EP0248976A1 - Liquid-cooled X-ray emitter with a circulated-cooling system - Google Patents
Liquid-cooled X-ray emitter with a circulated-cooling system Download PDFInfo
- Publication number
- EP0248976A1 EP0248976A1 EP87101805A EP87101805A EP0248976A1 EP 0248976 A1 EP0248976 A1 EP 0248976A1 EP 87101805 A EP87101805 A EP 87101805A EP 87101805 A EP87101805 A EP 87101805A EP 0248976 A1 EP0248976 A1 EP 0248976A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- housing
- ray
- ray emitter
- cooling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/02—Constructional details
- H05G1/04—Mounting the X-ray tube within a closed housing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/10—Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
- H01J35/105—Cooling of rotating anodes, e.g. heat emitting layers or structures
- H01J35/106—Active cooling, e.g. fluid flow, heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/02—Constructional details
- H05G1/025—Means for cooling the X-ray tube or the generator
Definitions
- the invention relates to a liquid-cooled X-ray emitter with a circulation cooling device, which has a housing filled with an electrically insulating coolant, provided with a radiation passage window and an X-ray tube arranged therein, the circulation cooling device in turn having a cooler connected to the housing by two coolant lines and a circulation pump for the coolant has and the coolant circuit is closed.
- Such an X-ray source is from the Patents Abstracts of Japan, Vol. 9, No. 266 (E-352), 1989, October 23, 1985, JP-A-60 112 296, (Hitachi Seisakusho K.K.).
- the circulation cooling device and the X-ray source are arranged spatially separated from one another, so that considerable additional installation space is required, which is particularly problematic when such an X-ray source is to be integrated into an existing X-ray system.
- the circulation cooling device of this X-ray emitter has a fan which generates an air flow directed towards the cooler, but the known X-ray emitter is unsuitable for applications in which the X-ray tube is exposed to high loads, since the cooling capacity of the circulation cooling device is not sufficient in these cases.
- An X-ray emitter of the type mentioned above is also known from "Medical X-Ray Technique", Philips Technical Library, 1961, Fig. 21, page 34.
- the circulation cooling device and the X-ray source are spacious Lich arranged separately from each other, so that the disadvantages mentioned above occur.
- the circulation cooling device of this X-ray emitter has an increased cooling capacity compared to the X-ray emitter described above, since the coolant is conducted into a storage container in which a cooling coil through which water is arranged is arranged, but here too the cooling capacity is not sufficient in all cases.
- the storage container is arranged in a defined position, so that the circulation cooling device cannot be operated independently of the position.
- the invention has for its object to provide an X-ray emitter of the type mentioned in such a way that the X-ray emitter and the circulation cooling device form a compact unit and the circulation cooling device nevertheless has a high cooling effect.
- this object is achieved in that the circulation cooling device is attached directly to the housing of the x-ray emitter and the cooler is designed as a heat exchanger which, apart from the coolant, is flowed through by a cooling liquid, for example water.
- the X-ray emitter and the circulation cooling device thus form a compact structural unit and the circulation cooling device exhibits heat as a result of the design of the cooler exchangers have a high cooling capacity.
- the X-ray emitter according to the invention has the advantage that a small amount of coolant compared to known X-ray emitters is included in the coolant circuit, so that changes in volume of the coolant caused by temperature fluctuations are only small and any means provided to compensate for them can be easily formed in the X-ray emitter.
- the housing is essentially cylindrical and the circulating cooling device, which essentially has the outer diameter corresponding to the housing, is arranged on an end face of the housing, the dimensions of an X-ray emitter according to the invention are hardly larger than those of a conventional one, so that there is the possibility to be used in existing X-ray systems instead of conventional X-ray sources according to the invention.
- the heat exchanger In view of the manufacturing costs for the heat exchanger, it is expedient if it is formed from a double-walled tube which delimits an outer channel with its outer and inner walls and an inner channel with its inner wall, the coolant in one and the coolant flows in the other channel.
- the space requirement of such a heat exchanger is particularly low if it is formed from a spiral-wound double-walled tube, the tube being able to be provided with ribbing on its outer lateral surface for additional heat radiation.
- the heat exchanger is formed from a double-walled tube, it can be provided that the coolant flows in the outer channel and the cooling liquid in the inner channel of the tube. Even if the flow of coolant fails, heat can then be dissipated by radiation by means of the heat exchanger, which now acts as a cooler be, wherein for such emergencies a blower can be provided for generating an air flow sweeping the heat exchanger to enable a further increase in heat dissipation.
- a further improvement in the cooling effect can be achieved according to a variant of the invention in that the circulation cooling device has means for generating a directional coolant flow in the interior of the housing such that the coolant entering the housing first flows through those regions of the X-ray tube which have the highest temperature , so that the coolant flow is opposite to thermal convection.
- the fact that the X-ray source is operated in different spatial positions can be taken into account in that the direction of the coolant flow can be reversed, whereby means can be provided which automatically reverse the coolant flow depending on the spatial position of the X-ray source.
