EP0251838B1 - Procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, et installation comportant application de ce procédé - Google Patents

Procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, et installation comportant application de ce procédé Download PDF

Info

Publication number
EP0251838B1
EP0251838B1 EP87401232A EP87401232A EP0251838B1 EP 0251838 B1 EP0251838 B1 EP 0251838B1 EP 87401232 A EP87401232 A EP 87401232A EP 87401232 A EP87401232 A EP 87401232A EP 0251838 B1 EP0251838 B1 EP 0251838B1
Authority
EP
European Patent Office
Prior art keywords
solvent
evaporation
exchanger
flasks
flask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87401232A
Other languages
German (de)
English (en)
Other versions
EP0251838A1 (fr
Inventor
Patricia Delbourgo
Michel Coupard
Jean-Jacques Delorme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francaise dEtudes et de Construction Technip SA
Original Assignee
Francaise dEtudes et de Construction Technip SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francaise dEtudes et de Construction Technip SA filed Critical Francaise dEtudes et de Construction Technip SA
Publication of EP0251838A1 publication Critical patent/EP0251838A1/fr
Application granted granted Critical
Publication of EP0251838B1 publication Critical patent/EP0251838B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/02Laboratory distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/04Heat pump

Definitions

  • the present invention essentially relates to a process for the extraction of solvent from a mixture of solvent and of hydrocarbons without the addition of external heat.
  • a method for separating a solvent from a solvent-hydrocarbon mixture by staged evaporation of the solvent at decreasing temperatures uses a succession of solvent evaporation exchangers, the first being heated by steam at 195 ° C outside the process and externally licking the wall of the exchanger.
  • the object of the present invention is therefore to remedy the above drawbacks in particular by proposing a method and an installation for recovering solvent in solvent-hydrocarbon mixtures, which are particularly simple, reliable and inexpensive in the sense that they do not require no external heat input.
  • the subject of the invention is a process for the separation of solvent from a mixture of solvent and of hydrocarbons, in which a stepwise evaporation of the solvent is carried out according to an order of decreasing pressures to separate it from the hydrocarbons, characterized in that the staged evaporation of the solvent is carried out in a substantially isothermal manner at a temperature between 100 and 200 ° C, and a heat exchange is carried out between the evaporated solvent and at least one intermediate fluid to obtain the condensation of the solvent and recover its heat of condensation, and said intermediate fluid, in the gas phase, is compressed to raise its temperature and is then used to heat the mixture and carry out the staged evaporation of the solvent itself without any external heat supply to effect this operation is necessary.
  • isothermal evaporation of the solvent is coupled with a heat pump which recovers the calories of condensation of the solvent and raises them to a sufficient thermal level so that they can be used for the clean solvent spray.
  • isothermal evaporation has high level energy saving advantages, which makes it possible to cover the calorie needs of this type with heat due to the irreversibility of the compression in the heat pump. .
  • the invention also relates to an installation for implementing the above process and of the type comprising at least two evaporation flasks or the like successively supplied by a charge consisting of a mixture to be separated, of solvent and of hydrocarbons, characterized in that it comprises at least one steam generator ensuring the condensation of the solvent, at least one circuit for transporting the evaporated solvent connecting the flasks to said generator, and at least one intermediate fluid circuit in the gaseous phase provided with at least one compressor and connecting said generator to at least one exchanger disposed upstream of each tank.
  • an installation according to the invention comprises three successive solvent evaporation flasks and is characterized in that the streams of vaporized solvent leaving the second and third flasks are combined before arriving at a first generator of steam, while the flow of vaporized solvent leaving the first flask reaches a second steam generator, the condensed solvent flows leaving the two aforementioned generators being combined.
  • the flow of intermediate fluid in the gaseous phase produced by the two aforementioned generators feeds an exchanger upstream of the third balloon then divides to pass through two exchangers upstream of the first and second balloons respectively, and forms again a single flow passing through a heat exchanger for the charge introduced into the installation.
  • the installation shown in the single figure is, for example, the solvent recovery section in dewaxed oil, of a dewaxing unit for lubricants.
  • the solvent used can be a mixture (50% - 50% by volume) of methyl ethyl ketone and toluene.
  • the charge constituted by a solvent-oil mixture reaches the installation for example at a pressure of 500 kPa absolute and at a temperature of 39 ° C by a pipe to constitute flow 1.
  • the charge is divided into two flows marked respectively in 2 and 3, and it is preheated in an exchange train comprising, in parallel, the exchangers E 1 , E 2 and E 3 then the exchanger E4.
  • the stream 4 is heated by a stream of water vapor 111 to constitute the stream 6.
  • the stream 3 is heated by the dewaxed oil 23 going to storage via the pipe 24, and the stream 3 becomes the stream 5 which is joined to the stream 6 so as to form a single stream 7 reaching the 'exchanger E4.
