EP0250286B1 - Procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre - Google Patents

Procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre Download PDF

Info

Publication number
EP0250286B1
EP0250286B1 EP87401218A EP87401218A EP0250286B1 EP 0250286 B1 EP0250286 B1 EP 0250286B1 EP 87401218 A EP87401218 A EP 87401218A EP 87401218 A EP87401218 A EP 87401218A EP 0250286 B1 EP0250286 B1 EP 0250286B1
Authority
EP
European Patent Office
Prior art keywords
roof
slabs
roof slabs
installation according
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87401218A
Other languages
German (de)
English (en)
Other versions
EP0250286A1 (fr
Inventor
René André Marion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Charbonnages de France CDF
Original Assignee
Charbonnages de France CDF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Charbonnages de France CDF filed Critical Charbonnages de France CDF
Priority to AU74226/87A priority Critical patent/AU582499B2/en
Priority to PT85112A priority patent/PT85112B/pt
Publication of EP0250286A1 publication Critical patent/EP0250286A1/fr
Application granted granted Critical
Publication of EP0250286B1 publication Critical patent/EP0250286B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/22Methods of underground mining; Layouts therefor for ores, e.g. mining placers

Definitions

  • the invention relates to a new method of operating underground mines or quarries and a device for its implementation. It applies more particularly to heaps or ore veins of significant height.
  • the farms have a rising or falling slaughter front. With falling edges, slaughter conditions are easier while rising edges can pose safety concerns due to felling on the roof.
  • slaughter with backfilling is given by the document FR-1.313.646, which describes a method of slaughter in a vein, in a platorium deposit. or by erecting, by means of slaughtering devices and a movable wall of embankments which follows slaughtering under the action for example of traction winches.
  • the working face has an inclination of about 45 ° and the felling is done in the direction of the upper end by letting the ore descend by gravity.
  • the present invention aims to solve this problem by proposing, for heaps or ore seams of considerable height, a method of operating with a falling edge with caving, which is relatively simple and inexpensive, and which allows the felling and recovery full ore with great security.
  • this ceiling being substantially horizontal, it is divided into a plurality of ceiling zones supported independently of one another by a plurality of independent slabs juxtaposed side by side and supported by support means, so as to jointly form a protective roof against caving scree, and, as and when ore is extracted under this ceiling, we lightning strikes each of these zones step by step over a limited height by successively lowering each of the slabs from which ore has already been extracted, using for this purpose mechanical means of temporary support and lowering fixed on at least one removable chassis used successively for the different slabs.
  • the zones envisaged here are the portions of the vault individually supported by the aforementioned slabs (the latter are sized so that they can be lowered). It will be appreciated that the invention proposes to work under a blasted area, overcoming the prejudice of those skilled in the art as to what, a priori, safety standards allow.
  • the slabs are supported on walls or pillars of ore and the ore is extracted, alternately, between the walls or pillars and at the top thereof (while supporting artificially these slabs).
  • the slabs rest on artificial pillars and the ore is extracted alternately, between these pillars and under them.
  • These artificial pillars are in practice linked to the slabs; they are advantageously movable transversely to the operating direction.
  • slabs are placed end to end or side by side.
  • the tiles are preferably aligned in rows and rows; the progression of slabs removal and lowering is preferably carried out either row by row or row by row.
  • the spacing of the walls or pillars is, at least in certain places, greater than the width of operating machines so as to allow circulation.
  • the slabs are placed in lateral support against the wall, for example by bracing, which makes it possible to extract the ore on the ground over the entire width of the gallery .
  • the invention also proposes, for the implementation of the aforementioned method, a support installation for the exploitation of underground mines and quarries by descending descents under a ceiling, characterized in that it comprises a roof for protection against substantially horizontal caving-in scree formed of a plurality of independent elementary slabs juxtaposed side by side, provided with support means, as well as mechanical means of support and lowering at a controllable height, adapted to the individual lowering step by step of these slabs, these means for supporting and lowering slabs being fixed on one or more removable frames which are used successively for the different slabs
  • the support means are pillars or walls made of ore to be exploited when the latter has sufficient strength.
  • the support means are artificial. These are fixed pillars integral with the slabs, or linked to the slabs with the possibility of translation along the latter. These pillars are in practice, like slabs, in reinforced concrete.
  • slabs can also be supported by a plurality of horizontal jacks bearing at their ends laterally against a vertical shoulder of the slabs and the walls themselves; these cylinders remain in practice in place while ore is extracted across their entire width.
  • the slabs can also be formed from at least two articulated arch elements forming a variable angle arch, braced at the heels, advantageously supplemented by two lateral or extreme elements, articulated to the vault elements, and intended to go along the walls.
  • Horizontal cylinders are provided for laterally pressing the end elements against the wall.
  • Spaces are maintained between the slabs as well as between the slabs and the side walls of the exploited cavity, so that the descent of each slab is carried out with ease. Devices prevent scree from passing through these spaces.
  • a flexible wire mesh is advantageously interposed between the roof formed by all of the slabs and the vault of caving scree which it supports.
  • shields supported by deformable triangles are arranged in interstices between adjacent slabs; preferably for a given gap between two slabs, the shield is carried by that of the slabs which is intended to be lowered first while the other carries a redent intended to press down on this shield when lowering this another slab.
  • this plurality of elementary slabs comprises at least one alignment (row) whose support means are sufficiently spaced to allow the passage of operating machines.
  • the support and controlled lowering means preferably comprise hydraulic cylinders or cushions which act advantageously on the slabs by means of distribution plates, or on the pillars by means of fittings with which they are fitted.
  • the support and lowering means act on the extreme elements, for example by means of transverse rails coming under horizontal spans of these elements.
  • the thickness of the slabs and the geometry of the pillars are calculated so that the assembly can support the mass of the caving scree.
  • Sensors are advantageously provided, either on the slabs (deflection measurement) or between slabs and pillars (pressure sensors) to enable the load supported by the slabs to be monitored so as to verify that it remains below the limits of use of slabs.
  • Figures 1 to 26 show various alternative embodiments of a support installation for the exploitation of ore (coal, metallic ores ...) by descending removals and with progressive, controlled and localized caving.
  • the extraction can be done by a classic technique (cutting, planing, shooting ...), the felling front progressing from one slab to another.
  • the clearance height is an important parameter but the operator is completely in control of it as long as he has an appropriate slaughtering machine.
  • Figures 1 and 2 show an operating site according to the invention in which a plurality of tiles D1 ... are arranged side by side. It is a narrow site and the slabs, generally parallelepiped, are arranged transversely.
  • two vertical galleries 11 and 12 intended for the air intake and the personnel access, on the one hand, and the ore removal and the air return, on the other hand .
  • These slabs jointly support a mass 13 consisting of caving scree; between these slabs and the caving scree is interposed a flexible metallic trellis 14 which is fixed to the neighboring grounds 15 (called wall) by anchor bolts 16.
  • FIGS 3 and 4 schematically illustrate an intermediate stage of operation in which a central cutout 1, between two pillars P, has already been extracted over the entire length of the site (variant not shown, this cutout 1 is extracted so discontinuous, slab by slab, alternating with side cuts 2).
  • the lateral removals, under the P pillars, are extracted, slab by slab, each slab being lowered from the step of removal, as and when, with controlled and localized caving.
  • the lateral cuts 2 which have been extracted under the pillars of the slabs up to Dp-1, are being extracted under the pillars of the slab Dp.
  • a support device (not shown), preferably hydraulic, maintains the slab Dp during this extraction. The device then ensures the descent of the slab Dp and of the pillars P which are integral with it at the level of the preceding slabs.
  • the pillars P ⁇ are brought as close together as possible; we first extract the side cuts 1 over the entire length of the site.
  • the pillars can be brought back to close configuration beforehand and repeat the above operations.
  • the process is carried out in reverse, starting by extracting the central removal 1 ⁇ (FIG. 5C) then, after bringing the pillars together and lowering the slab, extracting the lateral removals 2 ⁇ (FIG. 5D).
  • FIGS. 6A and 6B illustrate an operating variant in which a central cutout is extracted first as before.
  • Each slab is here equipped with support and lowering devices 17.
  • the extraction of the lateral removals (for reasons of clarity, the "front" pillars of the slabs have been removed) is underway under the pillars of slab D4 which, like the previous slab D3 is supported on its supports 17.
  • the slab D3 Before starting to extract the ore under the pillars of slab D5, ( Figure 6C), while this slab on its support and lowering means 17, the slab D3 is lowered by causing a caving above it (FIG. 6D). There is thus a gap of a slab between the last lowered slab and the slab under which ore is extracted. This can facilitate extraction maneuvers by increasing the space available.
  • Figure 7 shows side by side three rows of tiles Dp, 1, Dp, 2, Dp, 3 surmounted by the same protective trellis.
  • FIG. 8 presents, seen from above, four rows of tiles Dp, 1 to Dp, 4, defining a succession of rows of 4 tiles.
  • the progress of the removals can be done row of tiles by row of tiles, or rows of tiles by row of tiles.
  • a row of special tiles D0.1, to D0.4, whose pillars P ⁇ are divided, is placed from place to place.
  • Figures 9 to 16 show alternative embodiments in which the slabs Dp rest on walls or pillars M constituted by the ore itself to be exploited.
  • the removals are in this case located at different levels (see Figure 9).
  • the central cutout 1 between the pillars M is extracted first. Then the tiles are successively supported on their supports 17 and ore is extracted at the top of the pillars M (see Figures 10 and 11, in the case of a narrow site).
  • the walls of the vein are not vertical, the same principle applies, the descent of the slabs having to be accompanied by a horizontal translation (see Figure 12).
  • the tiles Dp are inclined so as to be substantially perpendicular to the walls of the vein (FIG. 13).
  • Figures 14 and 15 show a similar site of greater width, with several parallel rows of tiles Dp, 1 to Dp, 4.
  • FIG. 16 represents a variant of FIG. 14 in which the slabs of the same row rest on separate walls or pillars, freeing up corridors under and between each slab (the number of corridors C1 to C7 greater than that of FIG. 14, for a lower number of rows of tiles).
  • This protection is alternatively obtained by means of shields 20 supported by deformable triangles 21 shown in FIG. 17.
  • the slab Dp descending in second, comprises at 22 a step causing the descent of the vertex B of the articulated triangle and thus ensuring the sealing of the device.
