EP0241349B1 - Verfahren und Vorrichtung zur Behandlung von Flüssigkeiten, die Teilchen in Suspension enthalten - Google Patents

Verfahren und Vorrichtung zur Behandlung von Flüssigkeiten, die Teilchen in Suspension enthalten Download PDF

Info

Publication number
EP0241349B1
EP0241349B1 EP87400680A EP87400680A EP0241349B1 EP 0241349 B1 EP0241349 B1 EP 0241349B1 EP 87400680 A EP87400680 A EP 87400680A EP 87400680 A EP87400680 A EP 87400680A EP 0241349 B1 EP0241349 B1 EP 0241349B1
Authority
EP
European Patent Office
Prior art keywords
fluid
compartment
particles
particle
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400680A
Other languages
English (en)
French (fr)
Other versions
EP0241349A1 (de
Inventor
Roger Pfertzel
Maurice Quenault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TechnicAtome SA
Original Assignee
TechnicAtome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TechnicAtome SA filed Critical TechnicAtome SA
Publication of EP0241349A1 publication Critical patent/EP0241349A1/de
Application granted granted Critical
Publication of EP0241349B1 publication Critical patent/EP0241349B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids

Definitions

  • the subject of the invention is a method for treating fluids containing particles in suspension.
  • these particles can consist of aerosols, fine powders, ash, etc.
  • gases containing suspended particles of this type are found in the interior atmospheres of nuclear or non-nuclear installations, for example in reactors, factories and laboratories, in incineration plants for radioactive or non-radioactive waste , in liquid drying installations and in any installation containing dust.
  • the particles can be constituted by insoluble materials such as fine powders, for example metal oxide powders, colloidal particles, etc.
  • liquids containing particles of this type in suspension include liquid effluents and discharges produced in nuclear power plants, nuclear plants and many industrial installations.
  • the present invention specifically relates to a process for treating fluids containing particles in suspension, which overcomes the drawbacks of the processes mentioned above.
  • the fluid to be treated is subjected to a treatment cycle which comprises a filtration step to extract a part of the fluid in the purified state and a separation step to extract a part of the particles present in suspension in the fluid, starting the treatment cycle, either by the filtration step or by the separation step, and the fluid depleted in particles from the separation step or the enriched fluid is subjected in particles from the filtration step to a new treatment cycle after adding the fluid to be treated.
  • the choice of the first step depends in particular on the particle concentration of the fluid to be treated.
  • the porous and permeable walls of the filtration device are generally constituted by tubes inside which the fluid to be enriched in particles is circulated.
  • these tubes internally delimit the first compartment of the filtration device.
  • the method of the invention has many advantages for the treatment of liquids and gases laden with particles in suspension.
  • the volume of radioactive or toxic waste to be treated is limited since these are recovered in the form of a particle concentrate during the separation step.
  • the means for circulating the fluid to be treated in the treatment loop are arranged relative to the means for introducing the fluid to be treated in such a way that the fluid circulates successively in the filtration device and in the filtration device. separation of particles, or vice versa.
  • the porous and permeable walls of the filtration device consist of tubes which internally delimit the first compartment.
  • other types of walls can be used, for example porous plates.
  • the filtration device used in the invention may consist of an ultrafiltration module comprising a plurality of porous tubes arranged parallel to one another, as in the modules used for the concentration and separation of the constituents present in a liquid.
  • the particle separation device can be constituted by a conventional device, for example by an electrostatic filter, an impact or baffle dust collector, a decanter, etc.
  • a cyclone separator or a hydrocyclone is used, that is to say a purely static device which uses centrifugal force to extract from a gas stream or from a liquid stream, a fraction enriched in particles.
  • the treatment loop 1 comprises a filtration device 3 separated into a first compartment 3a and a second compartment 3b by porous and permeable tubes 3c, and a separation device 5 connected, d on the one hand, at one end of the first compartment 3a by a pipe 7 provided with a valve 9 and, on the other hand, at the other end of the first compartment 3a by a pipe 11 provided with a valve 13 and a circulation pump 15.
  • the fluid to be treated can be introduced into the treatment loop 1 through line 17 provided with the valve 19.