  • the flow 7 is heated, up to the conditions of the evaporator flask or of flash B 1 , by condensed water vapor 109.
  • the evaporator flask B 1 operates at a temperature of 148.5 ° C and at a pressure of 400 kPa absolute and makes it possible to vaporize approximately 40% of the solvent contained in the charge passing through line 8.
  • the mixed phase constituting the flow 10a after the valve V, and terminating in the evaporator flask B 2 is heated in heat exchangers E5 and E 6 to the aforementioned temperature of the evaporator flask B 2 .
  • the flow 10a is heated by the flow 9 of the vaporized solvent leaving the flask B 1 , and this heated flow 10a constitutes the flow 11 which is in turn heated by the exchanger E 6 thanks to the steam of condensed water passing through line 107.
  • the flash in the evaporator flask 8 2 occurs, as said above, at a lower pressure than that of the flash in the flask B t , which makes it possible to eliminate practically all the remaining solvent which leaves the flask 8 2 via the pipe 13.
  • the liquid leaving the flask B 2 is pumped into the bottom of this flask, passes through the pipe 14 and is heated by two exchangers in parallel E 7 and E 8 to a temperature of about 200 ° C which is the appropriate temperature for stripping hydrocarbons in a column C.
  • the derivative flow 14a is heated by the dewaxed oil leaving the column C via the line 22.
  • the derivative flow 14b is heated by the passing steam in a line 105 and produced by a steam compressor M.
  • This balloon operates at a temperature of 200 ° C and at a pressure of 243 kPa absolute identical to that of balloon B 2 .
  • the liquid fraction 21 leaving the flask B 3 is then stripped from the column C by water vapor 98 in order to remove the last traces of the solvent in the stream 99.
  • the dewaxed oil 22 leaving column C is, as explained above, sent to storage via line 24 after cooling in the exchangers E 8 and E 3 .
  • the vaporized solvent leaves the flask B 3 via line 20, and this vaporized solvent flow is mixed in 20a with the solvent flow 13 leaving the flask B 2 to constitute the solvent flow 25 (pressure 243 kPa absolute, temperature 154 ° C. ).
  • the vapors of stream 25 are fully condensed and then sub-cooled after passing through a first exchanger or steam generator G, carrying out the condensation of the solvent, which is supplied with liquid water via a line 100.
  • the stream of solvent thus condensed forms the stream 26.
  • the flow of vaporized solvent 9 leaving the first evaporator flask B 1 is partially condensed in the exchanger E5 which arrives via line 27 at a second exchanger or steam generator G 2 , which provides total condensation and subcooling of the vapors solvent.
  • the condensed solvent forms the flow 28, at the same temperature conditions as the flow 26.
  • the flow 28 is then expanded in a valve (not shown), then mixed with the flow 26, as seen in 28a, to form the flow 29 mentioned above which is cooled in the exchanger And then sent to storage via a pipe 30.
  • the water vapor At the outlet of compressor M the water vapor is at around 220 ° C and 580 kPa absolute, and this water vapor passing through line 105 is used to supply high level calories to the exchanger E 7 upstream of the third ball B 3 .
  • the water vapor passes through the pipe 106 and divides to form the two pipes 107 and 109 passing respectively through the exchangers E 6 and E4 to heat the supplies to the tanks 8 2 and B, respectively.
  • the water vapor condensates then passing through the pipes 107a and 109a are mixed to form the stream 111 and are sub-cooled to 117 ° C and then expanded in a valve V 2 at a pressure of 180 kPa absolute, finally return to steam generators G, and G 2 via lines 100 and 102.
  • a process and an installation for recovering solvent have therefore been carried out according to the invention which have a much higher energy yield and which do not require external heat input, which heat supply serves in particular to compensate for the irreversibilities and the losses of the system.
  • the irreversibilities are minimized and the thermal degradation is reduced.
  • the heat between the process fluids and the heat pump fluid is transferred with minimal temperature degradation, which allows the system to work under optimal energy conditions. It will also be added that the solvent is not heated to high temperatures during evaporation and will therefore undergo less thermal degradation.
  • the installation of the invention has remarkable operating stability by the fact that the heat recovered is mixed at the level of the heat pump and redistributed in parallel between the points of evaporation of the solvent, which allows d '' Adjust the heat to be supplied to each flash separately.
  • the evaporation of the solvent in the flasks B 1 and 8 2 is carried out in an order of decreasing pressures, so as to allow the evaporation of a very large quantity of solvent while remaining at a substantially constant temperature and which can for example be between 100 and 200 ° C.
  • a substantially constant temperature which can for example be between 100 and 200 ° C.
  • the invention finally provides a process and an installation for recovering solvent which present exceptional results due to the fact that an isothermal evaporation scheme for the solvent is used coupled with a heat pump recovering the calories of condensation of the solvent and raising them at a sufficient thermal level so that they can be used to ensure the proper vaporization of the solvent.
  • the method according to the invention can perfectly be incorporated into old solvent recovery installations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)