- FIG. 1 shows an X-ray emitter according to the invention, which has an electrically insulating coolant tel, for example insulating oil, filled housing 1, in which an X-ray tube 2 is arranged.
- an X-ray tube 2 is arranged.
- This is designed as a rotating anode X-ray tube, which contains an anode plate 3, a cathode 4 and a motor for driving the rotating anode, which has a rotor 5 and a stator 7 arranged outside the glass body of the X-ray tube 2 on an insulator 6.
- the housing 1 has a radiation passage window 8 for the X-rays emanating from the anode plate 3.
- a circulating cooling device which has a cooler 11 connected to the housing 1 by two coolant lines 9 and 10 and a circulating pump 12 for the coolant, the coolant circuit being closed and the coolant lines 9 and 10 being guided liquid-tight through the wall of the housing 1.
- a transverse wall 13 is provided within the housing 1 , which a flexible membrane 14, which seals the interior of the housing 1 in a liquid-tight manner, is provided, which serves to absorb temperature-related volume fluctuations in the coolant.
- the circulation cooling device is attached directly to the housing 1, which is essentially cylindrical.
- the circulation cooling device attached to the one end face of the housing 1, which is arranged under a hood 15 provided with ventilation slots, has an outer diameter which essentially corresponds to that of the housing 1.
- the cooler 11 is designed as a heat exchanger.
- This consists of a double-walled tube 20, through which a coolant flows in addition to the coolant, the coolant flowing between the outer wall 21 and the inner wall 22 and the coolant flowing inside the inner wall 22 of the double-walled tube 20. Even if the coolant circuit should fail, the outer wall 21 of the double-walled tube 20 still a certain heat dissipation from the coolant to the surrounding atmosphere possible, which can be increased by a fan 16.
- the heat exchanger 11 is formed from a spirally wound tube 20 which has fins 17 on its outer circumferential surface, which are not shown in FIGS. 1 and 4 for reasons of clarity.
- the sections of the coolant lines 9 and 10 located outside the interior of the housing 1 are designed for safety reasons as pipes and are continued within the housing 1 such that the coolant line 9 in the area of the stator 7 and the coolant line 10, which are in the interior of the housing 1 as a plastic hose 23 is formed, ends in the region of the cathode-side end of the X-ray tube 2. If the x-ray emitter is operated in the position shown in FIG. 1, that is to say with the recirculating cooling device pointing upward, it is expedient to let the coolant enter the housing 1 through the coolant line 9, since this then firstly the region of the x-ray tube adjacent to the stator 7 2 flows, which experience has shown the highest temperature in the operating position of the X-ray emitter.
- the conveying direction of the circulating pump 12 is reversible, specifically depending on the spatial position of the X-ray emitter by means of a mercury switch 24 shown in FIG. 3, which is fixedly attached to the housing 1 not shown in FIG.
- the mercury switch 24 has two contacts 25 and 26, by means of which the drive motor 27 of the circulating pump 12, which is shown schematically in FIG.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- X-Ray Techniques (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Die Erfindung betrifft einen flüssigkeitsgekühlten Röntgenstrahler mit einer Umlaufkühleinrichtung, welcher ein mit einem elektrisch isolierenden Kühlmittel gefülltes Gehäuse (1) aufweist, wobei die Umlaufkühleinrichtung ihrerseits einen durch zwei Kühlmittelleitungen (9, 10) am Gehäuse (1) angeschlossenen Kühler (11) und eine Umwälzpumpe (12) für das Kühlmittel aufweist und der Kühlmittelkreislauf geschlossen ist. Die Umlaufkühleinrichtung ist unmittelbar an dem Gehäuse (1) des Röntgenstrahlers angebracht. Der Kühler ist als Wärmetauscher (11) ausgeführt. Die Strömungsrichtung des Kühlmittels ist abhängig von der räumlichen Lage des Röntgenstrahlers selbstätig umkehrbar.The invention relates to a liquid-cooled x-ray emitter with a circulation cooling device, which has a housing (1) filled with an electrically insulating coolant, the circulation cooling device itself comprising a cooler (11) connected to the housing (1) by two coolant lines (9, 10) and a circulating pump (12) for the coolant and the coolant circuit is closed. The circulation cooling device is attached directly to the housing (1) of the X-ray emitter. The cooler is designed as a heat exchanger (11). The direction of flow of the coolant is automatically reversible depending on the spatial position of the X-ray emitter.
Description
Die Erfindung betrifft einen flüssigkeitsgekühlten Röntgenstrahler mit einer Umlaufkühleinrichtung, welcher ein mit einem elektrisch isolierenden Kühlmittel gefülltes, mit einem Strahlendurchtrittsfenster versehenes Gehäuse und eine in diesem angeordnete Röntgenröhre aufweist, wobei die Umlaufkühleinrichtung ihrerseits einen durch zwei Kühlmittelleitungen am Gehäuse angeschlossenen Kühler und eine Umwälzpumpe für das Kühlmittel aufweist und der Kühlmittelkreislauf geschlossen ist.The invention relates to a liquid-cooled X-ray emitter with a circulation cooling device, which has a housing filled with an electrically insulating coolant, provided with a radiation passage window and an X-ray tube arranged therein, the circulation cooling device in turn having a cooler connected to the housing by two coolant lines and a circulation pump for the coolant has and the coolant circuit is closed.