  • a device (not shown) is advantageously provided for protecting the empty spaces between slabs and walls of the exploited cavity and for supporting the roof.
  • This device avoids the eruption of scree in the site and allows the method to be adapted to changes in width of the site.
  • the pressure of the scree in contact with the wall of the site is generally low due to the presence of the slabs which support the entire load.
  • This device provides protection by simply advancing extensions through pins fixed in the slab, these extensions being loaded with a wooden or iron mattress. These easily advance or retractable extensions make it possible to adapt to variations in width of the site. A classic support by props can help during a strong extension of these extensions.
  • This device can be manually controlled (displacement of the extensions by the force of the wrist) or hydraulically controlled.
  • the arrangement of the tiles in rows and rows allows to obtain on the site a division into rooms and pillars with overlaps. It is therefore possible to use for the mining of the ore the materials known in these methods of chambers and pillars (shearers for example).
  • slabs (or beams) 16 meters long, 2 meters wide and 1.5 m high are used.
  • the corresponding pillars are cubic with a side of 2 meters, and are spaced 7 meters apart.
  • Such a reinforced concrete slab can be designed to support 200,000 kg / m2, which conventionally corresponds to around 80 m of scree.
  • the cylinders constituting the support and lowering means 17 have for example a stroke of 1.6 m, a sliding load of 200 tonnes and a lifting effort of 170 t.
  • the complete device can include 6 to 8 cylinders.
  • Figures 18 to 20 show a slab articulated in four successive elements 31, 32, 33 and 34 articulated to each other, step by step.
  • This is a variant of slabs (in concrete concrete) for the case of sloping veins with a thickness of 2.8 - 3 m. up to 8 m. for an orientation close to the vertical, or even more for veins of inclination less than 45 ° relative to the vertical.
  • the extreme elements 31 and 34 are in practice substantially parallel.
  • the element 31 is arranged along the roof 35 of the vein 36 of ore while the element 34 is disposed along the wall 37 of this vein.
  • These elements called “roof element” and “wall element” are adapted to come to bear on the ore by their lower ends 31A and 34A.
  • the intermediate elements 32 and 33 jointly form a vault whose opening angle or is all the greater as the width or power of the ore vein is important, as appears from the comparison of Figures 19 and 20
  • This variable opening of the vault makes it possible to follow the variations in width of the vein.
  • this angle is 180 ° and the arch is completely flattened.
  • caving scree 38 which hangs over the vault tends to open the angle of the vault, by flattening it, causing a lateral push from the lower edges 32A and 33A of the vault elements towards the roof and the wall, respectively, aimed at ensuring a transverse anchoring, or bracing, of the slab on the roof and the wall (silo effect); the extreme elements result in an energetic plating against the roof and the wall which may suffice, if necessary, to allow the retention of the slab even if the ore is felled under the feet 31A and 34A of these extreme slabs.
  • a spacer cylinder 40 (only shown diagrammatically by its line of action in FIGS. 19 and 20), can however be added to reinforce this transverse cladding.
  • FIGS. 18 and 19 or 20
  • any articulation of two constituent elements is formed of two side knuckles (hinge elements) integral with one of the elements, framing a central knuckle integral with the other of these two elements.
  • the joints are obtained by nesting an odd number of knuckles, on the one hand, and an even number of knuckles, on the other hand, to satisfy an overall symmetry of the elements with respect to a vertical plane perpendicular to the axes of articulations. There may also be knuckles of equal number on each element.
  • the knuckles of a joint are held coaxial by round bars 41, of steel for example, materializing the axes of articulation.
  • each of the extreme elements comprises a central knuckle 31B or 34B, pierced with a bore 42 for the passage of the articulation bars 41 while the arch elements 32 and 33 each comprising a pair of lateral knuckles 44 adapted to frame the central knuckles 31B and 34B, and pierced with bores 43 for the passage of the bars 41.
  • these lateral knuckles form the lower bearing edges 32A and 33A of the arch elements.
  • the element 32 further comprises, opposite its end 32A, a pair of knuckles 45, with bores 46, adapted to frame a central knuckle 47 pierced with a bore 48, formed on the element 33 to l opposite of its end 33A.
  • a central recess 49 of triangular shape, is provided in the element 32 between the roots of knuckles 45 while similar recesses 50 are provided on the element 33 on either side of the root of the central knuckle 47.
  • These recesses allow nesting of the roots of the knuckles: this nesting is almost maximal in FIG. 19, the roots of the knuckles occupying almost the entire volume recesses.
  • the diameter of the knuckles is greater than the thickness of the elements 31 and 34, which in particular facilitates these rotations, and reduces the necessary recesses.
  • the extreme elements 31 and 34 have, near the knuckles 31B and 34B, zones 31C and 34C thicker than their lower ends, adapted to resist the mechanical stresses appearing near these knuckles in service.
  • the plane containing the articulations of the end elements 31 and 34 to the arch elements 32 and 33 prefferably be generally perpendicular to the roof 35 and to the wall 37. It is possible to provide for this purpose extreme elements of different lengths, adapted to bear, by their advantageously bevelled lower ends, on an approximately horizontal ground: the extraction of the ore in this ground can thus be done by horizontal layers in spite of the slope of the vein 36.
  • pins 51 are provided on the side knuckles of the arch elements, for the attachment of temporary jacks, represented by their axes 52, for assisting in the descent of the slabs.
  • Networks of transverse bores 53 are advantageously provided in the end elements 31 and 34, to allow, in the case if necessary, bolting of these elements in the roof and the wall.
  • Figures 18, 19 and 20 show square arrays of bores 53 of slightly different designs.
  • the elements For example, for a slightly inclined vein (for example 30 ° relative to the vertical), 8 meters thick, the elements have for example the same width of 1.5 m. with 0.5 m knuckles. thick. Elements 32 and 33 have a length of 4.9 m. (including knuckles), and elements 31 and 34 have respective lengths of 6.2 and 4 meters. The width of the tiles may even be less (0.8 to 1 m, for example).
  • a plurality of articulated slabs are placed side by side, and ore is extracted step by step under each of them.
  • This extraction can be done under the ends 31A and 34A of the extreme slabs, as long as the lateral anchoring of the slab on the wall walls (roof and wall) is sufficient.
  • the jack 40 is provided to consolidate this anchoring by applying a separation force between the roof and the wall, perpendicular to them (hence the advantage that the joints 31-32 and 33-34 are in a plane perpendicular to those -this); however, it can sometimes be suppressed, or even neutralized (at least in the absence of extraction) when the caving scree is correctly distributed on the vault 32-33. If necessary additional jacks (not shown) can be mounted on the slab, in practice under the jack 40, to further strengthen the support of the extreme elements on the wall and the roof.
  • the latter is lowered by any appropriate means: the lateral bearing force is reduced and the descent of the slab is controlled along the wall and the roof.
  • one of course begins by reducing the spacing thrust applied by the jack 40, and the complementary jacks, between the elements 31 and 34. It is also possible, thanks to the jack 52, to cause a bringing together of the lower ends 32A and 33A of the arch elements.
  • This device is mobile, and preferably self-propelled and equipped with tires.
  • the descent of the slab can be controlled by means of jacks removably attached to the arch elements of the slab, by fittings provided in the slab when of his confection.
  • FIGS 21 and 22 illustrate, by way of example and partially, a mobile device 55 without traction arrangement.
  • This device comprises a movable frame 56, vertical cylinders 57 supporting sleepers 58 on which end plates come to bear by means of recesses 59 provided for this purpose; horizontal cylinders 60 are also provided for the lateral anchoring of the device on the slabs framing those during descent.
  • the frame 56 is completed with a similar frame next to it, for the descent of the other extreme element of the slab.
  • FIG. 23 illustrates in section a variant of an articulated slab made definitively flat, for the case for example where the width of the vein becomes too large.
  • the main difference between this slab 61 and that of FIGS. 18 to 20 lies in the presence of transverse irons 63 formed in the arch elements during their preparation. Reinforcement bars 63 are hung on these transverse bars, on each side of the axis 41 of articulation of the arch, the latter having been laid flat. Maintaining the vault in a horizontal configuration can be ensured by coming into abutment with possible confrontation surfaces provided on the vault elements and / or by pressing the articulation zone of the vault on the reinforcement bars. We then proceed to formwork these irons 63 to stiffen the slab. The extreme elements can then be removed, so as to have only one horizontal slab.
  • Such a monobloc slab can be laid in support on appropriate support means (ore wall or concrete pillars).
  • the lateral anchoring of the slabs on the wall can also be done by means of piston rods which come directly to anchor in the wall, as is shown in FIGS. 24 to 26 which represent monobloc slabs 71 having cavities 72 of where laterally run channels 73.
  • a slab 71 is supported by low walls 74 and 75 of ore and is supported on the left against a hanging wall 76.
  • the cavity 72 In the cavity 72 are cylinders 77 whose cylinders 77A are supported against the left wall of the cavity and whose pistons 77B are extended by pins 78 intended to pass through the channels 73 and to come into abutment against the wall 79.
  • These jacks are supplied with fluid by flexible pipes, not shown.
  • three jacks 77 can be provided at each end of each slab put into operation, the time to cut down the ore located at the top of the walls 74 and 75.
  • a carriage 80 fitted with wheels comprises a support structure 82, movable in height under the action of jacks 81 adapted to come to rest on the ground for reasons of stability, carrying cradles 83 for groups of transverse jacks 77 and rails 84 adapted to come to bear under the slabs to allow support and guidance downhill.
  • the tiles for example, are 7 m long. a width of 7.5 m. and a 0.5 m cavity. Depth.
  • the bottom of the gallery is first cut down, then the top of the gallery.
  • the latter Before cutting down the ore at the top of the walls supporting a slab (here two slabs), the latter is placed in lateral support by the installation of jacks 77; the top of the minerals is cut down (most often the cart 80 is removed for reasons of space), then the cart 80 is brought back and the slab is supported by the rails 84 while the pressure in the jacks 77 is released; the descent of the slabs is controlled by the cylinders 81. The operation is then repeated for the slab (s) immediately to the right.
  • the jacks 77 all act in the same direction by pressing the slab towards one hanging wall and pins towards the other hanging wall.
  • the jacks are arranged head to tail, with pins, protruding through channels 73 formed on either side of the central cavity, each side of the slab whose walls of the central cavity take up the spacing forces.
  • the cylinders 40 for plating the end elements against the wall can be replaced by a plurality cylinders individually pressing one end element against a wall, by pressing directly on the other wall, through the opposite end element.
  • Such jacks can, for example, act on the flared part of an end element (near thick areas 31C or 34C) and pass through the end element opposite by means of a recess 29 (see FIG. 22).
  • Such individual plating means make it possible, for example, to lower the opposite end elements alternately, one end element remaining fixed while the other descends, and vice versa. The extraction on the ground is then done alternately, sometimes along one wall, sometimes along the other wall.

