EP0240491B1 - Rotary engine - Google Patents

Rotary engine Download PDF

Info

Publication number
EP0240491B1
EP0240491B1 EP85905507A EP85905507A EP0240491B1 EP 0240491 B1 EP0240491 B1 EP 0240491B1 EP 85905507 A EP85905507 A EP 85905507A EP 85905507 A EP85905507 A EP 85905507A EP 0240491 B1 EP0240491 B1 EP 0240491B1
Authority
EP
European Patent Office
Prior art keywords
expansion
working
expansion space
curve
annular surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85905507A
Other languages
German (de)
French (fr)
Other versions
EP0240491A1 (en
Inventor
Michael L. Zettner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZETTNER, MICHAEL L.
Original Assignee
Zettner Michael L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zettner Michael L filed Critical Zettner Michael L
Publication of EP0240491A1 publication Critical patent/EP0240491A1/en
Application granted granted Critical
Publication of EP0240491B1 publication Critical patent/EP0240491B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3566Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons

Definitions

  • the invention relates to a rotary motor for converting the expansion pressure of working gases into a mechanical rotary movement.
  • the expansion section in the form of a ring section corresponds to the cylinder space of a reciprocating piston engine.
  • a reciprocating piston engine there are no problems in sealing the round piston against the round cylinder. This sealing takes place by means of one or more sealing rings with a corresponding preload, which can compensate for different temperature expansions of the material, or with a correspondingly small piston cross section, without any piston rings.
  • EP-AS 0 080 070 A1 (Zettner).
  • an internal combustion engine is described with a rotor with a circular cross-section and a ring-shaped stator (inner rotor) surrounding the rotor, which is designed so that recesses in the form of expansion sections are present in the peripheral surface of the rotor as expansion spaces, at one end of which a combustion chamber is arranged and the other end ends in a ramp.
  • Flaps are pivotally mounted on the inside of the stator, which can be folded into the recesses of the rotor to absorb the forces of the expanding combustion gases and can be folded back into the stator by the ramp.
  • the expansion space has a rectangular shape in an axial section in the longitudinal direction of the axis, with the result that rectangular edges which have to be sealed in the circumferential direction and in the radial direction occur both on the ramps and on the flaps.
  • the simultaneous sealing of these edges both in the circumferential direction and in the radial direction is permanently impossible.
  • the invention is therefore based on the object of developing a sealing system for rotary motors which have an annular expansion space, which is seen in the circumferential direction and is limited by a fixed and a moving part, the wear behavior of which is at least comparable to the cylinder sealing system of reciprocating piston engines and that does not negatively affect the efficiency of rotary motors.
  • the invention proceeds as prior art from a rotary engine for converting the expansion pressure of working gases into a mechanical rotary movement, with an engine inner part with a cylinder-like outer peripheral surface, an engine outer part surrounding the engine inner part with a cylindrical inner peripheral surface, the outer peripheral surface and the inner peripheral surface opposite each other, bearings with which the inner and outer parts of the motor are rotatably supported against one another, at least one working cam located on one of the cylindrical peripheral surfaces, which is sealed off from the other cylindrical peripheral surface and transmits the expansion pressure of the working gases to the one engine part, at least one section-shaped recess in the same cylindrical circumferential surface in connection to the working cam as an expansion space for the working gases, an inlet and an outlet opening in each expansion space for the inflowing and outflowing working gases, at least one counter-pressure part movably mounted on the other cylindrical peripheral surface, projecting into the expansion space and transmitting the expansion pressure of the working gases to the other engine part, which closes the outlet opening in each expansion space for the working gases in the una
  • the invention consists in that the two circumferential surfaces have the shape of complementary ring surfaces, being seen in an axial section in the longitudinal axis direction through the ring surface and through the working cams, the one ring surface having the shape of a concave parabolic curve and the other ring surface having the shape of a convex parallel-like curve has and both ring surfaces with a close sliding fit parallel to each other to their outer edges, which form two circular slots.
  • the circumferential surface as a parabolic ring surface, all edges to be sealed both in the circumferential direction and in the radial direction in the interior of the motor and the associated sealing problems in the motor are avoided.