Ein solcher Röntgenstrahler ist aus den Patents Abstracts of Japan, Vol. 9, No. 266 (E-352), 1989, 23.10.1985, JP-A-60 112 296, (Hitachi Seisakusho K.K.), bekannt. Dabei sind die Umlaufkühleinrichtung und der Röntgenstrahler räumlich getrennt voneinander angeordnet, so daß erheblicher zusätzlicher Bauraum benötigt wird, was besonders dann Probleme bereitet, wenn ein solcher Röntgenstrahler in eine bereits vorhandene Röntgenanlage integriert werden soll. Die Umlaufkühleinrichtung dieses Röntgenstrahlers weist zwar ein Gebläse auf, das einen auf den Kühler gerichteten Luftstrom erzeugt, dennoch ist der bekannte Röntgenstrahler für Anwendungen, in denen die Röntgenröhre hohen Belastungen ausgesetzt ist, ungeeignet, da die Kühlleistung der Umlaufkühleinrichtung in diesen Fällen nicht ausreicht.Such an X-ray source is from the Patents Abstracts of Japan, Vol. 9, No. 266 (E-352), 1989, October 23, 1985, JP-A-60 112 296, (Hitachi Seisakusho K.K.). The circulation cooling device and the X-ray source are arranged spatially separated from one another, so that considerable additional installation space is required, which is particularly problematic when such an X-ray source is to be integrated into an existing X-ray system. The circulation cooling device of this X-ray emitter has a fan which generates an air flow directed towards the cooler, but the known X-ray emitter is unsuitable for applications in which the X-ray tube is exposed to high loads, since the cooling capacity of the circulation cooling device is not sufficient in these cases.
Ein Röntgenstrahler der obengenannten Art ist außerdem aus "Medical X-Ray Technique", Philips Technical Library, 1961, Fig. 21, Seite 34, bekannt. Auch bei diesem sind die Umlaufkühleinrichtung und der Röntgenstrahler räum lich getrennt voneinander angeordnet, so daß die oben erwähnten Nachteile auftreten. Die Umlaufkühleinrichtung dieses Röntgenstrahlers weist zwar eine gegenüber der des zuvor beschriebenen Röntgenstrahlers erhöhte Kühlleistung auf, da das Kühlmittel in einen Vorratsbehälter geleitet wird, in dem eine von Wasser durchflossene Kühlschlange angeordnet ist, jedoch reicht auch hier die Kühlleistung nicht in allen Fällen aus. Außerdem ist es für die ungestörte Funktion der Umlaufkühleinrichtung erforderlich, daß der Vorratsbehälter in einer definierten Lage angeordnet ist, so daß die Umlaufkühleinrichtung nicht lageunabhängig betrieben werden kann.An X-ray emitter of the type mentioned above is also known from "Medical X-Ray Technique", Philips Technical Library, 1961, Fig. 21, page 34. Here too, the circulation cooling device and the X-ray source are spacious Lich arranged separately from each other, so that the disadvantages mentioned above occur. The circulation cooling device of this X-ray emitter has an increased cooling capacity compared to the X-ray emitter described above, since the coolant is conducted into a storage container in which a cooling coil through which water is arranged is arranged, but here too the cooling capacity is not sufficient in all cases. In addition, for the undisturbed function of the circulation cooling device, it is necessary that the storage container is arranged in a defined position, so that the circulation cooling device cannot be operated independently of the position.
Die vorgenannten Nachteile sind, soweit sie den Bauraumbedarf und die lageabhängige Funktion der Umlaufkühleinrichtung betreffen, durch einen in der GB-A-2 018 019 beschriebenen Röntgenstrahler mit flüssigkeitsgekühlter Anode vermieden, da hier die Kühleinrichtung unmittelbar an dem Gehäuse des Röntgenstrahlers angebracht ist. Allerdings besteht der Kühler lediglich aus einer im Luftstrom eines Gebläses angeordneten Rohrschlange, so daß die erzielbare Kühlleistung zu wünschen übrig läßt.The aforementioned disadvantages, insofar as they relate to the space requirement and the position-dependent function of the circulation cooling device, are avoided by an X-ray emitter described in GB-A-2 018 019 with a liquid-cooled anode, since here the cooling device is attached directly to the housing of the X-ray emitter. However, the cooler consists only of a coil arranged in the air flow of a fan, so that the achievable cooling capacity leaves something to be desired.
