 1 et 2, figure 2c) du faisceau B. Selon l'invention, on compense la dispersion en fréquence de l'antenne par la modification de la vitesse (v) de balayage du faisceau, comme illustré sur les figures 3.
  • Sur la figure 3a on a reproduit en pointillé le diagramme 2b précédent, illustrant les valeurs d'angle balayées en fonction du temps. De la même manière, sur la figure 3b, on a reproduit en pointillé les signaux reçus à bord de l'avion (impulsions 1 et 2) comme illustré sur la figure 2c.
  • Sur le diagramme 3a, on a représenté en outre en trait continu les effets d'une modification de la vitesse de balayage du faisceau B (vitesse modifiée mais constante sur toute la couverture) : le faisceau aller couvre l'angle 2ϑM d'un instant t1c à un instant t2c ; de la même manière, le faisceau retour couvre le même angle pendant une même durée, allant d'un instant t3c à un instant t4c. Sur le diagramme 3b, on a représenté en outre en trait continu une impulsion 1c correspondant au passage du faisceau aller et une impulsion 2c correspondant au passage du faisceau retour, à des instants respectivement t5c et t6c. La durée qui sépare ces deux impulsions 1c et 1b est notée Δtc. Elle est inférieure à la durée Δt précédente, pour un même angle ϑA. Il apparaît donc qu'une même durée Δt correspondant alors à un angle différent de ϑA (plus faible dans le cas des figures 3).
  • Selon un mode de réalisation de l'invention, pour faire varier la vitesse de balayage du faisceau, on fait varier la fréquence d'horloge du circuit logique commandant le balayage du faisceau.
  • Tout d'abord, on montre que l'erreur (notée dϑʹ) sur l'angle ϑque fait le faisceau B avec l'axe PPʹde la piste, ou angle de pointage, s'écrit :
    Figure imgb0002
    avec :
        - dϑ' exprimé en radians ;
        - f : fréquence de l'onde émise ;
        - fo : fréquence centrale de la bande de fréquence des émissions MLS (5,06 GHz), avec : f = fo + df.
    Démonstration :
    On sait en effet qu'à la phase (Δφ) du nème déphaseur correspond un angle de pointage ϑ de la manière suivante :
        Δφ = 2π.
    Figure imgb0003
    . sin ϑ      (3)
    avec :
        - L : distance du nème déphaseur au centre de l'antenne ;
        - λ : longueur d'onde correspondant à la fréquence d'émis­sion (f).
    A phases constantes, on peut calculer l'erreur dϑʹ commise sur l'angle ϑ lorsque la fréquence d'émission varie de fo à f = fo + df en opérant la dérivée logarithmique de l'expression (3) :
    Figure imgb0004
    d'où :
    Figure imgb0005
    d'où il vient l'expression (2) mentionnée plus haut.
  • Si on exprime maintenant l'angle ϑ en fonction de la vitesse angulaire de balayage (v), ou encore en fonction de la fréquence (F) du signal d'horloge du circuit logique, qui lui correspond à une constante de proportionnalité près (K), on obtient :
    Figure imgb0006
    Démonstration :
    A la fréquence centrale (fo), on a :
        ϑo = vo.t
    avec :
        - ϑo : angle variable dans le temps, correspondant à f = fo ;
        - vo : vitesse angulaire déterminée pour f = fo.
    A la vitesse vo est liée une valeur Fo de la fréquence F par la relation :
        vo = K. Fo      (5)
    A une fréquence d'émission f quelconque, on a :
        ϑ = vo.t + dϑʹ
    Les expressions (2) et (5) ci-dessus permettent d'écrire :
    Figure imgb0007
    Si on fait varier la fréquence d'horloge, qui s'écrit alors F, avec F = Fo + dF, on peut écrire :
    Figure imgb0008
    ou encore, en remplaçant K (expression 5):
    Figure imgb0009
    A partir de cette dernière expression, on peut exprimer l'erreur dϑ commise sur ϑ par rapport à la loi idéale ϑo = vo.t ci-dessus (avec dϑ = ϑ - ϑo), en fonction des fréquences F et f :
    Figure imgb0010
    ce qui peut encore s'écrire :
    Figure imgb0011
    En négligeant dF/Fo devant 1, on obtient l'expression (4) mentionnée plus haut.
  • Pour annuler l'erreur dϑ, il faut donc que la variation dF de la fréquence de l'horloge de balayage obéisse à la relation suivante :
    Figure imgb0012
    Il ressort de cette dernière formule que la correction de la fréquence de l'horloge de balayage, pour annuler l'erreur dϑ, est fonction de la fréquence d'émission f mais également de l'angle ϑ de pointage du faisceau.
  • Selon l'invention, cette correction est faite, dans un premier mode de réalisation, simplifié, uniquement en fonction de la fréquence (f) d'émission. Dans un deuxième mode de réalisation, plus élaboré, la correction est faite à la fois en fonction de la fréquence f et en fonction de l'angle ϑ.