Description

  • La présente invention a essentiellement pour objet un procédé d'extraction de solvant d'un mélange de solvant et d'hydrocarbures sans apport de chaleur extérieure.
  • Elle vise également une installation pour la mise en oeuvre de ce procédé.
  • On connaît déjà un certain nombre de procédés et d'installations d'extraction liquide-liquide au solvant ou utilisant des solvants pour séparer des familles d'hydrocarbures. Mais ces procédés et installations sont très pénalisés, d'un point de vue du coût énergétique, par le fait qu'il faut séparer par la suite le solvant des phases d'extrait et de raffinat.
  • Cette séparation ultime exige toujours un apport de chaleur extérieure au procédé ou à l'installation, cet apport se situant à un niveau thermique élevé, ce qui, comme on le comprend, augmente considérablement les coûts.
  • C'est ainsi que l'on connaît par exemple d'après le document GB-A-2 084 034, un procédé de séparation d'un solvant d'un mélange solvant-hydrocarbures par évaporation étagée du solvant suivant des températures décroissantes. Ce procédé utilise une succession d'échangeurs d'évaporation du solvant, le premier étant chauffé par de la vapeur d'eau à 195° C extérieure au procédé et léchant extérieurement la paroi de l'échangeur.
  • On connaît également, d'après le document US-A-2 276 089, un procédé de récupération de solvant à partir d'un mélange de solvant et d'hydrocarbures, dans lequel on effectue des évaporations successives du solvant suivant des pressions décroissantes et des températures croissantes. Là encore, on utilise de la vapeur d'eau extérieure au procédé, cette vapeur d'eau atteignant des températures allant jusqu'à 150°C et passant dans un échangeur en amont de chaque évaporation.
  • Les procédés ci-dessus exigent, par conséquent, l'utilisation d'une source de chaleur extérieure qui est à une température très élevée. De plus, ils sont d'une exploitation très instable puisque la moindre perturbation au niveau de la température ou du débit de la source chaude se répercute sur l'installation et la dérègle sévèrement. En outre, ces procédés et installations connus sont d'une mise en oeuvre complexe et exigent par exemple des systèmes de régulation, comme c'est le cas dans le document US-A-2 276 089, ce qui rend difficile le remodelage des installations anciennes.
  • La présente invention a donc pour but de remédier notamment aux inconvénients ci-dessus en proposant un procédé et une installation de récupération de solvant dans des mélanges solvant-hydrocarbures, qui sont particulièrement simples, fiables et peu coûteux en ce sens qu'ils ne nécessitent aucun apport de chaleur extérieure.
  • A cet effet, l'invention a pour objet un procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, dans lequel on effectue notamment une évaporation étagée du solvant suivant un ordre de pressions décroissantes pour le séparer des hydrocarbures, caractérisé en ce que l'évaporation étagée du solvant est effectuée de façon sensiblement isotherme à une température comprise entre 100 et 200° C, et on effectue un échange de chaleur entre le solvant évaporé et au moins un fluide intermédiaire pour obtenir la condensation du solvant et récupérer sa chaleur de condensation, et ledit fluide intermédiaire, en phase gazeuse, est comprimé pour élever sa température et est ensuite utilisé pour réchauffer le mélange et réaliser lui-même l'évaporation étagée du solvant sans qu'un apport de chaleur extérieure pour effectuer cette opération soit nécessaire.
  • En d'autres termes, on comprend que le processus d'évaporation isotherme du solvant est couplé avec une pompe à chaleur qui récupère les calories de condensation du solvant et les remonte à un niveau thermique suffisant pour qu'elles puissent être utilisées pour la propre vaporisation du solvant. En outre, on comprend que l'évaporation isotherme présente des avantages d'économie en énergie de haut niveau, ce qui permet de couvrir les besoins en calories de ce type par la chaleur due à l'irréversibilité de la compression dans la pompe à chaleur.