Der Erfindung liegt die Aufgabe zugrunde, einen Röntgenstrahler der eingangs genannten Art so auszubilden, daß der Röntgenstrahler und die Umlaufkühleinrichtung eine kompakte Baueinheit bilden und die Umlaufkühleinrichtung dennoch eine hohe Kühlwirkung aufweist.The invention has for its object to provide an X-ray emitter of the type mentioned in such a way that the X-ray emitter and the circulation cooling device form a compact unit and the circulation cooling device nevertheless has a high cooling effect.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Umlaufkühleinrichtung unmittelbar an dem Gehäuse des Röntgenstrahlers angebracht und der Kühler als Wärmetauscher ausgebildet ist, der außer von dem Kühlmittel von einer Kühlflüssigkeit, z.B. Wasser, durchströmt ist. Der Röntgenstrahler und die Umlaufkühleinrichtung bilden somit eine kompakte Baueinheit und die Umlaufkühleinrichtung weist infolge der Ausbildung des Kühlers als Wärme tauscher eine hohe Kühlleistung auf. Außerdem bietet der erfindungsgemäße Röntgenstrahler den Vorteil, daß eine im Vergleich zu bekannten Röntgenstrahlern kleine Kühlmittelmenge im Kühlmittelkreislauf eingeschlossen ist, so daß durch Temperaturschwankungen bedingte Volumenänderungen des Kühlmittels nur gering sind und in dem Röntgenstrahler etwa vorgesehene Mittel zu deren Ausgleich einfach ausgebildet sein können.According to the invention, this object is achieved in that the circulation cooling device is attached directly to the housing of the x-ray emitter and the cooler is designed as a heat exchanger which, apart from the coolant, is flowed through by a cooling liquid, for example water. The X-ray emitter and the circulation cooling device thus form a compact structural unit and the circulation cooling device exhibits heat as a result of the design of the cooler exchangers have a high cooling capacity. In addition, the X-ray emitter according to the invention has the advantage that a small amount of coolant compared to known X-ray emitters is included in the coolant circuit, so that changes in volume of the coolant caused by temperature fluctuations are only small and any means provided to compensate for them can be easily formed in the X-ray emitter.
Wenn nach einer Variante der Erfindung das Gehäuse im wesentlichen zylindrisch ausgebildet und die einen im wesentlichen dem des Gehäuses entsprechenden Außendurchmesser aufweisende Umlaufkühleinrichtung an einer Stirnfläche des Gehäuses angeordnet ist, sind die Abmessungen eines erfindungsgemäßen Röntgenstrahlers kaum größer als die eines herkömmlichen, so daß die Möglichkeit besteht, in bereits vorhandenen Röntgenanlagen anstelle herkömmlicher Röntgenstrahler erfindungsgemäße zu verwenden.If, according to a variant of the invention, the housing is essentially cylindrical and the circulating cooling device, which essentially has the outer diameter corresponding to the housing, is arranged on an end face of the housing, the dimensions of an X-ray emitter according to the invention are hardly larger than those of a conventional one, so that there is the possibility to be used in existing X-ray systems instead of conventional X-ray sources according to the invention.
Im Hinblick auf den Fertigungsaufwand für den Wärmetauscher ist es zweckmäßig, wenn dieser aus einem doppelwandigen Rohr gebildet ist, welches mit seiner äußeren und seiner inneren Wand einen äußeren und mit seiner inneren Wand einen inneren Kanal begrenzt, wobei das Kühlmittel in dem einen und die Kühlflüssigkeit in dem anderen Kanal strömt. Der Bauraumbedarf eines solchen Wärmetauschers ist dann besonders gering, wenn er aus spiralartig gewundenem doppelwandigem Rohr gebildet ist, wobei das Rohr an seiner äußeren Mantelfläche zur zusätzlichen Wärmeabstrahlung mit einer Verrippung versehen sein kann.In view of the manufacturing costs for the heat exchanger, it is expedient if it is formed from a double-walled tube which delimits an outer channel with its outer and inner walls and an inner channel with its inner wall, the coolant in one and the coolant flows in the other channel. The space requirement of such a heat exchanger is particularly low if it is formed from a spiral-wound double-walled tube, the tube being able to be provided with ribbing on its outer lateral surface for additional heat radiation.
Wenn der Wärmetauscher aus doppelwandigem Rohr gebildet ist, kann vorgesehen sein, daß das Kühlmittel in dem äußeren und die Kühlflüssigkeit in dem inneren Kanal des Rohres strömt. Auch bei Ausfällen des Kühlflüssigkeitsstromes kann dann noch Wärme mittels des nun als Kühler wirkenden Wärmetauschers durch Strahlung abgeführt werden, wobei für derartige Notfälle ein Gebläse zur Erzeugung eines den Wärmetauscher bestreichenden Luftstromes vorgesehen sein kann, um eine weitere Steigerung der Wärmeabfuhr zu ermöglichen.If the heat exchanger is formed from a double-walled tube, it can be provided that the coolant flows in the outer channel and the cooling liquid in the inner channel of the tube. Even if the flow of coolant fails, heat can then be dissipated by radiation by means of the heat exchanger, which now acts as a cooler be, wherein for such emergencies a blower can be provided for generating an air flow sweeping the heat exchanger to enable a further increase in heat dissipation.