Description

  • L' invention concerne un nouveau procédé d'exploitation de mines ou carrières souterraines et un dispositif pour sa mise en oeuvre. Elle s'applique plus particulièrement aux amas ou filons de minerais de hauteur importante.
  • Pour les gisements de ce type, les exploitations sont à front d'abattage montant ou descendant. Avec les fronts descendants, les conditions d'abattage sont plus faciles tandis que les fronts montants peuvent poser des problèmes de sécurité du fait de l'abattage au toit.
  • Plusieurs solutions à front descendant ont été proposées, mais elles ne sont pas entièrement satisfaisantes.
  • C'est ainsi que les exploitations "sous plancher souple" ne se sont guère développées à cause des difficultés d'exploitation et des problèmes de sécurité qu'elles posent. Les exploitations par soutirage ne permettent pas une récupération complète du minerai et demandent des travaux de préparation importants.
  • On a aussi proposé de constituer une dalle fixe de béton ancrée dans les épontes (c'est-à-dire le terrain entourant le filon de minerai) et d'extraire une tranche de minerai sous cette dalle, puis de répéter l'opération à des profondeurs croissantes avec formation les unes sous les autres de dalles fixes successives à l'abri desquelles on extrait le minerai : les dalles restent à demeure et sont abandonnées au fur et à mesure de l'exploitation. Une telle pratique est coûteuse à cause de la confection des dalles successives et n'est applicable qu'à des filons d'épaisseur restreinte ; la tenue des épontes au droit du chantier d'exploitation est compromise par les contraintes induites par les dalles restées en place à l'amont de celui-ci.
  • Il n'existe donc pas à ce jour de procédé entièrement satisfaisant pour les exploitations qui doivent se développer sur une certaine hauteur.
  • On distingue par ailleurs les exploitations par remblayage et les exploitations par foudroyage.
  • Bien qu'il ne s'agisse pas d'une exploitation à enlevures descendantes, un exemple d'abattage avec remblayage est donné par le document FR-1.313.646, qui décrit un procédé d'abattage en veine, dans un gisement en plateure ou en dressant, au moyen d'appareils d'abattage et d'une paroi mobile de remblais qui suit l'abattage sous l'action par exemple de treuils de traction. Le front de taille a une inclinaison de 45° environ et l'abattage se fait en direction de l'extrémité supérieure en laissant descendre le minerai par gravité.
  • La pratique du foudroyage, qui consiste à laisser s'ébouler les terrains qui surplombent le minerai exploité, est plus économique que la pratique du remblayage qui consiste à substituer un matériau au minerai exploité.
  • Il paraît donc souhaitable de chercher à combiner l'exploitation descendante avec la technique du foudroyage.
  • La présente invention vise à résoudre ce problème en proposant, pour les amas ou filons de minerais de hauteur importante, un procédé d'exploitation à front descendant avec foudroyage, qui soit relativement simple et peu coûteux, et qui permette l'abattage et la récupération intégrale du minerai avec une grande sécurité.
  • Elle propose à cet effet un procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes sous un plafond, caractérisé en ce que, ce plafond étant sensiblement horizontal, on le divise en une pluralité de zones de plafond soutenues indépendamment les unes des autres par une pluralité de dalles indépendantes juxtaposées côte à côte et soutenues par des moyens de soutien, en sorte de former conjointement un toit de protection contre des éboulis de foudroyage, et, au fur et à mesure que l'on extrait du minerai sous ce plafond, on foudroie individuellement de proche en proche lesdites zones sur une hauteur limitée par abaissement successivement de chacune des dalles sous laquelle on a déjà extrait du minerai, en utilisant pour ce faire des moyens mécaniques de support temporaire et d'abaissement fixés sur au moins un châssis amovible utilisé successivement pour les différentes dalles.
  • Cela permet un contrôle satisfaisant du foudroyage qui est compatible avec les exigences de sécurité. Les zones envisagées ici sont les portions de la voûte supportées individuellement par les dalles précitées (ces dernières sont dimensionnées en sorte de pouvoir être abaissées). On appréciera que l'invention propose de travailler sous une zone foudroyée, en surmontant le préjugé de l'homme de l'art quant à ce que permettent, a priori, les normes de sécurité.
  • Il est important de noter que, lors de cet abaissement, la masse des éboulis résultants reste faible en raison de l'effet de voûte induit dans la masse globale des éboulis de foudroyage par la présence des dalles avoisinantes qui restent fixes. Cette propriété permet le choix, pour l'abaissement successif des dalles, de dispositifs (de préférence hydrauliques) dont les caractéristiques (structure et fonctionnement) autorisent une fabrication et une application industrielles.
  • On appréciera que le procédé d'exploitation selon l'invention conduit à une productivité élevée car elle rend possible une mécanisation de l'ensemble des opérations d'exploitation. D'autre part les investissements sont maintenus à un niveau raisonnable puisque les dalles descendent avec le chantier d'exploitation.
  • Selon un premier mode de mise en oeuvre de l'invention, les dalles prennent appui sur des murs ou des piliers de minerai et on extrait le minerai, en alternance, entre les murs ou piliers et au sommet de ceux-ci (en soutenant alors artificiellement ces dalles).
  • Selon un autre mode de mise en oeuvre de l'invention, les dalles reposent sur des piliers artificiels et on extrait le minerai en alternance, entre ces piliers et sous ceux-ci. Ces piliers artificiels sont en pratique liés aux dalles ; ils sont avantageusement déplaçables transversalement au sens d'exploitation.
  • Dans des chantiers étroits des dalles sont disposées bout à bout ou côte à côte. Pour les chantiers de plus grande largeur les dalles sont de préférence alignées en files et en rangées ; la progression des enlevures et des abaissements de dalles s'effectue de préférence, soit file par file, soit rangée par rangée.
  • L'écartement des murs ou piliers est, au moins en certains endroits, supérieur à la largeur d'engins d'exploitation de manière à permettre la circulation.
  • Selon encore un autre mode de réalisation, plus particulièrement destiné aux veines étroites, on met les dalles en appui latéral contre les épontes, par exemple par arc-boutement, ce qui permet d'extraire le minerai au sol sur toute la largeur de la galerie.
  • L'invention propose également pour la mise en oeuvre du procédé précité, une installation de soutènement pour exploitation de mines et carrières souterraines par enlevures descendantes sous un plafond, caractérisée en ce qu'elle comporte un toit de protection contre des éboulis de foudroyage sensiblement horizontal formé d'une pluralité de dalles élémentaires indépendantes juxtaposées côte à côte, munies de moyens de soutien, ainsi que des moyens mécaniques de support et d'abaissement à hauteur contrôlable, adaptés à l'abaissement individuel de proche en proche de ces dalles, ces moyens de support et d'abaissement de dalles étant fixés sur un ou plusieurs châssis amovibles qui sont utilisés successivement pour les différentes dalles
       Selon un premier mode de réalisation de l'invention, les moyens de soutien sont des piliers ou murs en minerai à exploiter lorsque ce dernier présente une résistance suffisante.
  • Selon un autre mode de réalisations, les moyens de soutien sont artificiels. Ce sont des piliers fixes et solidaires des dalles, ou liés aux dalles avec possibilité de translation le long de celles-ci. Ces piliers sont en pratique, comme les dalles, en béton armé.
  • Dans le cas de veines étroites, des dalles peuvent aussi être soutenues par une pluralité de vérins horizontaux prenant appui à leurs extrémités latéralement contre un épaulement vertical des dalles et les épontes elles-mêmes; ces vérins restent en pratique en place pendant qu'on extrait du minerai sous toute leur largeur.
  • Dans de telles veines étroites, au lieu d'être monobloc, les dalles peuvent aussi être formées d'au moins deux éléments de voûte articulés formant voûte à angle variable, arc-boutée aux épontes, avantageusement complétés par deux éléments latéraux ou extrêmes, articulés aux éléments de voûte, et destinés à longer les épontes. Des vérins horizontaux sont prévus pour plaquer latéralement les éléments extrêmes contre les épontes.
  • On appréciera que de telles dalles permettent de tirer parti du poids des éboulis de foudroyage pour augmenter la sécurité du travail sous les dalles dans le cas de veines étroites tout en permettant de suivre aisément des variations de largeur de ces veines étroites.
  • Des espaces sont maintenus entre les dalles ainsi qu'entre les dalles et les parois latérales de la cavité exploitée, de manière à ce que la descente de chaque dalle s'effectue en toute facilité. Des dispositifs permettent d'éviter que les éboulis ne passent à travers ces espaces.
  • Un treillis métallique souple est avantageusement interposé entre le toit formé par l'ensemble des dalles et la voute d'éboulis de foudroyage qu'il soutient. En variante, des boucliers supportés par des triangles déformables sont disposés dans des interstices entre des dalles adjacentes ; de préférence pour un interstice donné entre deux dalles, le bouclier est porté par celle des dalles qui est destinée à être abaissée en premier tandis que l'autre porte un redent destiné à appuyer vers le bas sur ce bouclier lors de l'abaissement de cette autre dalle.
  • De préférence cette pluralité de dalles élémentaires comporte au moins un alignement (rangée) dont les moyens de soutien sont suffisamment écartés pour permettre le passage d'engins d'exploitation.