  • L'invention vise également une installation pour la mise en oeuvre du procédé ci-dessus et du type comprenant au moins deux ballons ou analogues d'évaporation successivement alimentés par une charge constituée par un mélange à séparer, de solvant et d'hydrocarbures, caractérisée en ce qu'elle comprend au moins un générateur de vapeur assurant la condensation du solvant, au moins un circuit de transport du solvant évaporé reliant les ballons audit générateur, et au moins un circuit de fluide intermédiaire en phase gazeuse muni d'au moins un compresseur et reliant ledit générateur à au moins un échangeur disposé en amont de chaque ballon.
  • Suivant un exemple de réalisation, une installation conforme à l'invention comprend trois ballons successifs d'évaporation du solvant et est caractérisée en ce que les flux de solvant vaporisés sortant du deuxième et du troisième ballons sont réunis avant de parvenir à un premier générateur de vapeur, tandis que le flux de solvant vaporisé sortant du premier ballon parvient à un deuxième générateur de vapeur, les flux de solvant condensés sortant des deux générateurs précités étant réunis.
  • Suivant encore une autre caractéristique de cette installation, le flux de fluide intermédiaire en phase gazeuse produit par les deux générateurs précités alimente un échangeur en amont du troisième ballon puis se divise pour traverser deux échangeurs en amont respectivement des premier et deuxième ballons, et forme à nouveau un flux unique traversant un échangeur de réchauffage de la charge introduite dans l'installation.
  • On ajoutera ici que le flux unique précité est relié aux générateurs de vapeur.
  • Mais d'autres caractéristiques et avantages de l'invention apparaîtront mieux dans la description détaillée qui suit et se réfère au dessin unique annexé, donné uniquement à titre d'exemple, et montrant d'une manière schématique une installation de récupération de solvant conforme aux principes de l'invention.
  • L'installation représentée sur la figure unique, est par exemple, la section de récupération de solvant dans l'huile déparaffinée, d'une unité de déparaffinage de lubrifiants.
  • Le solvant utilisé peut être un mélange (50 % - 50 % en volume) de méthyléthylcétone et de toluène.
  • La charge constituée par un mélange solvant-huile parvient à l'installation par exemple à une pression de 500 kPa absolus et à une température de 39°C par une conduite pour constituer le flux 1. La charge est divisée en deux flux repérés respectivement en 2 et 3, et elle est préchauffée dans un train d'échange comprenant, en parallèle, les échangeurs E1, E2 et E3 puis l'échangeur E4.
  • Dans l'échangeur E1, la charge est réchauffée par le flux total de solvant condensé 29 et parvient à l'échangeur E2 par la conduite 4.
  • Dans cet échangeur E2, le flux 4 est réchauffé par un flux de vapeur d'eau 111 pour constituer le flux 6.
  • Dans l'échangeur E3, le flux 3 est réchauffé par l'huile déparaffinée 23 allant au stockage par la conduite 24, et le flux 3 devient le flux 5 qui est réuni au flux 6 pour ainsi former un flux unique 7 parvenant à l'échangeur E4. Dans cet échangeur E4, le flux 7 est réchauffé, jusqu'aux conditions du ballon évaporateur ou de flash B1, par de la vapeur d'eau condensée 109. Le ballon évaporateur B1 fonctionne à une température de 148,5° C et à une pression de 400 kPa absolus et permet de vaporiser environ 40 % du solvant contenu dans la charge passant dans la conduite 8.