Eine weitere Verbesserung der Kühlwirkung läßt sich nach einer Variante der Erfindung dadurch erzielen, daß die Umlaufkühleinrichtung Mittel zur Erzeugung eines derart gerichteten Kühlmittelstromes im Inneren des Gehäuses aufweist, daß das in das Gehäuse eintretende Kühlmittel zuerst jene Bereiche der Röntgenröhre beströmt, die die größte Temperatur aufweisen, so daß der Kühlmittelstrom der thermischen Konvektion entgegengerichtet ist. Dabei kann dem Umstand, daß der Röntgenstrahler in unterschiedlichen räumlichen Positionen betrieben wird, dadurch Rechnung getragen werden, daß die Richtung des Kühlmittelstromes umkehrbar ist, wobei Mittel vorgesehen sein können, welche den Kühlmittelstrom abhängig von der räumlichen Lage des Röntgenstrahlers selbsttätig umkehren.A further improvement in the cooling effect can be achieved according to a variant of the invention in that the circulation cooling device has means for generating a directional coolant flow in the interior of the housing such that the coolant entering the housing first flows through those regions of the X-ray tube which have the highest temperature , so that the coolant flow is opposite to thermal convection. The fact that the X-ray source is operated in different spatial positions can be taken into account in that the direction of the coolant flow can be reversed, whereby means can be provided which automatically reverse the coolant flow depending on the spatial position of the X-ray source.
In der beigefügten Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:
- Fig. 1 einen schematischen Längsschnitt durch einen Röntgenstrahler nach der Erfindung,
- Fig. 2 einen Schnitt nach der Linie II-II in Figur 1,
- Fig. 3 ein Detail des erfindungsgemäßen Röntgenstrahlers, und
- Fig. 4 ein Detail des erfindungsgemäßen Röntgenstrahlers in vergrößerter geschnittener Darstellung.
- 1 shows a schematic longitudinal section through an X-ray emitter according to the invention,
- 2 shows a section along the line II-II in FIG. 1,
- 3 shows a detail of the X-ray emitter according to the invention, and
- Fig. 4 shows a detail of the X-ray emitter according to the invention in an enlarged sectional view.
Die Figur 1 zeigt einen erfindungsgemäßen Röntgenstrahler, der ein mit einem elektrisch isolierenden Kühlmit tel, z.B. Isolieröl, gefülltes Gehäuse 1 aufweist, in dem eine Röntgenröhre 2 angeordnet ist. Diese ist als Drehanoden-Röntgenröhre ausgebildet, die einen Anodenteller 3, eine Kathode 4 und einen Motor zum Antrieb der Drehanode enthält, der einen Rotor 5 und einen außerhalb des Glaskörpers der Röntgenröhe 2 auf einem Isolator 6 angeordneten Stator 7 aufweist. Das Gehäuse 1 besitzt ein Strahlendurchtrittsfenster 8 für die vom Anodenteller 3 ausgehende Röntgenstrahlung. Außerdem ist eine Umlaufkühleinrichtung vorgesehen, die einen durch zwei Kühlmittelleitungen 9 und 10 am Gehäuse 1 angeschlossenen Kühler 11 und eine Umwälzpumpe 12 für das Kühlmittel aufweist, wobei der Kühlmittelkreislauf geschlossen ist und die Kühlmittelleitungen 9 und 10 flüssigkeitsdicht durch die Wandung des Gehäuses 1 geführt sind. Innerhalb des Gehäuses 1 ist eine Querwand 13 vorgesehen, an der eine den Innenraum des Gehäuses 1 flüssigkeitsdicht verschließende, nachgiebige Membran 14 vorgesehen ist, die dazu dient, temperaturbedingte Volumenschwankungen des Kühlmittels aufzunehmen.FIG. 1 shows an X-ray emitter according to the invention, which has an electrically insulating coolant tel, for example insulating oil, filled housing 1, in which an X-ray tube 2 is arranged. This is designed as a rotating anode X-ray tube, which contains an anode plate 3, a cathode 4 and a motor for driving the rotating anode, which has a
Die Umlaufkühleinrichtung ist unmittelbar an dem Gehäuse 1 angebracht, das im wesentlichen zylindrisch ausgebildet ist. Dabei besitzt die an der einen Stirnfläche des Gehäuses 1 angebrachte Umlaufkühleinrichtung, die unter einer mit Lüftungsschlitzen versehenen Haube 15 angeordnet ist, einen Außendurchmesser, der im wesentlichen dem des Gehäuses 1 entspricht.The circulation cooling device is attached directly to the housing 1, which is essentially cylindrical. The circulation cooling device attached to the one end face of the housing 1, which is arranged under a