  • Les moyens de support et d'abaissement contrôlé comportent de préférence des vérins ou coussins hydrauliques agissant avantageusement sur les dalles par l'intermédiaire de plaques de répartition, ou sur les piliers par l'intermédiaire de ferrures dont ils sont dotés. Dans le cas de dalles articulées, les moyens de support et d'abaissement agissent sur les éléments extrêmes, par exemple au moyen de rails transversaux venant sous des portées horizontales de ces éléments.
  • L'épaisseur des dalles et la géométrie des piliers sont calculées pour que l'ensemble puisse supporter la masse des éboulis du foudroyage. Des capteurs sont avantageusement prévus, soit sur les dalles (mesure de la flèche) soit entre dalles et piliers (capteurs de pression) pour permettre de suivre la charge supportée par les dalles en sorte de vérifier que celle-ci reste en deçà des limites d'utilisation des dalles.
  • Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple non limitatif, en regard des dessins annexés sur lesquels :
    • la figure 1 est une vue en coupe longitudinale d'un chantier d'exploitation, selon l'invention, d'un filon vertical de minerai,
    • la figure 2 est une vue en coupe transversale,
    • les figures 3 et 4 sont des vues en coupe transversale et longitudinale d'un chantier analogue, au cours de l'exploitation selon le procédé de l'invention,
    • les figures 5A à 5D sont des vues latérales d'une dalle à piliers latéralement déplaçables en 4 phases successives d'extraction,
    • les figures 6A à 6D sont des vues en coupe longitudinale d'un chantier analogue à celui des figures 1 à 4 illustrant 4 phases successives d'exploitation selon une variante du procédé de l'invention,
    • la figure 7 est une vue en coupe transversale d'un chantier de grande largeur,
    • la figure 8 est une vue de dessus d'un autre chantier de grande largeur,
    • la figure 9 est une vue en élévation latérale d'une dalle supportée par des piliers de minerai dans un chantier étroit,
    • la figure 10 en est une vue simplifiée dans un stade intermédiaire d'extraction,
    • la figure 11 est une vue en coupe longitudinale dans le stade intermédiaire de la figure 10,
    • les figures 12 et 13 sont des variantes de la figure 9,
    • les figures 14 et 15 sont des vues respectivement en coupe transversale, et en vue de dessus d'un chantier de grande largeur dans lequel les dalles reposent sur du minerai à exploiter,
    • la figure 16 est une variante de la figure 14,
    • la figure 17 est une vue en coupe transversale partielle de deux dalles adjacentes munies d'un bouclier de protection.
    • la figure 18 est une vue éclatée de dessus des quatre éléments constitutifs d'une dalle articulée selon l'invention;
    • la figure 19 est une vue de côté d'une telle dalle dans une veine de minerai fortement pentue;
    • la figure 20 est une autre vue de côté de cette dalle, dans une veine analogue de plus grande puissance;
    • la figure 21 est une vue schématique partielle en élévation d'un dispositif de soutien et de guidage en descente d'une dalle articulée selon une variante de réalisation;
    • la figure 22 est une vue en perspective de ce dispositif de guidage en descente;
    • la figure 23 est une vue de côté d'une autre dalle selon l'invention selon une configuration complètement aplatie;
    • la figure 24 est une vue en coupe transversale d'une galerie étroite dont la voûte est formée de dalles planes munies de vérins de soutien latéral;
    • la figure 25 est une vue en coupe longitudinale montrant un chariot élévateur de mise en place des vérins et de support et d'abaissement des dalles; et
    • la figure 26 est une vue de cette galerie en coupe longitudinale à plus petite échelle montrant plusieurs dalles côte à côte.
  • Les figures 1 à 26 représentent diverses variantes de réalisation d'une installation de soutènement pour l'exploitation de minerai (charbon, minerais métalliques...) par enlevures descendantes et avec foudroyage progressif, contrôlé et localisé. L'extraction peut se faire par une technique classique (havage, rabotage, tir...), le front d'abattage progressant d'une dalle à une autre. La hauteur d'enlevure est un paramètre important mais l'exploitant en est totalement maître du moment qu'il dispose d'un engin d'abattage approprié.
  • Les figures 1 et 2 représentent un chantier d'exploitation conforme à l'invention dans lequel une pluralité de dalles D1... sont disposées côte à côte. Il s'agit d'un chantier étroit et les dalles, globalement parallélépipédiques, sont disposées transversalement.
  • Ces calles D1... sont soutenues par des piliers P ici disposés transversalement aux dalles en sorte de dégager un ou plusieurs couloirs ou files C1, C2... Ces piliers reposent sur un amas 10 de minerai à exploiter.
  • Aux extrémités du chantier sont ici représentées deux galeries verticales 11 et 12 destinées à l'entrée d'air et l'accès du personnel, d'une part, et l'évacuation du minerai et le retour d'air, d'autre part.
  • Ces dalles supportent conjointement une masse 13 constituée par des éboulis de foudroyage ; entre ces dalles et les éboulis de foudroyage est interposé un treillis métallique souple 14 qui est fixé aux terrains avoisinants 15 (appelés épontes) par des boulons d'ancrage 16.
  • On désigne par Dp-1, Dp, Dp+1... des dalles successives quelconques de la pluralité de dalles D1...
  • Les figures 3 et 4 illustrent de façon schématique un stade intermédiaire d'exploitation dans lequel une enlevure centrale 1, entre deux piliers P, a déjà été extraite sur toute la longueur du chantier (en variante non représentée, cette enlevure 1 est extraite de façon discontinue, dalle par dalle, en alternance avec les enlevures latérales 2).
  • Les enlevures latérales, sous les piliers P, sont extraites, dalle par dalle, chaque dalle étant descendue du pas de l'enlevure, au fur et à mesure, avec foudroyage contrôlé et localisé.
  • A la figure 4, les enlevures latérales 2 qui ont été extraites sous les piliers des dalles jusqu'à Dp-1, sont en cours d'extraction sous les piliers de la dalle Dp. Un dispositif de support (non représenté), de préférence hydraulique, maintient la dalle Dp pendant cette extraction. Le dispositif assure ensuite la descente de la dalle Dp et des piliers P qui en sont solidaires au niveau des dalles précédentes.
  • Pour des raisons de commodité d'extraction sous les piliers, ceux-ci sont avantageusement translatables latéralement ainsi qu'il apparaît aux figures 5A à 5D.
  • A la figure 5A les piliers Pʹ sont rapprochés au maximum ; on extrait d'abord les enlevures latérales 1 sur toute la longueur du chantier.
  • On écarte ensuite les piliers jusqu'au dessus des enlevures latérales extraites puis on abaisse les dalles ; les piliers P'bordent ainsi une enlevure centrale 2 que l'on extrait ensuite (figure 5B).
  • Pour effectuer la phase suivante d'extraction, on peut au préalable ramener les piliers en configuration rapprochée et répéter les opérations précitées.
  • De manière préférée, on procède de manière inverse, en commençant par extraire l'enlevure centrale 1ʹ (figure 5C) puis, après rapprochement des piliers et descente de la dalle, extraction des enlevures latérales 2ʹ (figure 5D).
  • Les cycles d'extraction alternent ainsi, conformément aux figures 5A et 5B, ou aux figures 5C et 5D.
  • Les figures 6A et 6B illustrent une variante d'exploitation dans laquelle une enlevure centrale est extraite en premier comme précédemment. Chaque dalle est ici équipée de dispositifs de support et d'abaissement 17. Aux figures 6A et 6B, l'extraction des enlevures latérales (pour des raisons de clarté, on a supprimé les piliers "avant" des dalles) est en cours sous les piliers de la dalle D4 qui, comme la précédente dalle D3 est en appui sur ses supports 17. Avant d'entamer l'extraction du minerai sous les piliers de la dalle D5, (figure 6C), tandis qu'on met en appui cette dalle sur ses moyens 17 de support et d'abaissement, on abaisse la dalle D3 en provoquant un foudroyage au-dessus de celle-ci (figure 6D). Il y a ainsi un écart d'une dalle entre la dernière dalle abaissée et la dalle sous laquelle on extrait du minerai. Cela peut faciliter les manoeuvres d'extraction par augmentation de l'espace disponible.
  • En variante il existe un nombre réduit d'ensembles de vérins hydrauliques 17 montés sur un châssis mobile 18 (voir la dalle D1). Ces vérins agissent de préférence sur les dalles par l'intermédiaire d'une plaque de répartition 19.
  • La figure 7 présente côte à côte trois files de dalles Dp,1, Dp,2, Dp,3 surmontées par un même treillis de protection.
  • La figure 8 présente, vues de dessus, quatre files de dalles Dp,1 à Dp,4, définissant une succession de rangées de 4 dalles.
  • La progression des enlevures peut s'effectuer file de dalles par file de dalles, ou rangées de dalles par rangée de dalles. Pour faciliter la circulation des engins d'exploitation d'une file à l'autre, on implante de place en place une rangée de dalles particulières D0,1, à D0,4 dont les piliers Pʹ sont divisés.
  • Les figures 9 à 16 présentent des variantes de réalisation dans lesquelles les dalles Dp reposent sur des murs ou piliers M constitués par le minerai même à exploiter. Les enlevures sont dans ce cas situées à des niveaux différents (voir figure 9).
  • L'enlevure centrale 1 entre les piliers M est extraite en premier. On met ensuite successivement les dalles en appui sur leurs supports 17 puis on extrait du minerai à la partie haute des piliers M (voir figures 10 et 11, dans le cas d'un chantier étroit).
  • Si les parois du filon ne sont pas verticales, le même principe s'applique, la descente des dalles devant s'accompagner d'une translation horizontale (voir figure 12). En variante, les dalles Dp sont inclinées en sorte d'être sensiblement perpendiculaires aux parois du filon (figure 13).
  • Les figures 14 et 15 représentent un chantier similaire de plus grande largeur, avec plusieurs files parallèles de dalles Dp,1 à Dp,4.