  • Le flux de solvant vaporisé sort du ballon B1 par la conduite 9, tandis que le liquide sortant de ce ballon par la conduite 10 est détendu dans une vanne V, jusqu'à la pression d'un deuxième ballon évaporateur B2 qui fonctionne à une pression de 243 kPa, c'est-à-dire inférieure à la pression du ballon Bt, et à une température de 150°C, c'est-à-dire sensiblement identique à celle du ballon B1. La phase mixte constituant le flux 10a après la vanne V, et aboutissant au ballon évaporateur B2, est réchauffée dans des échangeurs de chaleur E5 et E6 jusqu'à la température précitée du ballon évaporateur B2.
  • Dans l'échangeur E5, le flux 10a est réchauffé par le flux 9 du solvant vaporisé sortant du ballon B1, et ce flux réchauffé 10a constitue le flux 11 qui est à son tour réchauffé par l'échangeur E6 grâce à la vapeur d'eau condensée passant dans la conduite 107.
  • Le flash dans le ballon évaporateur 82 se produit, comme dit précédemment, à une pression plus basse que celle du flash dans le ballon Bt, ce qui permet d'éliminer pratiquement tout le solvant restant qui sort du ballon 82 par la conduite 13.
  • Le liquide sortant du ballon B2 est pompé dans le fond de ce ballon, passe par la conduite 14 et est réchauffé par deux échangeurs en parallèle E7 et E8 jusqu'à une température d'environ 200°C qui est la température adéquate pour réaliser le strippage des hydrocarbures dans une colonne C.
  • Plus précisément, dans l'échangeur E8, le flux dérivé 14a est réchauffé par l'huile déparaffinée sortant de la colonne C par la conduite 22. Dans l'échangeur E7 le flux dérivé 14b est réchauffé par la vapeur d'eau passant dans une conduite 105 et produite par un compresseur de vapeur M.
  • Après sortie des échangeurs E7 et E8, les deux flux dérivés 14a et 14b, qui sont à des températures différentes, sont remélangés pour constituer un flux 18 qui alimente un ballon B3.
  • Ce ballon fonctionne à une température de 200°C et à une pression de 243 kPa absolus identique à celle du ballon B2.
  • La fraction liquide 21 sortant du ballon B3 est alors strippée dans la colonne C par de la vapeur d'eau 98 afin d'éliminer les dernières traces du solvant dans le flux 99.
  • L'huile déparaffinée 22 sortant de la colonne C est, comme expliqué précédemment, envoyée au stockage par la conduite 24 après refroidissement dans les échangeurs E8 et E3.
  • Le solvant vaporisé sort du ballon B3 par la conduite 20, et ce flux de solvant vaporisé est mélangé en 20a au flux de solvant 13 sortant du ballon B2 pour constituer le flux de solvant 25 (pression 243 kPa absolus, température 154°C). Les vapeurs du flux 25 sont totalement condensées puis sous-refroidies après passage dans un premier échangeur ou générateur de vapeur G, effectuant la condensation du solvant, et qui est alimenté en eau liquide par une conduite 100. Le flux de solvant ainsi condensé forme le flux 26.
  • Le flux de solvant vaporisé 9 sortant du premier ballon évaporateur B1 est partiellement condensé dans l'échangeur E5 qui parvient par la conduite 27 à un deuxième échangeur ou générateur de vapeur G2, qui assure la condensation totale et le sous-refroidissement des vapeurs de solvant. Le solvant condensé forme le flux 28, aux mêmes conditions de température que le flux 26. Le flux 28 est alors détendu dans une vanne (non représentée), puis mélangé au flux 26, comme on le voit en 28a, pour former le flux 29 mentionné précédemment qui est refroidi dans l'échangeur Et puis expédié au stockage par une conduite 30.
  • On décrira maintenant le système formant pompe à chaleur constitué par les deux générateurs de vapeur G1, G2 alimentés en eau liquide par respectivement les conduites 100 et 102, par le compresseur M et par les échangeurs E2, E4, E6 et E7.
  • La vapeur d'eau saturée produite par les deux générateurs de vapeur G, et G2 et résultant de la récupération de la chaleur de condensation des flux de solvant 25 et 27, passe dans des conduits 101 et 103 qui sont réunis pour former un flux 104 de vapeur d'eau saturée, laquelle est comprimée par le compresseur M. Celui-ci comprend par exemple deux étages de compression et la vapeur est désurchauffée entre les deux étages par de l'eau comme matérialisé par la flèche 115.