Aus der Figur 4 ist ersichtlich, daß der Kühler 11 als Wärmetauscher ausgebildet ist. Dieser besteht aus einem doppelwandigen Rohr 20, das außer von dem Kühlmittel von einer Kühlflüssigkeit durchströmt ist, wobei das Kühlmittel zwischen der äußeren Wand 21 und der inneren Wand 22 und die Kühlflüssigkeit innerhalb der inneren Wand 22 des doppelwandigen Rohres 20 strömt. Selbst dann, wenn der Kühlflüssigkeitskreislauf ausfallen sollte, ist über die äußere Wand 21 des doppelwandigen Rohres 20 noch eine gewisse Wärmeabfuhr von dem Kühlmittel an die umgebende Atmosphäre möglich, die durch ein Gebläse 16 gesteigert werden kann.It can be seen from FIG. 4 that the
Der Wärmeaustauscher 11 ist, wie aus den Figuren 2 und 4 ersichtlich ist, aus einem spiralförmig gewundenen Rohr 20 gebildet, das an seiner äußeren Mantelfläche Rippen 17 aufweist, die in den Figuren 1 und 4 aus Gründen der Übersichtlichkeit nicht dargestellt sind.As can be seen from FIGS. 2 and 4, the
Die außerhalb des Innenraumes des Gehäuses 1 befindlichen Abschnitte der Kühlmittelleitungen 9 und 10 sind aus Sicherheitsgründen als Rohrleitungen ausgeführt und innerhalb des Gehäuses 1 derart weitergeführt, daß die Kühlmittelleitung 9 im Bereich des Stators 7 und die Kühlmittelleitung 10, die im Innenraum des Gehäuses 1 als Kunststoffschlauch 23 ausgebildet ist, im Bereich des kathodenseitigen Endes der Röntgenröhre 2 endet. Wird der Röntgenstrahler in der in Figur 1 dargestellten Lage, also mit nach oben gerichteter Umlaufkühleinrichtung, betrieben, ist es zweckmäßig, das Kühlmittel durch die Kühlmittelleitung 9 in das Gehäuse 1 eintreten zu lassen, da dieses dann zuerst den dem Stator 7 benachbarten Bereich der Röntgenröhre 2 beströmt, der in der erwähnten Betriebslage des Röntgenstrahlers erfahrungsgemäß die höchste Temperatur aufweist. In anderen Betriebslagen des Röntgenstrahlers kann es zweckmäßig sein, die Richtung des Kühlmittelstromes umzukehren. Zu diesem Zweck ist die Förderrichtung der Umwälzpumpe 12 umkehrbar, und zwar abhängig von der räumlichen Position des Röntgenstrahlers selbsttätig mittels eines in Figur 3 dargestellten Quecksilberschalters 24, der fest an dem in Figur 3 nicht dargestellten Gehäuse 1 angebracht ist. Der Quecksilberschalter 24 weist zwei Kontakte 25 und 26 auf, mittels derer der Antriebsmotor 27 der Umwälzpumpe 12, der in Figur 3 schematisch dargestellt ist, durch das im Queck silberschalter 24 befindlichen Quecksilber 28 je nach der räumlichen Position, die der Röntgenstrahler einnimmt, einmal mit einer positiven Versorgungsspannung +UB und einmal mit einer negativen Versorgungsspannung -UB verbunden ist, was zu einer Umkehrung der Drehrichtung des Antriebsmotors 27 und damit der Förderrichtung der Umwälzpumpe 12 führt. In Figur 3 ist der Antriebsmotor 27 mit der positiven Versorgungsspannung +UB verbunden.The sections of the coolant lines 9 and 10 located outside the interior of the housing 1 are designed for safety reasons as pipes and are continued within the housing 1 such that the coolant line 9 in the area of the stator 7 and the coolant line 10, which are in the interior of the housing 1 as a
Um zu gewährleisten, daß ein ausreichend großer Anteil des Kühlmittelstromes durch den Spalt zwischen dem Isolator 6 und dem Glaskolben der Röntgenröhre 2 - hier bilden sich erfahrungsgemäß sogenannte "Hitzenester" - geführt wird, ist zwischen der Innenwand des Gehäuses 1 und dem Außenumfang des Stators 7 eine Blende 18 vorgesehen, die einige Durchtrittsöffnungen 19 für das Kühlmittel aufweist. Die Durchtrittsöffnungen 19 der Blende 18 sind derart bemessen, daß nur ein vergleichsweise kleiner Anteil des Kühlmittelstromes durch sie hindurchtreten kann.In order to ensure that a sufficiently large proportion of the coolant flow is guided through the gap between the
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8615918U DE8615918U1 (en) | 1986-06-13 | 1986-06-13 | Liquid-cooled X-ray tube with a recirculating cooling system |
DE8615918U | 1986-06-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0248976A1 true EP0248976A1 (en) | 1987-12-16 |
EP0248976B1 EP0248976B1 (en) | 1990-05-23 |
Family
ID=6795516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87101805A Expired - Lifetime EP0248976B1 (en) | 1986-06-13 | 1987-02-10 | Liquid-cooled x-ray emitter with a circulated-cooling system |
Country Status (4)
Country | Link |
---|---|
US (1) | US4768212A (en) |
EP (1) | EP0248976B1 (en) |
JP (1) | JPH0515759Y2 (en) |
DE (2) | DE8615918U1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4101777A1 (en) * | 1991-01-22 | 1992-08-06 | Siemens Ag | X-RAY HEATER WITH DEGASSING DEVICE |