  • the purified fluid in the filtration device 3 can be extracted through line 21 provided with the valve 23 and the particles separated in the separation device 5 can be extracted via line 25.
  • the fluid to be treated for example gas
  • the fluid to be treated is introduced into the treatment loop 1 through the line 17; this is driven by the circulator 15 in the filtration device 3 in which a pressure difference has been established between the compartments 3a and 3b in order to be able to extract from this device gas purified by line 21 and gas enriched in particles by line 7; this enriched gas is then introduced into the separation device 5 which can be constituted by a cyclone separator in which a part of the particles is separated from the gas stream so as to deplete it and to be recycled via line 11 in the separation device 3 gas whose particle concentration is not too high in order to avoid clogging of the porous tubes 3c.
  • This gas is subjected to a new treatment cycle after it has been added via line 17 of the fluid to be treated.
  • the pipe 17 provided with the valve 19 is replaced by the pipe 17 ⁇ provided with the valve 19 ⁇ shown in dotted lines, which makes it possible to introduce the fluid upstream of the separation device 5 to begin the treatment cycle by the separation step instead of the filtration step 3.
  • the flow rates and pressures are adjusted by means of the valves 9, 13, 19 and 23 according to the nature of the fluid to be treated in order to obtain in particular in the filtration device 3 a flow of the fluid at high speed with strong turbulence in the tubes 3c in order to avoid the deposition of particles on the walls of the tubes.
  • the flow introduced by the valve 19 and the pipe 17 corresponds substantially to the flow withdrawn by the pipe 21 provided with the valve 23.
  • porous tubes 3c used in the filtration device are chosen according to the nature of the fluid to be treated.
  • These porous tubes can be produced in metallic material, ceramic, for example alumina, or plastic. It is also possible to use tubes comprising a macroporous support internally coated with a miroporous layer, for example carbon tubes coated with a layer of ZrO2. Tubes of this type are described, for example, in American patent 4,341,631 and in European patent 0,040,282. The characteristics of the tubes are also chosen as a function of the fluid to be treated. Generally, tubes with average pore radii of 0.01 to 5 ⁇ m and high permeability are used.
  • the treatment loop described above can be used for the treatment of gases or liquids laden with particles.
  • the operating conditions of a gas treatment loop and a liquid treatment loop are given below.
  • Porous metal tubes with an internal diameter of 15 mm, a thickness of 0.25 mm and an average pore radius of 1 ⁇ m are used, and a pressure difference of 10 kPa (100 mbar) is established between the two compartments of the filtration device.
  • the diffused flow withdrawn through the pipe 21 can be from 10 to 300 m3 per hour and per m2 of porous wall and the recirculation flow in the pipe 7 represents approximately 4 times the diffused flow.
  • the additional flow of fluid to be treated introduced by line 17 corresponds to the diffused flow.
  • an installation of this type may be suitable for treating 10 to 300 m3 / h.m2 of porous wall.
  • porous carbon tubes coated with a layer of microporous zirconia are used, the tubes have an internal diameter of 6 mm and a thickness of 2 mm, and the average pore radius of the microporous layer is 0.01. ⁇ m.
  • the particle separation device 5 can be a cyclone, but the deconcentration into particles effected by the cyclone varies according to the size of these particles. Therefore, under steady state, a certain enrichment of the recycled gas is obtained. Indeed, for particles of 5 ⁇ m, the efficiency of a conventional cyclone is generally 50% and the enrichment of the gas in particles is at most double the rate of particles at the entrance of the loop. When the particles in suspension have dimensions of the order of 1 ⁇ m, the yield of the cyclone is generally 25% and the enrichment corresponds in this case to 4 times the initial rate of particles at the entry of the treatment loop.
  • the device 5 can be constituted by a hydroseparator or a hydrocyclone which makes it possible to evacuate sludge through the pipe 25.
  • FIG 2 there is shown a flash drying installation of radioactive effluents implementing the method of the invention.
  • the effluents to be treated are stored in the tank 30 which is equipped with a pipe 31 and a circulation pump 32, an in-line pH regulation system 34 and an injection device of insolubilization products 36.
  • a pipe 38 provided with a positive displacement pump 40 makes it possible to inject into a flash drying reactor 42 the effluents coming from the tank 30.
  • air 43 is introduced via the pipe hot which is sucked through a filter 44 by a booster 46 and is heated in a heater 48.
  • the liquid effluents are evaporated by hot air and they are cooled at the outlet of the reactor in the dilution box 50 by quenching air which is introduced through line 52 after being cooled in an exchanger 54.