  • A la sortie du compresseur M la vapeur d'eau se trouve à environ 220°C et 580 kPa absolus, et cette vapeur d'eau passant par la conduite 105 est utilisée pour fournir des calories haut niveau à l'échangeur E7 en amont du troisième ballon B3. A la sortie de cet échangeur, la vapeur d'eau passe dans la conduite 106 et se divise pour former les deux conduites 107 et 109 traversant respectivement les échangeurs E6 et E4 pour chauffer les alimentations des ballons 82 et B, respectivement. Les condensats de vapeur d'eau passant ensuite dans les conduites 107a et 109a sont mélangés pour former le flux 111 et sont sous-refroidis jusqu'à 117°C puis détendus dans une vanne V2 à la pression de 180 kPa absolus, pour finalement retourner aux générateurs de vapeur G, et G2 par les conduites 100 et 102.
  • On se reportera maintenant au tableau ci-après pour constater les avantages de l'installation qui vient d'être décrite par rapport aux installations connues qui utilisent un apport de chaleur extérieure pour réaliser l'évaporation du solvant, alors que l'installation selon l'invention n'en utilise pas.
    Figure imgb0001
  • Il apparaît immédiatement de ce tableau que le gain en énergie primaire représente environ 60 % par rapport aux installations connues.
  • On a donc réalisé suivant l'invention un procédé et une installation de récupération de solvant qui présentent un rendement énergétique très supérieur et qui ne nécessitent pas d'apport extérieur de chaleur, lequel apport de chaleur sert notamment à compenser les irréversibilités et les pertes du système. Or, dans le schéma selon l'invention, les irréversibilités sont minimisées et la dégradation thermique est réduite. En d'autres termes, la chaleur entre les fluides procédé et le fluide de la pompe à chaleur est transférée avec une dégradation minimale de température, ce qui permet au système de travailler dans des conditions énergétiques optimales. On ajoutera encore que le solvant n'est pas chauffé à des températures élevées lors de l'évaporation et subira par conséquent une dégradation thermique moindre.
  • On remarquera encore que l'installation de l'invention présente une stabilité de fonctionnement remarquable par le fait que la chaleur récupérée est mélangée au niveau de la pompe à chaleur et redistribuée en parallèle entre les points d'évaporation du solvant, ce qui permet d'ajuster séparément la chaleur à fournir à chaque flash.
  • Comme on l'a expliqué précédemment, l'évaporation du solvant dans les ballons B1 et 82 s'effectue suivant un ordre de pressions décroissantes, de façon à permettre l'évaporation d'une quantité très importante de solvant en restant à une température sensiblement constante et qui peut par exemple être comprise entre 100 et 200°C. Ceci permet encore une fois de minimiser les irréversibilités et d'avoir une demande de chaleur concentrée dans une plage très étroite de températures, ce qui convient parfaitement pour l'utilisation d'une pompe à chaleur.
  • L'invention procure finalement un procédé et une installation de récupération de solvant qui présentent des résultats exceptionnels dus au fait qu'on utilise un schéma d'évaporation isotherme du solvant couplé avec une pompe à chaleur récupérant les calories de condensation du solvant et les remontant à un niveau thermique suffisant pour qu'elles puissent être utilisées pour assurer la propre vaporisation du solvant.
  • Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit et illustré qui n'a été donné qu'à titre d'exemple.
  • C'est ainsi que le procédé selon l'invention peut parfaitement être incorporé dans les installations anciennes de récupération de solvant.