FR2675628A1 (en) * | 1991-04-17 | 1992-10-23 | Gen Electric Cgr | Anodic assembly with high thermal dissipation for X-ray tube and tube thus obtained |
FR2736239A1 (en) * | 1995-06-30 | 1997-01-03 | Ge Medical Syst Sa | X-ray tube cooling system |
WO1999012183A1 (en) * | 1997-08-29 | 1999-03-11 | Varian Associates, Inc. | X-ray generating apparatus with integral housing |
WO2001039557A1 (en) * | 1999-11-24 | 2001-05-31 | Siemens Aktiengesellschaft | X-ray emitter with force-cooled rotating anode |
CN104465278A (en) * | 2014-12-31 | 2015-03-25 | 江苏天瑞仪器股份有限公司 | X-ray tube heat dissipation device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4912739A (en) * | 1987-09-21 | 1990-03-27 | Weiss Mortimer E | Rotating anode X-ray tube with deflected electron beam |
DE58905921D1 (en) * | 1989-11-09 | 1993-11-18 | Siemens Ag | X-ray tube. |
DE58905402D1 (en) * | 1989-11-09 | 1993-09-30 | Siemens Ag | X-ray tube. |
DE4225221C2 (en) * | 1992-07-30 | 1996-08-22 | Siemens Ag | Method and device for operating an x-ray system with an x-ray emitter |
US5784430A (en) * | 1996-04-16 | 1998-07-21 | Northrop Grumman Corporation | Multiple station gamma ray absorption contraband detection system |
US6215851B1 (en) | 1998-07-22 | 2001-04-10 | Northrop Grumman Corporation | High current proton beam target |
US6608429B1 (en) * | 2000-08-16 | 2003-08-19 | Ge Medical Systems Global Technology Co., Llc | X-ray imaging system with convective heat transfer device |
US6366642B1 (en) * | 2001-01-16 | 2002-04-02 | Varian Medical Systems, Inc. | X-ray tube cooling system |
JP2005516376A (en) * | 2002-01-31 | 2005-06-02 | ザ ジョンズ ホプキンズ ユニバーシティ | X-ray source and method for more efficiently generating selectable x-ray frequencies |
US6997609B2 (en) * | 2002-12-10 | 2006-02-14 | Tark, Inc. | System and method for cooling an x-ray tube in a tomography computer system |
DE102008017153A1 (en) * | 2008-04-03 | 2009-11-12 | Siemens Aktiengesellschaft | radiation generator |
CN102754532A (en) * | 2010-02-08 | 2012-10-24 | 株式会社日立医疗器械 | X-ray tube device and x-ray ct device |
JP6214899B2 (en) * | 2012-03-30 | 2017-10-18 | 東芝電子管デバイス株式会社 | Rotating anode type X-ray tube unit and rotating anode type X-ray tube device |
DE102017002210A1 (en) | 2017-03-08 | 2018-09-13 | Heuft Systemtechnik Gmbh | Cooling device for X-ray generators |
CN108257837B (en) | 2018-03-14 | 2019-11-15 | 苏州博思得电气有限公司 | Mono-tank and ray image documentation equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2170126A1 (en) * | 1972-02-02 | 1973-09-14 | Siemens Ag | |
GB2018019A (en) * | 1978-03-31 | 1979-10-10 | Philips Nv | Cooling x-ray tubes |
US4369517A (en) * | 1980-02-20 | 1983-01-18 | Litton Industrial Products, Inc. | X-Ray tube housing assembly with liquid coolant manifold |
FR2575329A1 (en) * | 1984-12-21 | 1986-06-27 | Thomson Cgr | EQUIPPED FORCED CONVECTION SHEATH FOR ROTATING ANODE RADIOGENIC TUBE |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1656826A (en) * | 1924-01-07 | 1928-01-17 | Morrison Montford | Method of and apparatus for cooling electron-discharge tubes |
US1992335A (en) * | 1932-12-30 | 1935-02-26 | Kelley Koett Mfg Company | Shock-proof X-ray tube unit |
JPS5871999U (en) * | 1981-11-11 | 1983-05-16 | 株式会社東芝 | X-ray tube equipment |
US4625324A (en) * | 1983-09-19 | 1986-11-25 | Technicare Corporation | High vacuum rotating anode x-ray tube |
JPS60112296A (en) * | 1983-11-24 | 1985-06-18 | Hitachi Ltd | Cooler for x-ray tube apparatus |
JPS60112297A (en) * | 1983-11-24 | 1985-06-18 | Hitachi Ltd | Rotating anode x-ray tube apparatus |
US4674109A (en) * | 1984-09-29 | 1987-06-16 | Kabushiki Kaisha Toshiba | Rotating anode x-ray tube device |
-
1986
- 1986-06-13 DE DE8615918U patent/DE8615918U1/en not_active Expired
-
1987
- 1987-02-10 DE DE8787101805T patent/DE3762942D1/en not_active Expired - Fee Related
- 1987-02-10 EP EP87101805A patent/EP0248976B1/en not_active Expired - Lifetime
- 1987-04-13 US US07/037,948 patent/US4768212A/en not_active Expired - Fee Related
- 1987-06-10 JP JP1987090278U patent/JPH0515759Y2/ja not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2170126A1 (en) * | 1972-02-02 | 1973-09-14 | Siemens Ag | |
GB2018019A (en) * | 1978-03-31 | 1979-10-10 | Philips Nv | Cooling x-ray tubes |
US4369517A (en) * | 1980-02-20 | 1983-01-18 | Litton Industrial Products, Inc. | X-Ray tube housing assembly with liquid coolant manifold |