  • the mixture leaving the dilution box 50 is therefore constituted by air loaded with powders or grains and this mixture is then treated by the process of the invention in the loop 56 provided with a cyclone separator 58, a circulation fan 60 and a filtration device 62, the direction of circulation in the treatment loop being indicated in the diagram.
  • the air charged with powders and dust is thus first introduced into the cyclone 58 where a part of the powders is separated and collected in the lock 64 while the gas depleted in particles is taken up by the fan 60, then introduced in the filtration device 62 from which purified air is evacuated via line 66, the air enriched with particles being recycled into cyclone 58 with an additional air charged with dust coming from the flash reactor 42.
  • the purified air leaving the filtration device via line 66 is sucked in by pump 68 and it can be discharged into the atmosphere after passing through the safety filters 70.
  • this installation makes it possible to transform the liquid effluents into powders which are introduced directly, by the method of the invention, into a waste conditioning installation.
  • the volume of the waste is limited and its packaging is carried out continuously under good conditions.
  • FIG 3 there is shown an alternative embodiment of the installation of Figure 2 and we used the same references to designate the components common to both installations.
  • the air stream charged with dust and radioactive powders coming from the dilution box 50 is first introduced into a cyclone 57 inside which a part of the solids is separated at 59.
  • the stream of gas leaving the hydrocyclone is then introduced into the treatment loop 56 via line 61 and brought into circulation by the fan 60 in the filtration device 62 then in the cyclone separator 58; the gas stream leaving the cyclone separator is recycled by the fan 60 into the filtration device 62.
  • a stream of purified gas is extracted from the filtration device 62.
  • the solid particles separated in the cyclone separator 58 can be recycled via line 80 into the dilution box 50 by means of an air current which constitutes the quenching air and which is sucked by the fan 81 through the filter 83.
  • a first cyclone 57 is used to separate the major part of the particles coming from the drying reactor 42 and the process of the invention is then used, namely the loop 56 comprising the cyclone 58 and the filtration device 62, for purifying the gas and rejecting via the pipe 66 purified gas.
  • FIG 4 there is shown an installation for processing liquids containing radioactive particles.
  • This installation comprises a tank 91 for storing the liquid to be treated connected by a pipe 93 provided with a pump 94 to a treatment loop 95 comprising a circulation pump 96, a filtration device 98 and a hydrocyclone 100.
  • a pipe 102 allows extracting the purified liquid leaving the filtration device 98 and it is connected via a two-way valve 104, either to a compressed air accumulator 106, or to a pipe 108 for discharging the purified liquid.
  • the sludge separated in the hydrocyclone 100 can be stored in the storage pot 110 and then evacuated by the line 112 provided with a valve 114 in a storage tank 116 which can be connected by a line 118 provided with a valve 120 to a drying or coating plant for waste.
  • the liquid to be treated is first of all subjected to filtration in the filtration device 98, then the separation of the solid particles contained in the concentrated liquid in the hydrocyclone 100.
  • the Deconcentrated liquid leaving hydrocyclone 100 is recycled with liquid to be treated by pump 96 in filtration device 98.
  • valve 104 is tilted to put line 102 into communication with compressed air accumulator 106 and the valve 114 is opened simultaneously. This makes it possible to ensure a brief counter-current through the porous tubes of the device 98 and to detach the polarization layer which would tend to progressively slow down the flow inside the tubes of the device.
  • the valve 104 is returned to its initial position, but after having closed the valve 114 in order to reinflate the accumulator 106.
  • FIG 5 there is shown an alternative embodiment of the installation of Figure 4.
  • the tank 91 is part of the treatment loop 95.
  • the liquid to be treated which is in the tank 91 is introduced and put into circulation by the pump 96 in the filtration device 98 then in the hydrocyclone 100.
  • the deconcentrated liquid leaving hydrocyclone 100 is recycled via the storage tank 91 in the filtration device 98.
  • a compressed air accumulator 106 is also provided, connected by means of a two-way valve 104 to the extraction pipe 102 of the purified liquid, and a timer is also used to switch the valve at regular intervals. 104 and open the valve 114, the latter being closed slightly before the valve 104 is rocked, to ensure, as before, the re-inflation of the accumulator.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cyclones (AREA)