  • Dans le premier mode de réalisation, on opére donc une correction uniquement en fonction de la fréquence d'émission f.
  • Pour un angle donné ϑ = ϑ₁, selon la formule (6) ci-dessus, on obtient une valeur dF₁ correspondante de dF qui s'écrit :
    Figure imgb0013
    On peut alors écrire l'expression de l'erreur δ de pointage en fonction de l'angle ϑ, pour la valeur de dF₁ ci-dessus :
    Figure imgb0014
  • On a représenté sur la figure 4 la variation de l'angle ϑ avec le temps :
        - en trait pointillé, la courbe théorique : variation linéaire ;
        - en trait continu, la variation réelle : l'erreur δ est nulle pour ϑ égal à zéro ; elle passe ensuite par un maximum, noté δ1 MAX ; elle s'annule pour la valeur ϑ₁ puis augmente à nouveau pour les valeurs supérieures de l'angle ϑ, jusqu'à δ2 MAX pour ϑM. Dans un mode de réalisation la valeur ϑ₁ de l'angle ϑ est choisie de telle sorte que les valeurs δ1 MAX et δ2MAX soient sensiblement les mêmes. En d'autres termes la valeur ϑ₁ est une valeur moyenne qui minimise l'erreur δ.
  • Dans un autre mode de réalisation, du fait que les normes OACI admettent une erreur plus grande pour les grands angles ϑ que pour les petits angles, on choisit une valeur pour ϑ₁, qui minimise l'erreur δ pour les petits angles, tout en conservant la valeur δ2MAX inférieure aux limites OACI.
  • Avant de décrire la mise en oeuvre de ce premier mode de correction, on rappelle figure 5 l'organisation générale d'une station angle d'un système MLS, azimut ou site par exemple.
  • Cette station comporte essentiellement un émetteur 10, deux antennes : une antenne sectorielle 30 et une antenne à balayage électronique 40, et des circuits de commande (20 et 50).
  • L'émetteur 10 comporte classiquement, en cascade :
        - un générateur de fréquence fournissant une fréquence porteuse d'environ 5 GHz selon la norme OACI ;
        - un modulateur de phase, réalisant une modulation de phase DPSK à deux états (0,π) permettant d'émettre le préambule et les données sur commande d'un dispositif logique de commande 50, tel qu'un microprocesseur ;
        - un dispositif de commande marche/arrêt, également com­mandé par le microprocesseur 50 ;
        - un émetteur de puissance.
  • L'émetteur 10 fournit un signal, par l'intermédiaire du com­mutateur 20, soit à l'antenne sectorielle 30 pour l'émission du préambule et des données, soit à l'antenne à balayage 40.
  • Cette dernière se décompose classiquement en :
        - un diviseur (ou répartiteur) de puissance 41, divisant en N la puissance reçue du commutateur 20 ;
        - N déphaseurs numériques 42, alimentés par le diviseur 41 ;
        - N éléments rayonnants 43, alimentés par les déphaseurs précédents ;
        - un circuit logique de balayage 44, fournissant aux déphaseurs 42 les valeurs des déphasages à introduire, afin de réaliser un balayage électronique à partir d'éléments rayonnants statiques.
  • La figure 6 représente un mode de réalisation du circuit logique de balayage (44) réalisant la compensation selon l'invention.
  • On rappelle que le circuit logique de balayage commande les déphaseurs 42 de manière à réaliser une succession de pointages du lobe, voisins les uns des autres, simulant ainsi un balayage continu.
  • Les déphaseurs 42 sont par exemple des déphaseurs numériques 4 bits ; dans ce cas, ils permettent chacun de déphaser une onde entre 0 et 360°, au pas de 22,5°. Les positions des N déphaseurs pour les pointages successifs (pas usuels : 0,1 à 0,2°) sont calculées au préalable et stockées en général dans une mémoire morte de type PROM (446 sur la figure 6), sous forme de mots de 4 bits. Chacun des N déphaseurs est repéré par une adresse et la logique de balayage 44 a pour fonction de fournir successivement les valeurs des déphasages (bus de données 447) assorties de leurs adresses respectives (bus adresses 448) aux déphaseurs 42.
  • A cet effet, le bloc 44 comporte en outre :
        - un générateur d'horloge 441, qui a pour fonction de fournir la fréquence F ;
        - un circuit logique de séquencement 442, commandant le déclenchement et le mode de fonctionnement d'un ensemble de compteurs 443, commandé par le dispositif 50 de contrôle de la station ;
        - l'ensemble 443 comportant deux compteurs :
          . un compteur-décompteur 445 pour le pointage du lobe, recevant la fréquence F et qui fournit à chaque instant la valeur du pointage du lobe ; cette dernière est utilisée par la mémoire 446 comme adresse (partielle, voir ci-dessous) d'une donnée qu'elle fournit (bus 447) aux déphaseurs 42 ;