FR2575329A1 (en) * | 1984-12-21 | 1986-06-27 | Thomson Cgr | EQUIPPED FORCED CONVECTION SHEATH FOR ROTATING ANODE RADIOGENIC TUBE |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 266 (E-352)[1989], 23. Oktober 1985; & JP-A-60 112 296 A (HITACHI SEISAKUSHO K.K.) 18-06-1985 * |
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 266 (E-352)[1989], 23. Oktober 1985; & JP-A-60 112 297 A (HITACHI SEISAKUSHO K.K.) 18-06-1985 * |
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 295 (E-360)[2018], 21. November 1985; & JP-A-60 136 138 A (HITACHI SEISAKUSHO K.K.) 19-07-1985 * |
PHILIPS TECHNICAL LIBRARY, "Medical X-ray technique", Chapter II, 1961, Seiten 22-39, Eindhoven, NL; "X-ray tubes" * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4101777A1 (en) * | 1991-01-22 | 1992-08-06 | Siemens Ag | X-RAY HEATER WITH DEGASSING DEVICE |
FR2675628A1 (en) * | 1991-04-17 | 1992-10-23 | Gen Electric Cgr | Anodic assembly with high thermal dissipation for X-ray tube and tube thus obtained |
FR2736239A1 (en) * | 1995-06-30 | 1997-01-03 | Ge Medical Syst Sa | X-ray tube cooling system |
WO1999012183A1 (en) * | 1997-08-29 | 1999-03-11 | Varian Associates, Inc. | X-ray generating apparatus with integral housing |
EP1475819A3 (en) * | 1997-08-29 | 2005-02-09 | Varian Medical Systems Technologies, Inc. | X-ray generating apparatus with integral housing |
WO2001039557A1 (en) * | 1999-11-24 | 2001-05-31 | Siemens Aktiengesellschaft | X-ray emitter with force-cooled rotating anode |
CN104465278A (en) * | 2014-12-31 | 2015-03-25 | 江苏天瑞仪器股份有限公司 | X-ray tube heat dissipation device |
CN104465278B (en) * | 2014-12-31 | 2017-03-15 | 江苏天瑞仪器股份有限公司 | A kind of X-ray tube heat abstractor |
Also Published As
Publication number | Publication date |
---|---|
EP0248976B1 (en) | 1990-05-23 |
JPS62201500U (en) | 1987-12-22 |
DE3762942D1 (en) | 1990-06-28 |
DE8615918U1 (en) | 1987-10-15 |
JPH0515759Y2 (en) | 1993-04-26 |
US4768212A (en) | 1988-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0248976B1 (en) | Liquid-cooled x-ray emitter with a circulated-cooling system | |
DE19741750C2 (en) | X-ray tube with forced-cooled anode | |
WO2001039557A1 (en) | X-ray emitter with force-cooled rotating anode | |
DE3827511C2 (en) | ||
DE2455974B2 (en) | Rotating anode x-ray tube | |
DD232588A5 (en) | PROJECTION SCREEN PICTURES AND IMAGE PLAY ARRANGEMENT WITH SUCH IMAGES | |
DE19851853C1 (en) | Rotary piston X=ray emitter | |
EP0225463B1 (en) | X-ray emitter | |
DE102005063243A1 (en) | Cooled radiation emission device | |
EP0328951A1 (en) | X-ray tube | |
EP0162972A1 (en) | Projection cathode ray tube | |
EP1104079B1 (en) | Electric motor, in particular for a centrifugal pump | |
DE3601089A1 (en) | Liquid-cooled electrical machine | |
DE19902267A1 (en) | Ventilation device uses exhaust heat of ventilator motors through bypass attached to motor chambers and opening on suction side of ventilator wheel | |
DE1296706B (en) | Magnetron tubes | |
DE3007917A1 (en) | Electrical machine heat loss recovery system, e.g. for space heating - has finned separation wall between cooling and heat output circuits | |
DE2204894A1 (en) | ROENTGE TUBE UNIT | |
DE2044958A1 (en) | Air conditioning for vehicles | |
DE102018127928A1 (en) | Heat transport unit | |
WO2011128202A1 (en) | Electrically insulated heating pipe having sub-regions regions made of glass | |
DE1566265B2 (en) | DENTAL DRILL HANDPIECE | |
DE2824382C2 (en) | transformer | |
DE102017215952B3 (en) | Heat sink with two hollow bodies and cooling arrangement | |
DD241676A1 (en) | ROOM RADIANT WITH FLUID COOLING | |
DE102020128665A1 (en) | Air Water heatpump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR LI |
|
17P | Request for examination filed |
Effective date: 19880125 |
|
17Q | First examination report despatched |
Effective date: 19890306 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR LI |
|
REF | Corresponds to: |
Ref document number: 3762942 Country of ref document: DE Date of ref document: 19900628 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930219 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940419 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940517 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19941031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950228 Ref country code: CH Effective date: 19950228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951101 |