Claims (5)

1. Procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, dans lequel on effectue notamment une évaporation étagée du solvant suivant un ordre de pressions décroissantes, pour le séparer des hydrocarbures, caractérisé en ce que l'évaporation étagée du solvant est effectuée de façon sensiblement isotherme à une température comprise entre 100 et 200°C, et on effectue un échange de chaleur entre le solvant évaporé et au moins un fluide intermédiaire pour obtenir la condensation du solvant et récupérer sa chaleur de condensation, et ledit fluide intermédiaire, en phase gazeuse, est comprimé pour élever sa température et est ensuite utilisé pour réchauffer le mélange et réaliser lui-même l'évaporation étagée du solvant sans qu'un apport de chaleur extérieure pour effectuer cette évaporation soit nécessaire.
2. Installation pour la mise en oeuvre du procédé selon la revendication 1, et du type comprenant au moins deux ballons ou analogues d'évaporation successivement alimentés par une charge constituée par un mélange à séparer de solvant et d'hydrocarbures, caractérisée en ce qu'elle comprend au moins un générateur de vapeur (Gi, G2) effectuant la condensation du solvant, au moins un circuit (27, 13, 20) de transport du solvant évaporé reliant les ballons audit générateur, et au moins un circuit de fluide intermédiaire en phase gazeuse (104, 105, 106, 107, 109) muni d'au moins un compresseur (M) et reliant ledit générateur à au moins un échangeur (E4, E6, E7) disposé en amont de chaque ballon (B1, 82, B3).
3. Installation selon la revendication 2, comprenant trois ballons successifs d'évaporation du solvant. caractérisée en ce que les flux de solvant vaporisés (13, 20) sortant du deuxième et du troisième ballons (B2, B3) sont réunis (20a) avant de parvenir à un premier générateur de vapeur (G1), tandis que le flux de solvant vaporisé (9) sortant du premier ballon (Bl) parvient à un deuxième générateur de vapeur (62), les flux de solvant condensé (26, 28) sortant des deux générateurs précités étant réunis.
4. Installation selon la revendication 2 ou 3, caractérisée en ce que le flux de fluide intermédiaire en phase gazeuse (104) produit par les deux générateurs précités (G1, G2) alimente un échangeur (E7) en amont du troisième ballon (B3) puis se divise pour traverser deux échangeurs (E4, E6) en amont respectivement des premier (B1) et deuxième ballons (B2), et forme à nouveau un flux unique (111) traversant un échangeur (E2) de réchauffage de la charge (1) introduite dans l'installation.
5. Installation selon l'une des revendications 2 à 4, caractérisée en ce que le flux unique précité (111) est relié aux générateurs de vapeur (G1, 2).
EP87401232A 1986-06-05 1987-06-02 Procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, et installation comportant application de ce procédé Expired EP0251838B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8608132A FR2599750B1 (fr) 1986-06-05 1986-06-05 Procede de separation de solvant d'un melange de solvant et d'hydrocarbures, et installation comportant application de ce procede
FR8608132 1986-06-05

Publications (2)

Publication Number Publication Date
EP0251838A1 EP0251838A1 (fr) 1988-01-07
EP0251838B1 true EP0251838B1 (fr) 1989-08-23

Family

ID=9336044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401232A Expired EP0251838B1 (fr) 1986-06-05 1987-06-02 Procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, et installation comportant application de ce procédé

Country Status (7)

Country Link
US (1) US4830711A (fr)
EP (1) EP0251838B1 (fr)
DD (1) DD265333A5 (fr)
DE (1) DE3760476D1 (fr)
ES (1) ES2010709B3 (fr)
FR (1) FR2599750B1 (fr)
GR (1) GR3000296T3 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276089A (en) * 1937-06-26 1942-03-10 Union Oil Co Recovery of solvents from oils
FR1543961A (fr) * 1967-05-25 1968-10-31 Fives Lille Cail Installation pour la production d'eau douce à partir d'eau salée
FR1562830A (fr) * 1967-11-15 1969-04-11
US3607668A (en) * 1968-11-12 1971-09-21 Amf Inc Concentrated brine-incoming feed vapor compression desalination system
US4181577A (en) * 1974-07-18 1980-01-01 Auscoteng Pty. Ltd. Refrigeration type water desalinisation units
DE2600398C2 (de) * 1976-01-07 1985-01-10 Jakob Dr.-Ing. 8000 München Hoiß Verfahren und Vorrichtung zur Rohwasser-Destillation
US4177137A (en) * 1977-11-07 1979-12-04 Standard Oil Company Aromatics extraction process
US4214975A (en) * 1978-05-10 1980-07-29 The Lummus Company Solvent recovery process for processing of hydrocarbons
FR2490103B1 (fr) * 1980-09-12 1986-02-28 Inst Francais Du Petrole Utilisation d'evaporateur a film tombant en multiple effet pour la recuperation d'un compose organique leger a partir d'un melange dudit compose avec un compose organique lourd
US4390418A (en) * 1982-05-12 1983-06-28 Texaco Inc. Recovery of solvent in hydrocarbon processing systems