  • Les mêmes indications que pour les figures 7 et 8 s'appliquent ici. On peut noter que les dalles des figures 14 et 15 s'appuient par leurs extrémités sur des murs communs de minerai, qui sont interrompus sous des dalles D0,1 à D0,4 pour permettre la traversée d'engins d'exploitation.
  • La figure 16 représente une variante de la figure 14 dans laquelle les dalles d'une même rangée reposent sur des murs ou piliers distincts, dégageant des couloirs sous, et entre chaque dalle (le nombre de couloirs C1 à C7 supérieur à celui de la figure 14, pour un nombre inférieur de files de dalles).
  • Le choix entre l'une ou l'autre des configurations dépendra de la résistance des piliers et de la largeur du chantier.
  • Comme il est connu en soi dans l'art de la mine, la protection des espaces vides entre les dalles est généralement assurée par un treillis métallique souple et continu déroulé au-dessus des dalles au démarrage du chantier.
  • On peut, s'il y a lieu, assurer une étanchéité entre les dalles, par tout moyen connu.
  • Cette protection est en variante obtenue au moyen de boucliers 20 supportés par des triangles déformables 21 représentés à la figure 17.
  • Chaque triangle comporte :
    • un côté AC constitué par la dalle (dans l'intervalle concerné) descendant en premier,
    • un côté AB de longueur constante articulé en A sur la dalle et articulé en B sur le côté BC. Ce côté AB supporte le bouclier de protection,
    • un côté BC de longueur variable, articulé en B sur le côté AB et coulissant en C à travers un étrier, fixé sur la dalle. Ce coulissement peut être freiné au moyen d'une clavette.
  • La dalle Dp, descendant en second, comporte en 22 un redent provoquant la descente du sommet B du triangle articulé et assurant ainsi l'étanchéité du dispositif.
  • Un dispositif (non représenté) est avantageusement prévu pour la protection des espaces vides entre dalles et parois de la cavité exploitée et pour le soutènement du toit.
  • Le rôle de ce dispositif est double. Il permet d'éviter l'irruption des éboulis dans le chantier et permet d'adapter la méthode à des changements de largeur du chantier. La pression des éboulis au contact de la paroi du chantier est généralement faible par suite de la présence des dalles qui supportent l'ensemble de la charge.
  • Ce dispositif non représenté permet d'assurer une protection par simple avancement d'allonges à travers des épingles fixées dans la dalle, ces allonges étant chargées d'un matelas de bois ou de fer. Ces allonges facilement avançables ou rétractables permettent de s'adapter à des variations de largeur du chantier. Un soutènement classique par étançons peut aider lors d'une forte extension de ces allonges.
  • Ce dispositif peut être à commande manuelle (déplacement des allonges à la force du poignet) ou à commande hydraulique.
  • La disposition des dalles en files et rangées permet d'obtenir dans le chantier un découpage en chambres et piliers avec recoupes. On peut donc utiliser pour l'abattage du minerai les matériels connus dans ces méthodes de chambres et piliers (haveuses par exemple).
  • En outre, l'existence des dalles, par la facilité qu'elles offrent d'y prévoir ou d'y placer tous les moyens de suspension nécessaires, permet de disposer dans ce type de chantier de tous les moyens nécessaires de levage et de transport par monorail suspendu.
  • A titre d'exemple, pour l'exploitation d'une veine de minerai de 17 mètres de large, on utilise des dalles (ou poutres) de 16 mètres de long, 2 mètres de large et 1,5 m de haut. Les piliers correspondants sont cubiques avec un côté de 2 mètres, et sont distants de 7 mètres. Une telle dalle en béton armé peut être conçue pour supporter 200.000 Kg/m2, ce qui correspond classiquement à environ 80 m d'éboulis.
  • Les vérins constitutifs des moyens 17 de support et d'abaissement ont par exemple une course de 1.6 m, une charge au coulissement de 200 tonnes et un effort de soulèvement de 170t. Le dispositif complet peut comporter 6 à 8 vérins.
  • Deux cas sont à distinguer pour la conception de ces moyens de support et d'abaissement :
    • ler cas : Les piliers d'appui des dalles sont en minerai et non en béton. Dans ce cas un châssis amovible comportant les 6 ou 8 vérins prévus sera amené sous la dalle à supporter. La dalle sera prise en charge par le dispositif qui assurera son supportage pendant l'enlevure des piliers puis sa descente. Il sera ensuite déplacé à la dalle suivante. Si les dalles ont des surfaces telles que la stabilité ne soit pas assurée par un seul châssis, on doublera les dispositifs de descente des dalles qui seront placés de manière à assurer cette stabilité.
    • 2ème cas : Les piliers d'appui des dalles sont en béton.
       1ère variante : ils sont solidaires des dalles. Dans ce cas, on peut utiliser un châssis comme dans le cas précédent, ou les vérins peuvent être fixés contre les piliers au moyen de ferrures prévues lors de la coulée des piliers.
  • 2ème variante : ils sont translatables. Dans ce cas, l'utilisation de châssis est impérative.
  • Dans les deux variantes, si les dalles ont des surfaces telles que la stabilité ne soit pas assurée par un seul châssis, on doublera les dispositifs.
  • Les figures 18 à 20 représentent une dalle articulée en quatre éléments successifs 31,32,33 et 34 articulés l'un à l'autre, de proche en proche. Il s'agit d'une variante de dalles (en pratique en béton) pour le cas de filons pentus ayant une épaisseur de 2,8 - 3 m. jusqu'à 8 m. pour une orientation voisine de la verticale, voire plus pour des filons d'inclinaison inférieure à 45° par rapport à la verticale.
  • Les éléments extrêmes 31 et 34 sont en pratique sensiblement parallèles. L'élément 31 est disposé le long du toit 35 de la veine 36 de minerai tandis que l'élément 34 est disposé le long du mur 37 de cette veine. Ces éléments, appelés "élément de toit" et "élément de mur" sont adaptés à venir en appui sur le minerai par leurs extrémités inférieures 31A et 34A.
  • Les éléments intermédiaires 32 et 33 forment conjointement une voûte dont l'angle d'ouverture ou est d'autant plus grand que la largeur ou puissance de la veine de minerai est importante, ainsi qu'il ressort de la comparaison des figures 19 et 20. Cette ouverture variable de la voûte permet de suivre les variations de largeur de la veine.
  • En configuration extrême, représentée à la figure 23, cet angle est de 180° et la voûte est complètement aplatie.
  • La masse d'éboulis de foudroyage 38 qui pèse sur la voûte tend à ouvrir l'angle de la voûte, en l'aplatissant, en provoquant une poussée latérale des bords inférieurs 32A et 33A des éléments de voûte vers le toit et le mur, respectivement, visant à assurer un ancrage transversal, ou arc-boutement, de la dalle sur le toit et le mur (effet de silo); il en résulte pour les éléments extrêmes un placage énergique contre le toit et le mur qui peut suffire, le cas échéant, pour permettre la retenue de la dalle même si on abat le minerai sous les pieds 31A et 34A de ces dalles extrêmes. Un vérin d'écartement 40, (seulement schématisé par sa ligne d'action aux figures 19 et 20), peut toutefois être rajouté pour renforcer ce placage transversal.
  • On appréciera que le placage latéral des dalles extrêmes 31 et 34 contre les épontes, c'est-à-dire les roches constitutives du toit et du mur, est d'autant plus important que l'angle d'ouverture de la voûte est grand (sous réserve qu'il reste inférieur à 180°) : il y a des variations parallèles entre le poids des éboulis de foudroyage à supporter et l'effort transversal de placage résultant permettant de résister en tout ou partie à ce poids.
  • La structure des éléments 31,32,33 et 34 ressort clairement des figures 18 et 19 (ou 20), notamment en ce qui concerne leur mode d'articulation.
  • Dans l'exemple représenté, toute articulation de deux éléments constitutifs est formée de deux charnons (éléments de charnière) latéraux solidaires de l'un des éléments, encadrant un charnon central solidaire de l'autre de ces deux éléments. En variante non représentée, les articulations sont obtenues par imbrication d'un nombre impair de charnons, d'une part, et d'un nombre pair de charnons, d'autre part, pour satisfaire une symétrie d'ensemble des éléments par rapport à un plan vertical perpendiculaire aux axes d'articulations. Il peut aussi y avoir des charnons en nombre égaux sur chaque élément.
  • Les charnons d'une articulation sont maintenus coaxiaux par des barres rondes 41, en acier par exemple, matérialisant les axes d'articulation.
  • Dans l'exemple représenté, chacun des éléments extrêmes comporte un charnon central 31B ou 34B, percé d'un alésage 42 pour le passage des barres 41 d'articulation tandis que les éléments de voûte 32 et 33 comportant chacun une paire de charnons latéraux 44 adaptés à encadrer les charnons centraux 31B et 34B, et percés d'alésages 43 pour le passage des barres 41. Dans l'exemple représenté, ces charnons latéraux forment les bords inférieurs d'appui 32A et 33A des éléments de voûte.
  • L'élément 32 comporte en outre, à l'opposé de son extrémité 32A, une paire de charnons 45, avec des alésages 46, adaptés à encadrer un charnon central 47 percé d'un alésage 48, ménagé sur l'élément 33 à l'opposé de son extrémité 33A.
  • Pour permettre que l'angle relatif entre les éléments de voûte puisse prendre des valeurs aiguës, un évidement central 49, de forme triangulaire, est prévu dans l'élément 32 entre les racines des charnons 45 tandis que des évidements similaires 50 sont prévus sur l'élément 33 de part et d'autre de la racine du charnon central 47. Ces évidements permettent une imbrication des racines des charnons : cette imbrication est presque maximale à la figure 19, les racines des charnons occupant, en quasi-totalité, le volume des évidements. De préférence, le diamètre des charnons est supérieur à l'épaisseur des éléments 31 et 34, ce qui facilite notamment ces rotations, et réduit les évidements nécessaires.
  • Ainsi qu'il ressort plus précisément des figures 19 et 20, les éléments extrêmes 31 et 34 présentent, auprès des charnons 31B et 34B, des zones 31C et 34C plus épaisses que leurs extrémités inférieures, adaptées à résister aux contraintes mécaniques apparaissant auprès de ces charnons en service.