Claims (11)

1. Verfahren zum Behandeln eines Fluid, das Teilchen in Suspension enthält, dadurch gekennzeichnet, daß es darin besteht, das Fluid einer Bearbeitung in einem Bearbeitungszyklus mit folgenden Verfahrensschrit­ten zu unterwerfen:
a) Trennen (in 5) eines Teils der in dem zu bearbeitenden Fluid vorhandenen Teilchen, um dieses an Teilchen zu verarmen,
b) das so verarmte Fluid in einem ersten Abschnitt (3a) einer filtervorrichtung (3) in Umlauf zu bringen, die in einem ersten und einen zweiten Abschnitt (3a, 3b) durch wenigstens eine poröse und permeable Wand (3c) getrennt ist, die Poren geringerer Dimension als die der Teil­chen besitzt, um am Ausgang dieses ersten Abschnitts ein an Teilchen angereichertes Fluid zu erhalten und in den zweiten Abschnitt gereinigtes fluid zu diffundieren,
c) Wiedergewinnen (in 21) des gereinigten fluids, das in den zweiten Abschnitt diffundiert ist, und
d) Umwälzen des an Teilchen angereicherten Fluids, das den er­sten Abschnitt verläßt, um dieses einem neuen Bearbeitungszyklus mit zu bearbeitendem Fluid zu unterwerfen.
2. Verfahren zum Behandeln eines Fluids das Teilchen in Suspension enthält, dadurch gekennzeichnet, daß es darin besteht, das fluid einer Bearbeitung in einem Bearbeitungszyklus mit folgenden Verfahrensschritten zu unterwerfen:
aʹ) das Fluid in einem ersten Abschnitt (3a) einer filtervorrich­tung (3) in Umlauf zu bringen, die in einem ersten und einen zweiten Ab­schnitt (3a, 3b) durch wenigstens eine poröse und permeable Wand (3c) getrennt ist, die Poren geringerer Dimension als die der Teilchen besitzt, um am Ausgang dieses ersten Abschnitts ein an Teilchen angereichertes fluid zu erhalten und in den zweiten Abschnitt gereinigtes fluid zu diffundieren,
bʹ) Wiedergewinnen (in 21) des gereinigten fluids, das in den zweiten Abschnitt diffundiert ist,
cʹ) Trennen (in 5) eines Teils der in dem den ersten Abschnitt verlassenden Fluid vorhandenen Teilchen, um dieses an Teilchen zu ver­armen, und
dʹ) Umwälzen des so an Teilchen verarmten Fluids, um dieses ei­nem neuen Bearbeitungszyklus mit zu bearbeitendem Fluid zu unterwer­fen.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekenn­zeichnet, daß die porösen und permeablen Wände (3c) aus Rohren beste­hen, die nach innen den ersten Abschnitt der Filtervorrichtung begren­zen.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn­zeichnet, daß das Fluid ein Gas ist.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn­zeichnet, daß das Fluid ein mit Teilchen beladenes Gas ist, die von einer Anlage zum Trocknen flüssiger, radioaktiver Ausflüsse herrühren.
6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn­zeichnet, daß das Fluid eine Flüssigkeit ist.
7. Vorrichtung zum Ausführen des Verfahrens nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß sie umfaßt:
_ ein Bearbeitungs-Umlaufsystem (1 ), das sukzessive umfaßt: eine Filtervorrichtung (3), die durch wenigstens eine poröse und permeable Wand (3c) mit Poren von einer Dimension kleiner als die der Teilchen in einen ersten und einen zweiten Abschnitt (3a, 3b) unterteilt ist; eine Trennvorrichtung (5) für die mit den beiden Enden des ersten Abschnitts (3a) der Filtervorrichtung verbundenen Teilchen, und Vorrichtungen ( 15), um das zu behandeinde Fluid in dem Bearbeitungs-Umlaufsystem in Um­lauf zu bringen,
_ Vorrichtungen (17, 19), um das zu bearbeitende Fluid in das Be­arbeitungs-Umlaufsystem einzuführen,
_ Vorrichtungen (21, 23), um das in den zweiten Abschnitt des Fil­tersystems diffundierte Fluid zu extrahieren,
_ Vorrichtungen (25), um die in der Trennvorrichtung getrennten Teilchen zu sammeln.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Vorrichtungen (15), um das zu bearbeitende Fluid in dem Bearbeitungs-­Umlaufsystem in Umlauf zu bringen, derart sind, daß das Fluid sukzessive in der Filtervorrichtung und in der Teilchentrennvorrichtung umläuft.
9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die vorrichtungen (15), um das zu bearbeitende Fluid in dem Bearbeitungs-­Umlaufsystem in Umlauf zu bringen, derart sind, daß das Fluid sukzessive in der Teilchentrennvorrichtung und in der Filtervorrichtung umläuft.
10. vorrichtung nach einem der Ansprüche 7 bis 9, dadurch ge­kennzeichnet, daß die porösen und permeablen Wände (3c) der Filtervor­richtung aus Rohren bestehen, die nach innen den ersten Abschnitt der filtervorrichtung begrenzen.
11. vorrichtung nach einem der Ansprüche 7 bis 10, dadurch ge­kennzeichnet, daß die Teilchentrennvorrichtung (5) ein Zyklontrenngerät ist.
EP87400680A 1986-04-04 1987-03-26 Verfahren und Vorrichtung zur Behandlung von Flüssigkeiten, die Teilchen in Suspension enthalten Expired - Lifetime EP0241349B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8604843A FR2596907B1 (fr) 1986-04-04 1986-04-04 Procede et dispositif de traitement de fluides contenant en suspension des particules
FR8604843 1986-04-04