          . un compteur-décompteur 444 pour les adresses des déphaseurs : pour un pointage donné du lobe (information fournie par le compteur 445), il permet l'adressage successif des N déphaseurs ; sa fréquence est donc N fois plus grande que celle du compteur 445 ; à cet effet, il reçoit également la fréquence F.
  • Selon l'invention, le générateur de signal d'horloge 441 fournit un signal d'horloge dont la fréquence F dépend de la fréquence f d'émission. Dans une variante de réalisation, représentée sur la figure 6, on rassemble pour simplifier les différentes valeurs de la fréquence d'émission f possibles en groupes, de manière à minimiser le nombre de fréquences d'horloge possibles ; à titre d'exemple, on peut choisir vingt groupes de dix fréquences f chacun. Le générateur d'horloge 441 est classique, sauf en ce qu'il est susceptible de fournir différentes fréquences F sur la commande de la fréquence f ou du sélecteur 440 ; il peut être constitué par exemple par une horloge à quartz, où le quartz unique est remplacé par un ensemble de quartz commutablessous la commande précédente ; il est également possible d'utiliser un synthétiseur logique : la fréquence F peut être sélectionnée par exemple par des roues codeuses.
  • Ainsi qu'il l'a été dit ci-dessus, l'expression (6) montre que la variation de la fréquence F qui annule l'erreur dϑ est également fonction de l'angle ϑ. Dans un deuxième mode de réalisation de l'invention, on fait donc varier dF non seulement en fonction de la fréquence d'émission f mais également en fonction de l'angle ϑ, comme illustré sur la figure 7.
  • La figure 7 représente, de façon analogue à celle de la figure 4, la variation de l'angle de pointage ϑ en fonction du temps. La courbe théorique est, comme précédemment, représentée en trait pointillé et la courbe réelle, en trait continu. Cette dernière se présente sous la forme d'une succession de segments I₁, I₂ ... In. En effet, il apparaît sur cette figure 7 qu'on ne choisit plus un angle ϑ₁ moyen comme dans le premier mode de réalisation mais des intervalles I₁, I₂...In. Pour chaque intervalle I ainsi défini, on choisit un angle ϑI pour lequel on calcule la correction de fréquence dF à appliquer pour tout l'intervalle :
    Figure imgb0015
    qui correspond à l'expression (7) ci-dessus pour l'intervalle Ii et l'angle ϑIi, avec i variant de 1 à n.
  • La longueur de l'intervalle I ainsi que l'angle ϑI doivent être choisis de manière à minimiser l'erreur résiduelle de pointage. Le calcul de dF est fait pour un intervalle angulaire donné (d'indice i) et pour un intervalle de fréquence d'émission donnée (noté fi). L'erreur de pointage résiduelle, en fonction de l'angle ϑ et de la fréquence f est alors, pour les valeurs ϑIi et fi :
    Figure imgb0016
    Pour ϑ = ϑIi , on a :
    Figure imgb0017
    pour f = fi, on a :
    Figure imgb0018
    avec δ = δ₁ + δ₂.
  • Pour minimiser δ, on cherche donc à minimiser séparément δ₁ et δ₂, expérimentalement ou par le calcul.
  • A titre d'exemple, si on se limite à une erreur dans toute la bande de fréquence et toute la couverture du système de ±0,01°, on peut choisir δ1 MAX = ±0,005°= δ2 MAX. De ce fait, on est conduit à choisir des groupes de fréquences f de ±0,5 MHz environ et à effectuer la correction supplémentaire en fonction de l'angle ϑ pour des intervalles angulaires de ±3,2°.
  • La figure 8 représente un mode de réalisation de cette correction en fonction de la fréquence d'émission et de l'angle de pointage au niveau du circuit logique de balayage 44.
  • Sur cette figure, on retrouve le séquenceur 442, l'ensemble de compteurs 443 et la mémoire 446.
  • On dispose en outre un troisième compteur, repéré 451, commandé par le séquenceur 442, une horloge 449 à fréquence fixe, dont les impulsions sont comptées par les trois compteurs, et une mémoire de correction 450.
  • En fonctionnement, la fréquence d'émission f et l'angle ϑ sélectionnent une adresse de la mémoire 450, du type PROM par exemple, qui contient les valeurs de chargement (N) du compteur-­décompteur 451, qui décompte de N à zéro au rythme de l'horloge 449. Lorsque le compteur 451 passe à zéro, il adresse un signal (INHIB) qui inhibe le comptage de compteurs 444 et 445 sur ma période d'horloge. De la sorte, on fait varier la vitesse de balayage, celle-ci étant d'autant plus faible que le nombre N est petit.
  • L'information angulaire (ϑ) est prélevée à la sortie du compteur 445 à destination de la mémoire 450.
  • En outre, comme précédemment, les différentes fréquences f possibles peuvent être rassemblées en groupes, en amont de la mémoire 450.