Also Published As

Publication number Publication date
DD265333A5 (de) 1989-03-01
US4830711A (en) 1989-05-16
EP0251838A1 (fr) 1988-01-07
FR2599750A1 (fr) 1987-12-11
DE3760476D1 (en) 1989-09-28
ES2010709B3 (es) 1989-12-01
GR3000296T3 (en) 1991-06-07
FR2599750B1 (fr) 1988-10-07

Similar Documents

Publication Publication Date Title
EP0178207B1 (fr) Procédé et installation de fractionnement cryogénique de charges gazeuses
CA1310579C (fr) Procede et installation de distillation d'air
EP0768502B1 (fr) Procédé et dispositif de liquéfaction et de traitement d'un gaz naturel
EP0783031B1 (fr) Procédé de déshydratation, de désacidification et de dégazolinage d'un gaz naturel, utilisant un mélange de solvants
EP2205920B1 (fr) Procede de liquefaction d'un gaz naturel avec fractionnement a haute pression
FR2466264A1 (fr) Procede et appareillage de separation de substances organiques liquides dissoutes de leurs melanges avec des solvants
CA2027071C (fr) Procede et installation de production d'oxygene gazeux a debit variable par distillation d'air
FR2703762A1 (fr) Procédé et installation de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel.
FR3072162A1 (fr) <P>PROCEDE DE RECUPERATION DE PROPANE ET D'UNE QUANTITE AJUSTABLE D'ETHANE A PARTIR DE GAZ NATUREL</P>
CA1309966C (fr) Procede de distillation avec recuperation d'energie par recompression de vapeur a l'aide d'un ejecteur
EP0251838B1 (fr) Procédé de séparation de solvant d'un mélange de solvant et d'hydrocarbures, et installation comportant application de ce procédé
EP0136926A1 (fr) Procédé et installation de distillation d'air au moyen d'une double colonne
EP0082042B1 (fr) Procédé de rebouillage par recompression de vapeurs
FR2547810A1 (fr) Procede continu pour extraire d'un courant de gaz naturel, a l'aide d'un solvant physique, de l'eau et des hydrocarbures plus lourds que le methane
EP0768106B1 (fr) Procédé de fractionnement d'un fluide contenant plusieurs constituants séparables, tel qu'un gaz naturel
EP3429717B1 (fr) Procédé de séparation chromatographique énergetiquement économe
EP0835921A1 (fr) Procédé de déshydratation et de dégazolinage d'un gaz, comportant un étage de refroidissement préliminaire
EP1409937B1 (fr) Procede de production de vapeur d'eau et de distillation d'air
WO2018087471A1 (fr) Procédé de séparation cryogénique d'un courant de gaz naturel
US11745118B1 (en) Mechanical vapor recompression solvent recovery
EP2654913B1 (fr) Procédé et appareil de condensation d'un premier fluide riche en dioxyde de carbone à l'aide d'un deuxième fluide
EP0066026A1 (fr) Procédé de concentration d'un produit froid et de préchauffage d'un fluide en circulation et installation pour sa mise en oeuvre
EP0098332A1 (fr) Procédé et installation de fermentation et de distillation en continu
BE477797A (fr)
FR3061276A1 (fr) Dispositif et procede de liquefaction d'un gaz naturel et navire comportant un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB GR IT NL

17P Request for examination filed

Effective date: 19880204

17Q First examination report despatched

Effective date: 19880725

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB GR IT NL

REF Corresponds to:

Ref document number: 3760476

Country of ref document: DE

Date of ref document: 19890928

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3000296

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010606

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010611

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010621

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010628

Year of fee payment: 15

Ref country code: ES

Payment date: 20010628

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020602

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050602