Publications (2)

Publication Number Publication Date
EP0241349A1 EP0241349A1 (de) 1987-10-14
EP0241349B1 true EP0241349B1 (de) 1991-02-27

Family

ID=9333901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400680A Expired - Lifetime EP0241349B1 (de) 1986-04-04 1987-03-26 Verfahren und Vorrichtung zur Behandlung von Flüssigkeiten, die Teilchen in Suspension enthalten

Country Status (6)

Country Link
US (1) US4820426A (de)
EP (1) EP0241349B1 (de)
JP (1) JP2575132B2 (de)
DE (1) DE3768124D1 (de)
ES (1) ES2021732B3 (de)
FR (1) FR2596907B1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148318A (ja) * 1987-12-04 1989-06-09 Toshiba Ceramics Co Ltd 固液分離装置
JP2689065B2 (ja) * 1993-03-17 1997-12-10 東芝セラミックス株式会社 分離モジュール
JP2691846B2 (ja) * 1993-04-01 1997-12-17 東芝セラミックス株式会社 固液分離方法及びその装置
US5478465A (en) * 1994-03-30 1995-12-26 Safety-Kleen Corp. Composite liquid filter
GB9911336D0 (en) * 1999-05-15 1999-07-14 Graseby Dynamics Ltd Separation and collection of analyte materials
US6709599B1 (en) * 1999-10-27 2004-03-23 Rwe Nukem Corporation Waste water treatment system with slip stream
WO2001044115A2 (en) * 1999-10-27 2001-06-21 Rwe Nukem Corporation Waste water treatment system
JP5085634B2 (ja) * 2009-12-25 2012-11-28 株式会社東芝 膜ろ過処理システム
CA2858975A1 (en) * 2011-12-12 2013-09-06 Dominion Engineering Incorporated Particulate removal system
US9484122B2 (en) * 2011-12-30 2016-11-01 Ge-Hitachi Nuclear Energy Americas Llc Post-accident fission product removal system and method of removing post-accident fission product
FR3009742B1 (fr) * 2013-08-14 2019-05-17 Ortec Expansion Procede et unite de pompage de produits inflammables susceptibles de former une atmosphere explosive