Claims (11)

1. Procédé de compensation de la dispersion en fréquence d'une antenne à balayage électronique, caractérisé par le fait qu'il consiste à modifier la vitesse (v) de balayage.
2. Procédé selon la revendication 1, caractérisé par le fait que le balayage étant commandé par des moyens logiques comportant un signal d'horloge, la vitesse (v) de balayage est modifiée par modifi­cation de la fréquence (F) du signal d'horloge.
3. Procédé selon l'une des revendications précédentes, carac­térisé par le fait que ladite modification est effectuée en fonction de la fréquence (f) du signal émis par l'antenne.
4. Procédé selon la revendication 3, caractérisé par le fait que les fréquences d'émission (f) sont prédéfinies et regroupées en un nombre limité de groupes, ladite modification étant identique pour un même groupe.
5. Procédé selon l'une des revendications 3 ou 4, caractérisé par le fait que ladite modification est effectuée en outre en fonction de l'angle de pointage (ϑ) de l'antenne.
6. Dispositif de compensation de la dispersion en fréquence d'une antenne à balayage électronique, caractérisé par le fait qu'il assure la mise en oeuvre du procédé selon l'une des revendications précédentes et qu'il comporte des moyens logiques (44) commandant le balayage.
7. Dispositif selon la revendication 6, caractérisé par le fait que les moyens logiques (44) comportent des moyens (441) de génération d'un signal d'horloge, commandés en fonction de la fréquence (f) du signal émis par l'antenne.
8. Dispositif selon la revendication 7, caractérisé par le fait que les moyens (441) de génération comportent un jeu de quartz commutables en fonction de la fréquence (f) du signal émis par l'antenne.
9. Dispositif selon la revendication 7, caractérisé par le fait que les moyens de génération (441) comportent un synthétiseur logique commandé en fonction de la fréquence (f) du signal émis par l'antenne.
10. Dispositif selon la revendication 6, caractérisé par le fait que les moyens logiques (44) comportent une horloge (449) à fréquence fixe, des moyens (443) de comptage adressant les déphaseurs de l'antenne, des moyens (451) de comptage de correc­tion et une mémoire de correction (450), cette dernière recevant la fréquence d'émission (f) et l'angle de pointage (ϑ) et fournissant aux moyens (451) de comptage de correction une valeur (N) correspon­dante de comptage, les moyens de comptage de correction inhibant, en fin de comptage, les moyens (443) de comptage des déphaseurs.
11. Application du procédé selon l'une des revendications 1 à 5 à au-moins une antenne à balayage électronique d'un système d'aide à l'atterrissage de type MLS.
EP87401738A 1986-07-25 1987-07-24 Procédé et dispositif de compensation de la dispersion en fréquence d'une antenne à balayage électronique, et son application à un système d'aide à l'atterrissage de type MLS Withdrawn EP0254649A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8610825 1986-07-25
FR8610825A FR2602096A1 (fr) 1986-07-25 1986-07-25 Procede et dispositif de compensation de la dispersion en frequence d'une antenne a balayage electronique, et son application a un systeme d'aide a l'atterrissage de type mls