  • Il est généralement souhaitable que le plan contenant les articulations des éléments extrêmes 31 et 34 aux éléments de voûte 32 et 33, soit globalement perpendiculaire au toit 35 et au mur 37. On peut prévoir à cet effet des éléments extrêmes de longueurs différentes, adaptés à prendre appui, par leurs extrémités inférieures avantageusement biseautées, sur un sol approximativement horizontal : l'extraction du minerai dans ce sol peut ainsi se faire par couches horizontales malgré la pente du filon 36.
  • De manière préférée des pions 51 sont prévus sur les charnons latéraux des éléments de voûte, pour l'accrochage de vérins temporaires, représentés par leurs axes 52, d'assistance à la descente des dalles.
  • Des réseaux d'alésages transversaux 53 sont avantageusement prévus dans les éléments extrêmes 31 et 34, pour permettre, le cas échéant, un boulonnage de ces éléments dans le toit et le mur. Les figures 18, 19 et 20 représentent des réseaux carrés d'alésages 53 de dessins légèrement différents.
  • A titre d'exemple, pour un filon légèrement incliné (par exemple 30° par rapport à la verticale), de 8 mètres d'épaisseur, les éléments ont par exemple une même largeur de 1,5 m. avec des charnons de 0,5 m. d'épaisseur. Les éléments 32 et 33 ont une longueur de 4,9 m. (y compris les charnons), et les éléments 31 et 34 ont des longueurs respectives de 6,2 et 4 mètres. La largeur des dalles peut même être inférieure (0,8 à 1 m. par exemple).
  • En service, on dispose côte à côte une pluralité de dalles articulées, et l'on extrait du minerai de proche en proche sous chacune d'entre elles. Cette extraction peut se faire sous les extrémités 31A et 34A des dalles extrêmes, dès lors que l'ancrage latéral de la dalle sur les épontes (toit et mur) est suffisant. Le vérin 40 est prévu pour consolider cet ancrage en appliquant un effort d'écartement entre toit et mur, perpendiculairement à ceux-ci (d'où l'intérêt que les articulations 31-32 et 33-34 soient dans un plan perpendiculaire à ceux-ci); toutefois, il peut parfois être supprimé, voire neutralisé (au moins en l'absence d'extraction) lorsque les éboulis de foudroyage se sont correctement répartis sur la voûte 32-33. Si nécessaire des vérins supplémentaires (non représentés) peuvent être montés sur la dalle, en pratique sous le vérin 40, pour renforcer encore l'appui des éléments extrêmes sur le mur et le toit.
  • Après abattage d'une couche de minerai sous une dalle, on fait descendre cette dernière par tout moyen approprié : on réduit l'effort d'appui latéral et on contrôle la descente de la dalle le long du mur et du toit.
  • Pour réduire l'effort d'appui latéral, on commence bien sûr par réduire la poussée d'écartement appliquée par le vérin 40, et les vérins complémentaires, entre les éléments 31 et 34. On peut en outre, grâce au vérin 52, provoquer un rapprochement des extrémités inférieures 32A et 33A des éléments de voûte.
  • Dans une version très générale, ce guidage est assuré par un dispositif de support et d'abaissement comportant :
    • des moyens hydrauliques (vérins) de prise en charge de la dalle;
    • une ossature métallique propre à guider la dalle;
    • un moyen de traction complémentaire lorsque cela s'avère nécessaire.
  • Ce dispositif est mobile, et de préférence automoteur et équipé de pneumatiques.
  • Dans le cas où l'on n'a pas besoin d'élément de traction, la descente de la dalle peut être contrôlée au moyen de vérins fixés de façon amovible aux éléments de voûte de la dalle, par des ferrures prévues dans la dalle lors de sa confection.
  • Les figures 21 et 22 illustrent, à titre d'exemple et de façon partielle, un dispositif mobile 55 sans disposition de traction. Ce dispositif comporte un bâti mobile 56, des vérins verticaux 57 soutenant des traverses 58 sur lesquelles des dalles extrêmes viennent prendre appui à la faveur de décrochements 59 ménagés à cet effet; des vérins horizontaux 60 sont en outre prévus pour l'ancrage latéral du dispositif sur les dalles encadrant celles en cours de descente. Le bâti 56 se complète d'un bâti similaire à côté de celui-ci, pour la descente de l'autre élément extrême de la dalle.
  • La figure 23 illustre en coupe une variante de dalle articulée rendue définitivement plane, pour le cas par exemple où la largeur de la veine devient trop importante. La principale différence entre cette dalle 61 et celle des figures 18 à 20 (outre des différences mineures de profil) réside dans la présence de fers transversaux 63 ménagés dans les éléments de voûte lors de leur préparation. Des fers de referraillage 63 sont accrochés sur ces fers transversaux, de chaque côté de l'axe 41 d'articulation de la voûte, cette dernière ayant été mise à plat. Le maintien de la voûte en configuration horizontale peut être assuré par venue en butée d'éventuelles surfaces d'affrontement prévues sur les éléments de voûte et/ou par appui de la zone d'articulation de la voûte sur les fers de referraillage. On procède ensuite à un recoffrage de ces fers 63 pour rigidifier la dalle. Les éléments extrêmes peuvent alors être supprimés, en sorte de n'avoir plus qu'une dalle horizontale. Une telle dalle monobloc peut être posée en appui sur des moyens appropriés de soutien (mur de minerai ou piliers en béton).
  • En cas d'augmentation de puissance de la veine rendant inutilisable des dalles d'un type donné, celles-ci peuvent être laissées à demeure en boulonnant aux épontes les éléments extrêmes grâce aux alésages 53; de nouvelles dalles d'un type plus approprié sont mises en place en dessous des premières pour continuer l'exploitation.
  • Selon des dispositions préférées non représentées :
    • les éléments extrêmes présentent des zones de moindre largeur (grâce par exemple aux décrochements 59 précités) permettant d'engager des calages en bois entre ces éléments et les épontes en cas d'irrégularité de celles-ci;
    • les vérins d'écartement 40 et les vérins de rapprochement neuvent être remplacés par des vérins d'écartement et de rapprochement à double effet;
    • les éléments de dalle présentent, en regard de la tranche des charnons des éléments qui leur sont articulés, des tôles arrondies (épousant avec jeu ces tranches) qui peuvent faire partie du coffrage de ces éléments lors de leur fabrication.
  • L'ancrage latéral des dalles sur les épontes peut également se faire au moyen de tiges de piston venant directement s'ancrer dans les épontes, ainsi qu'il ressort des figures 24 à 26 qui représentant des dalles monobloc 71 présentant des cavités 72 d'où partent latéralement des canaux 73.
  • A la figure 24, une dalle 71 est supportée par des murets 74 et 75 de minerai et est en appui à gauche contre une éponte 76. Dans la cavité 72 sont disposés transversalement des vérins 77 dont les cylindres 77A sont en appui contre la paroi gauche de la cavité et dont les pistons 77B sont prolongés par des broches 78 destinées à passer dans les canaux 73 et à venir en appui contre l'éponte droite 79. Ces vérins sont alimentés en fluide par des tuyaux flexibles non représentés.
  • Ainsi qu'il ressort des figures 25 et 26, on peut prévoir trois vérins 77 à chaque extrémité de chaque dalle mis en fonction, le temps d'abattre le minerai situé en haut des murets 74 et 75.
  • Un chariot 80 munie des roues comporte une structure de support 82, mobile en hauteur sous l'action de vérins 81 adaptés à venir s'appuyer au sol pour des raisons de stabilité, portant des berceaux 83 pour les groupes de vérins transversaux 77 et des rails 84 adaptés à venir en appui sous les dalles pour en permettre le support et le guidage en descente.
  • Les dalles ont par exemple une longueur de 7 m. une largeur de 7,5 m. et une cavité de 0,5 m. De profondeur.
  • Au cours de l'avance du front d'exploitation (de gauche à droite sur la figure 26) on abat d'abord le fond de la galerie puis le haut de la galerie. Avant d'abattre le minerai en haut des murets supportant une dalle (ici deux dalles) on met celle-ci en appui latéral par mise en place de vérins 77; on abat le haut des minerais (avec le plus souvent évacuation du chariot 80 pour des raisons de place) puis on ramène le chariot 80 et on soutient la dalle par les rails 84 tandis qu'on relâche la pression dans les vérins 77; la descente des dalles est contrôlée par les vérins 81. On répète ensuite la manoeuvre pour la (les) dalle(s) immédiatement à droite.
  • Aux figures 24 à 26 les vérins 77 agissent tous dans le même sens en plaquant la dalle vers une éponte et des broches vers l'autre éponte. Dans une variante non représentée, recommandée lorsque la surface des épontes est irrégulière, les vérins sont disposés tête-bêche, avec des broches, venant en saillie, à la faveur de canaux 73 ménagés de part et d'autre de la cavité centrale, de chaque côté de la dalle dont les parois de la cavité centrale reprennent les efforts d'écartement.
  • Il va de soi que la description qui précède n'a été proposée qu'à titre indicatif et que de nombreuses variantes peuvent être proposées par l'homme de l'art sans sortir du cadre de l'invention.
  • Ainsi, par exemple, les vérins 40 de placage des éléments extrêmes contre les épontes peuvent être remplacés par une pluralité de vérins plaquant individuellement un élément extrême contre une éponte, en prenant appui directement sur l'autre éponte, au travers de l'élément extrême opposé. De tels vérins peuvent par exemple agir sur la partie évasée d'un élément extrême (auprès des zones épaisses 31C ou 34C) et traverser l'élément extrême en regard à la faveur d'un décrochement 29 (voir figure 22). De tels moyens individuels de placage permettent par exemple de faire descendre en alternance les éléments extrêmes en regard, un élément extrême restant fixe pendant que l'autre descend, et inversement. L'extraction au sol se fait alors en alternance, tantôt le long d'une éponte, tantôt le long de l'autre éponte.