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1379283A (fr) * 1963-12-27 1964-11-20 Nihon Genshiryoku Kenkyujo Procédé de destruction de déchets radio-actifs solides
US3486621A (en) * 1967-01-12 1969-12-30 Hydromation Eng Co Filtration of organic materials
US3679051A (en) * 1970-02-26 1972-07-25 Prab Conveyors Improved metal and plastic chip wringing apparatus and process
US3792773A (en) * 1971-09-30 1974-02-19 Hydro Clear Corp Apparatus and method for treating waste liquid
US3962078A (en) * 1974-12-13 1976-06-08 Hydromation Filter Company Method and apparatus for treating liquid contaminated with radioactive particulate solids
JPS5626503A (en) * 1979-08-10 1981-03-14 Hitachi Ltd Removing solid material from liquid
FR2552419B1 (fr) * 1983-09-23 1985-12-13 Framatome Sa Procede d'ultrafiltration de l'eau de refroidissement d'un reacteur nucleaire a eau sous pression et dispositif d'ultrafiltration correspondant
JPS62186910A (ja) * 1986-02-13 1987-08-15 Tokuyama Soda Co Ltd 固液分離槽

Also Published As

Publication number Publication date
DE3768124D1 (de) 1991-04-04
JPS62294410A (ja) 1987-12-21
FR2596907B1 (fr) 1988-07-01
JP2575132B2 (ja) 1997-01-22
EP0241349A1 (de) 1987-10-14
US4820426A (en) 1989-04-11
FR2596907A1 (fr) 1987-10-09
ES2021732B3 (es) 1991-11-16

Similar Documents

Publication Publication Date Title
EP0241349B1 (de) Verfahren und Vorrichtung zur Behandlung von Flüssigkeiten, die Teilchen in Suspension enthalten
FR2525488A1 (fr) Procede et appareil de filtration d'une suspension
US4186100A (en) Inertial filter of the porous metal type
EP0332788B1 (de) Verfahren zur Behandlung verunreinigter Öl-in-Wasser-Emulsionen oder-Mikroemulsionen
KR101487586B1 (ko) 반도체처리공정에서 발생한 슬러리 함유 폐수를 재생하는 방법 및 장치
GB2269119A (en) Cleaning a gas filter
JPH04326907A (ja) 微粒子懸濁液を濃縮する方法および装置
JPH11512341A (ja) 水性液から鉄を除去するための方法と装置
CN101472670B (zh) 膜分离装置的运转方法
FR2642662A1 (fr) Dispositif et procede de separation des particules solides presentes dans un gaz et appareil comportant un tel dispositif
EP0152711A2 (de) Verfahren zum Konzentrieren einer Suspension bestehend aus mikroskopisch kleinen Teilchen, Vorrichtung zum Durchführen des Verfahres und seine Anwendungen
EP3797092A1 (de) Verfahren zur behandlung eines fluids durch aufströmung durch ein adsorptionsmittelbett und entsprechende anlage
EP0526372A1 (de) Verfahren und Vorrichtung zur Reinigung von Filtermembranen
US4810389A (en) Filtration system
JP3435103B2 (ja) 集塵用ハニカムフィルタ及びその製造方法
FR2520632A1 (fr) Procede de filtration et microfiltration tangentielle sur surface filtrante de revolution et filtre pour sa mise en oeuvre
FR2587629A1 (fr) Procede de separation de fines particules de catalyseur, d'une charge hydrocarbonee, par filtration au travers de barrieres minerales et boucle de filtration
FR2724849A1 (fr) Procede et dispositif d'elimination de composes par filtration sur membrane et charbon actif
EP0306420B1 (de) Verfahren zur Entfernung von Spuren radioaktiver Elemente, die während der Lagerung von Uran gebildet werden, das bei der Wiederaufbereitung von nuklearen Brennstoffen anfällt
FR2514669A1 (fr) Perfectionnement aux appareils de depoussierage d'air a decolmatage automatique
JP2519319B2 (ja) ろ過装置
EP0556362A1 (de) Verfahren und anlage zur filtrierung einer fluessigkeit, die suspendierte teilchen enthaellt.
JPS58183906A (ja) 懸濁物を含む液体の濾過方法および濾過装置
JP2723323B2 (ja) セラミックろ過装置
EP1349643A1 (de) Rückspülung eines im vorwärtsmodus betriebenen hohlfaserfilters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19880316

17Q First examination report despatched

Effective date: 19891108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 3768124

Country of ref document: DE

Date of ref document: 19910404

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950315

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990304

Year of fee payment: 13

Ref country code: BE

Payment date: 19990304

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990311

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990325

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

BERE Be: lapsed

Owner name: TECHNICATOME SOC. TECHNIQUE POUR L'ENERGIE ATOMIQ

Effective date: 20000331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060329

Year of fee payment: 20