Publications (1)

Publication Number Publication Date
EP0254649A1 true EP0254649A1 (fr) 1988-01-27

Family

ID=9337745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401738A Withdrawn EP0254649A1 (fr) 1986-07-25 1987-07-24 Procédé et dispositif de compensation de la dispersion en fréquence d'une antenne à balayage électronique, et son application à un système d'aide à l'atterrissage de type MLS

Country Status (3)

Country Link
EP (1) EP0254649A1 (fr)
JP (1) JPS6394182A (fr)
FR (1) FR2602096A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423512A2 (fr) * 1989-10-18 1991-04-24 Alcatel SEL Aktiengesellschaft Réseau d'antennes à contrôle de phases pour un système d'atterrissage par micro-ondes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432789A (ja) * 1990-05-30 1992-02-04 Nec Corp ビーム走査制御回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295138A (en) * 1963-10-31 1966-12-27 Sylvania Electric Prod Phased array system
US4072956A (en) * 1976-05-17 1978-02-07 The United States Of America As Represented By The Secretary Of The Navy Multifrequency array using common phasors
DE3323234A1 (de) * 1983-06-28 1985-01-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Phasengesteuerte gruppenantenne

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810881B2 (ja) * 1975-06-05 1983-02-28 三菱電機株式会社 フエイズドアレイアンテナソウチ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295138A (en) * 1963-10-31 1966-12-27 Sylvania Electric Prod Phased array system
US4072956A (en) * 1976-05-17 1978-02-07 The United States Of America As Represented By The Secretary Of The Navy Multifrequency array using common phasors
DE3323234A1 (de) * 1983-06-28 1985-01-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Phasengesteuerte gruppenantenne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 1, no. 47, 9 mai 1977, page 3022 E 76; & JP-A-51 144 151 (MITSUBISHI DENKI K.K.) 12-10-1976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423512A2 (fr) * 1989-10-18 1991-04-24 Alcatel SEL Aktiengesellschaft Réseau d'antennes à contrôle de phases pour un système d'atterrissage par micro-ondes
EP0423512A3 (en) * 1989-10-18 1991-06-12 Standard Elektrik Lorenz Aktiengesellschaft Phase controlled antenna array for a microwave landing system (mls)