Claims (26)

  1. Procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes sous un plafond, caractérisé en ce que, ce plafond étant sensiblement horizontal, on le divise en une pluralité de zones de plafond soutenues indépendamment les unes des autres par une pluralité de dalles indépendantes (D1,... Dn, Dp, 32, 33, 71) juxtaposées côte à côte et soutenues par des moyens de soutien, en sorte de former conjointement un toit de protection contre des éboulis de foudroyage, et, au fur et à mesure que l'on extrait du minerai sous ce plafond, on foudroie individuellement de proche en proche lesdites zones sur une hauteur limitée par abaissement successivement de chacune des dalles sous laquelle on a déjà extrait du minerai, en utilisant pour ce faire des moyens mécaniques de support temporaire et d'abaissement (17, 55, 80) fixés sur au moins un châssis amovible utilisé successivement pour les différentes dalles.
  2. Procédé selon la revendication 1, caractérisé par le fait que les dalles prennent appui sur des piliers (M) de minerai et qu'après enlèvement du minerai entre les piliers, on soutient artificiellement (17) les dalles (Dp) par lesdits moyens mécaniques de support temporaire et d'abaissement, on diminue la hauteur des piliers et on abaisse les dalles.
  3. Procédé selon la revendication 1, caractérisé par le fait que les dalles comportent des piliers d'appui (P) et qu'après enlèvement du minerai entre les piliers, on soutient artificiellement (17) les dalles, on enlève le minerai sous les piliers et on abaisse les dalles.
  4. Procédé selon la revendication 3, caractérisé par le fait que les piliers d'appui (P) sont déplaçables latéralement et qu'après enlèvement du minerai entre les piliers, on soutient artificiellement les dalles, on déplace latéralement les piliers, on abaisse les dalles et on enlève le minerai à l'emplacement d'où les piliers ont été déplacés.
  5. Procédé selon la revendication 1, caractérisé en ce que l'on soutient les dalles par appui latéral contre les épontes, dans le cas de veines étroites.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que les dalles sont disposées par files et par rangées et que la progression des enlevures et des abaissements de dalles s'effectue file après file.
  7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que les dalles sont disposées par files et par rangées et que la progression des enlevures et des abaissements de dalles s'effectue rangée après rangée.
  8. Installation de soutènement pour exploitation de mines et carrières souterraines par enlevures descendantes sous un plafond, adaptée à la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'elle comporte un toit de protection contre des éboulis de foudroyage sensiblement horizontal formé d'une pluralité de dalles (Dp...) élémentaires indépendantes juxtaposées côte à côte, munies de moyens de soutien (P, M), ainsi que des moyens mécaniques (17, 55, 80) de support et d'abaissement à hauteur contrôlable, adaptés à l'abaissement individuel de proche en proche de ces dalles, ces moyens (17, 55, 80) de support et d'abaissement de dalles étant fixés sur un ou plusieurs châssis amovibles qui sont utilisés successivement pour les différentes dalles.
  9. Installation selon la revendication 8, caractérisée par le fait que les moyens (17, 55, 80) de support et d'abaissement de dalles comportent des vérins hydrauliques.
  10. Installation selon la revendication 8 ou la revendication 9, caractérisée en ce que les dalles (Dp) sont en béton armé.
  11. Installation selon l'une quelconque des revendications 8 à 10, caractérisée par le fait que les moyens de soutien (M) sont constitués par le minerai luimême.
  12. Installation selon l'une quelconque des revendications 8 à 10, caractérisée par le fait que les moyens de soutien (P) sont fixes et solidaires des dalles.
  13. Installation selon l'une quelconque des revendications 8 à 10, caractérisée par le fait que les moyens de soutien (P') sont déplaçables latéralement.
  14. Installation selon la revendication 12 ou la revendication 13, caractérisée par le fait que les moyens de soutien (P, P') sont en béton armé.
  15. Installation selon l'une quelconque des revendications 8 à 10, caractérisée en ce que, lorsque les dalles (31, 34, 71) occupent la quasi-totalité de la largeur entre les épontes, les moyens de soutien sont des moyens (40, 77) de placage latéral contre ces épontes.
  16. Installation selon la revendication 15, caractérisée en ce que ces moyens de placage latéral sont des vérins (40, 77).
  17. Installation selon l'une quelconque des revendications 8 à 10 et 15, caractérisée en ce que les dalles comportent deux éléments (32, 33) de voûte articulés (41) formant une voûte à angle variable arc-boutée aux épontes, complétées par deux éléments extrêmes (31, 34) articulés aux éléments de voûte et destinés à longer les épontes.
  18. Installation selon la revendication 17, caractérisée en ce que des vérins (40) horizontaux sont prévus pour plaquer ces éléments extrêmes contre les épontes.
  19. Installation selon la revendication 17 ou la revendication 18, caractérisée en ce qu'au moins un vérin (52) est prévu pour refermer l'angle des éléments de voûte.
  20. Installation selon la revendication 15, caractérisée en ce que les dalles (71) de type monobloc comportent une cavité centrale bordée par des parois transversales, et une pluralité de canaux transversaux (73) sur au moins un des côtés de cette cavité, des vérins horizontaux (77) étant adaptés, en prenant appui contre une des parois de la cavité, à venir en appui contre les épontes au travers desdits canaux.
  21. Installation selon l'une quelconque des revendications 8 à 20, caractérisée par le fait qu'un treillis métallique souple (14) est interposé entre les dalles (Dp) et le plafond.
  22. Installation selon l'une quelconque des revendications 8 à 20, caractérisée par le fait que, pour la protection des espaces vides, les dalles comportent des boucliers (20) supportés par des triangles déformables (21).
  23. Installation selon la revendication 22, caractérisée par le fait que, par rapport à une dalle (DP-1) munie d'un bouclier (20) supporté par des triangles déformables (21), la dalle suivante (Dp) comporte un redent (22) assurant la descente du bouclier lors du déplacement de cette dalle suivante.
  24. Installation selon l'une quelconque des revendications 8 à 23, caractérisée par le fait qu'elle comporte au moins une rangée de dalles dont les moyens de soutien (P, M) sont suffisamment écartés pour permettre le passage des engins d'exploitation.
  25. Installation selon l'une quelconque des revendications 8 à 24, caractérisée par le fait que les dalles voisines de la paroi du chantier comportent des allonges avançables ou rétractables pour assurer la protection entre dalles et parois de la cavité exploitée.
  26. Installation selon la revendication 25, caractérisée par le fait que les allonges sont en outre soutenues par des étançons.
EP87401218A 1986-06-19 1987-06-01 Procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre Expired - Lifetime EP0250286B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU74226/87A AU582499B2 (en) 1986-06-19 1987-06-15 Mining or underground quarrying method and installation for implementing same
PT85112A PT85112B (pt) 1986-06-19 1987-06-17 Processo para a exploracao de minas ou pedreiras subterraneas por meio de relevos descendentes e desbaste e instalacao para a respectiva execucao