Also Published As

Publication number Publication date
FR2602096A1 (fr) 1988-01-29
JPS6394182A (ja) 1988-04-25

Similar Documents

Publication Publication Date Title
FR2599856A1 (fr) Systeme d'emission reception pour radar doppler a frequence agile
FR2651609A1 (fr) Commande de pointage pour systeme d'antenne a balayage electronique et formation de faisceau par le calcul.
EP0143497B1 (fr) Système radar à monoimpulsion à onde continue modulée en fréquence dont on améliore la stabilité d'axe
EP0099832B1 (fr) Procédé de traitement des signaux vidéo dans un transformateur numérique d'images, et dispositif de mise en oeuvre de ce procédé
FR3066610A1 (fr) Systeme satellite pour la navigation et/ou la geodesie
EP0996860B1 (fr) Dispositif d'interferometrie radar
EP0254649A1 (fr) Procédé et dispositif de compensation de la dispersion en fréquence d'une antenne à balayage électronique, et son application à un système d'aide à l'atterrissage de type MLS
EP0188937B1 (fr) Procédé de synchronisation radioélectrique de stations esclaves par une station maître, notamment pour un système d'aide à l'atterrissage de type MLS, et dispositifs de mise en oeuvre d'un tel procédé
EP0129471B1 (fr) Procédé d'augmentation de portée et notamment de protection contre le brouillage, d'un système d'aide à l'atterrissage de type MLS, et dispositifs de mise en oeuvre d'un tel procédé
EP0237404A1 (fr) Procédé de traitement des signaux somme et différence d'un radar du type monopulse, en vue d'estimer la phase parasite introduite entre ces signaux par les circuits hyperfréquence de formation des voies somme et différence
EP0163345A1 (fr) Système de guidage terminal ou de recalage de position pour aéronef par mesures de distance
EP0083534B1 (fr) Système d'atterrissage hyperfréquence à protection contre le brouillage
FR2477722A1 (fr) Dispositif d'alimentation d'un systeme de radionavigation du type vor doppler et systeme vor doppler le comprenant
FR2793885A1 (fr) Procede et dispositif de guidage electromagnetique, appliques notamment a la poursuite de cibles
EP3859882B1 (fr) Système radioélectrique à réseaux d'antennes multiples et à formes d'onde adaptatives
WO2018115721A1 (fr) Transmission optique a partir d'un satellite a destination d'un terminal de reception
EP0082770A1 (fr) Système d'atterrissage hyperfréquence à stations site et azimut séparées
FR2601143A1 (fr) Procede et systeme de localisation et de correction d'orientation d'un objet mobile autonome et d'un objet mobile non autonome
EP0433161B1 (fr) Système d'aide à l'atterrissage du type MLS, comportant des moyens de génération hyperfréquences centralisés
EP0624804A1 (fr) Système de poursuite destiné à estimer l'erreur de pointage d'une antenne hyperfréquence
EP0163346A1 (fr) Système de guidage terminal ou de recalage de position pour aéronef par mesures de distance et d'angle
EP3560114B1 (fr) Transmission optique à partir d'un satellite à destination d'un terminal de réception
EP3910370A1 (fr) Procede de detection radar de la distance et de la vitesse relative d'un echo par rapport au porteur du radar, et radar mettant en oeuvre un tel procede
FR2725525A1 (fr) Systeme de reperage air-sol a radar
FR2737016A1 (fr) Equipement embarque pour saisie d'informations de position d'un engin et station de controle associee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19880610

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900201

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LETOQUART, BRUNO

Inventor name: BRAULT, DANIEL

Inventor name: FREMONT, GUY