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8608846 1986-06-19
FR8608846A FR2600374B1 (fr) 1986-06-19 1986-06-19 Procede d'exploitation de mines ou carrieres souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre

Publications (2)

Publication Number Publication Date
EP0250286A1 EP0250286A1 (fr) 1987-12-23
EP0250286B1 true EP0250286B1 (fr) 1991-09-11

Family

ID=9336480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401218A Expired - Lifetime EP0250286B1 (fr) 1986-06-19 1987-06-01 Procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre

Country Status (10)

Country Link
US (1) US4979780A (fr)
EP (1) EP0250286B1 (fr)
AU (1) AU582499B2 (fr)
CA (1) CA1280614C (fr)
DE (1) DE3772866D1 (fr)
ES (1) ES2025179B3 (fr)
FR (1) FR2600374B1 (fr)
IN (1) IN169725B (fr)
PT (1) PT85112B (fr)
ZA (1) ZA874210B (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600374B1 (fr) * 1986-06-19 1988-09-23 Charbonnages De France Procede d'exploitation de mines ou carrieres souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre
FR2655685B1 (fr) * 1989-12-08 1992-03-13 Marion Rene Engin pour la manipulation de dalles de plafond dans une exploitation miniere.
US6957166B1 (en) * 1998-04-30 2005-10-18 The United States Of America As Represented By The Department Of Health And Human Services Method and apparatus for load rate monitoring
CN104790995B (zh) 2009-07-10 2018-04-06 乔伊·姆·特拉华公司 长壁开采顶板支撑件
RU2471989C1 (ru) * 2011-05-10 2013-01-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ управления труднообрушающейся кровлей при отработке газоносных пластов в лавах с мехкомплексами
RU2472931C1 (ru) * 2011-06-08 2013-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" Способ управления труднообрушающейся кровлей при отработке газоносных пластов в лавах с механизированными комплексами
CN102444401B (zh) * 2011-11-28 2013-12-25 袁树来 薄煤层炮采工作面充填采煤方法及相关设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1630589A (en) * 1925-06-06 1927-05-31 William P Taber Method of and means for supporting roof strata during the mining of minerals
US1915411A (en) * 1932-04-08 1933-06-27 George H Dormer Mining method
DE685426C (de) * 1938-03-26 1939-12-18 Otto Fleischer Dr Ing Verfahren zum Abbau von Floezen in Scheiben von oben nach unten
FR1313646A (fr) * 1962-02-06 1962-12-28 Harpener Bergbau Ag Procédé et dispositif d'abatage de minéraux en veine
FR2093244A5 (fr) * 1970-06-08 1972-01-28 Bassin De La Lorraine
SU675189A1 (ru) * 1974-07-17 1979-07-25 Vasilev Aleksandr Способ управлени щитовым агрегатом
SU715798A1 (ru) * 1978-01-18 1980-02-15 Сибирский Филиал Всесоюзного Научно- Исследовательского Института Горной Геомеханики И Маркшейдерского Дела Способ разработки пологопадающих рудных тел
SU881323A1 (ru) * 1979-06-27 1981-11-15 Ленинградский Ордена Ленина,Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Горный Институт Им.Г.В.Плеханова Способ разработки рудных тел
FR2600374B1 (fr) * 1986-06-19 1988-09-23 Charbonnages De France Procede d'exploitation de mines ou carrieres souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre
SU1370242A1 (ru) * 1986-07-29 1988-01-30 Всесоюзный научно-исследовательский институт горной геомеханики и маркшейдерского дела Способ управлени кровлей пласта в очистном забое

Also Published As

Publication number Publication date
FR2600374B1 (fr) 1988-09-23
DE3772866D1 (de) 1991-10-17
ZA874210B (fr) 1987-12-15
PT85112A (pt) 1988-07-01
US4979780A (en) 1990-12-25
FR2600374A1 (fr) 1987-12-24
EP0250286A1 (fr) 1987-12-23
AU582499B2 (en) 1989-03-23
AU7422687A (en) 1987-12-24
ES2025179B3 (es) 1992-03-16
IN169725B (fr) 1991-12-14
PT85112B (pt) 1993-05-31
CA1280614C (fr) 1991-02-26

Similar Documents

Publication Publication Date Title
EP2649242A1 (fr) Procédé pour la construction d'ouvrages, notamment de passage sous des voies ferrées ou analogues en exploitation.
CA1217349A (fr) Procede de realisation d'ouvrages en beton arme tels que galeries souterraines, tunnels routiers, etc.; elements en beton prefabriques pour la realisation de tels ouvrages
FR2627802A1 (fr) Soutenement ferme
CH642416A5 (fr) Procede de construction d'ouvrages souterrains a parois verticales, dispositif pour l'execution du procede et ouvrage souterrain.
EP0250286B1 (fr) Procédé d'exploitation de mines ou carrières souterraines par enlevures descendantes et foudroyage et installation pour sa mise en oeuvre
BE488764A (fr)
EP0021987B1 (fr) Machine pour le creusement des galeries souterraines
EP0245155B1 (fr) Procédé pour la construction d'ouvrages sous des voies ferrées en exploitation
RU2482275C2 (ru) Способ и устройство для добычи материала в подземных условиях
EP0242497B1 (fr) Procédé pour la construction de tunnels
EP2758633B1 (fr) Installation de creusement par bouclier
US4328994A (en) Mining apparatus and method
BE490381A (fr)
RU2361087C1 (ru) Секция крепи очистного забоя мощного крутонаклонного угольного пласта
RU2269003C2 (ru) Способ каримана подземной разработки ископаемых
FR2619137A1 (fr) Procede de construction d'une fondation en beton en sous-sol, notamment dans des terrains batis
RU2144138C1 (ru) Проходческий агрегат
KR100558940B1 (ko) 지중굴착장치와 이를 이용한 굴착방법
RU2760269C1 (ru) Способ проведения подготовительной горной выработки и механизированная крепь для его осуществления
RU2059827C1 (ru) Агрегат для крутых пластов
FR2839990A1 (fr) Ouvrage d'art prefabrique et procede de mise en place de l'ouvrage d'art
CA1312472C (fr) Cadre de soutenement deployable et procede et appareil de mise en place d'un tel cadre
FR2536787A1 (fr) Procede et dispositif de foncage de galerie pour la renovation de collecteurs d'eaux usees
SU1281671A1 (ru) Способ разработки мощных крутых пластов и устройство дл его осуществлени
CH426919A (fr) Procédé pour déplacer des ensembles de voies et appareil pour la mise en oeuvre de ce procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19880129

17Q First examination report despatched

Effective date: 19890316

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 3772866

Country of ref document: DE

Date of ref document: 19911017

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2025179

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87401218.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950523

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950725

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19960603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960627

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960601

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301

EUG Se: european patent has lapsed

Ref document number: 87401218.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601