  • FIG. 1 shows a center section perpendicular to the motor axis along the half center line I-I of FIG. 2 through a rotary motor 100.
  • the rotary motor 100 is a first embodiment of this type of motor, which is described in more detail below.
  • the rotary motor 100 consists of an inner motor part 101 with a cylindrical outer circumferential surface 102 and an outer motor part 123 surrounding the inner motor part 101 with a cylindrical inner circumferential surface 124, the outer circumferential surface 102 and the inner circumferential surface 124 being close to one another as can be seen in FIG.
  • section-shaped recesses are provided as expansion spaces 107, 108, 109 for the working gas driving the rotary motor 100.
  • part of the cylindrical peripheral surface forms the working cam 104.
  • the rotary motor 1 has three expansion spaces 107, 108, 109 and thus three working cams 104, 105, 106.
  • the expansion space 107 is sealed off from the cylinder-like inner circumferential surface 124 in the circumferential direction by a seal 116. This makes it possible for the working cam 104 to transmit the expansion pressure of the working gases as a torque to the engine inner part 101.
  • the expansion spaces 108, 109 are sealed in the same way by seals 117, 118.
  • An inlet opening 110 for the working gases driving the rotary motor 1 opens into the expansion space 107. The same applies to the other expansion rooms 108, 109.
  • Compressed air, water vapor, organic vapors and also exhaust gases can be used as working gases, which are fed directly to the inlet openings 110, 111, 112.
  • liquid or gaseous fuels can be placed in an external combustion chamber with an oxidizer, e.g. Atmospheric oxygen, burned and the combustion gases are introduced through the inlet openings into the expansion rooms.
  • an oxidizer e.g. Atmospheric oxygen
  • spark plugs which, for example, in the direction of rotation, are seen in the rear of the working cams 104; 105, 106 can be arranged to ignite and burn.
  • a counter pressure part 126 which projects into the expansion space 107 and transmits the expansion pressure of the working gases to the motor outer part 123.
  • a total of four counter pressure parts 126, 127, 128, 129 are present on the motor outer part 123.
  • the counter-pressure part 126 also prevents the working gases from leaving the expansion space 107 from the outlet opening 113 until the relative rotation of the two motor parts 101, 123 relative to one another caused by the expansion of the working gases causes the counter-pressure part 126 to evade the working cam 106 and the Release outlet 113. This can be done in such a way that the working cam 106 is pressed back into a recess 136 against the pressure of a spring 132, 133, 134, 135 by the ramp 120, 121, 122 or the like shown in FIG.
  • FIG. 1A shows the rear edge 130 of the counterpressure part 126 with respect to the relative direction of rotation of both motor parts 101, 123, which can be designed as a wiping edge 130 and conveys the deposits in the expansion spaces to the respective outlet opening.
  • 1B shows a second possibility, which consists in providing the scraper edge 141 on the seal 137 of the counterpressure part 126.
  • FIG. 2 shows a first axial section in the longitudinal direction of the axis through the rotary motor 100 along the line 11-11 of FIG. 1. It can be seen from the section through the two circumferential surfaces 102, 124 that these have the shape of complementary ring surfaces, one ring surface 102 having the shape of a concave parabolic curve on average and the other ring surface 124 having the shape of a convex parabolic curve .
  • the term “parallel-like curve” means the parabola, the parabola-like curve described in FIG. 2A and the hyperbola.
  • the annular surfaces 102, 124 are obtained by rotating one of these parabolic curves around the axis of rotation of the motor 1, wherein the axis of symmetry of the parabolic curve can be at any angle on the axis of rotation.
  • the two ring surfaces 102, 124 run parallel to one another with a close sliding fit up to their outer edges 103, 125, which form two circular slots 148, 149.
  • the term "sliding fit”, which is generally known in the art, is to be understood that the distance d between the edges 103, 125 corresponds at least to the largest of the following three values: twice the mean roughness depth of the ring surface material or the radial and axial runout of the Ring surfaces 102, 124 or the differences in the thermal expansion coefficients of the ring surfaces 102, 124 which are effective during operation.
  • the radial sealing of the slots 148, 149 from the outside is additionally effected by the labyrinth seals 150, 151, since the ring surface parts corresponding to the curve branches of the parabolic curve as Laby rinth seals work.
  • the labyrinth seals 150, 151 consist of a seal with a single deflection of the outflow path for the working gases by 180 °.
  • the labyrinth seal can be seen in an axial section in the longitudinal direction of the axis, at any angle to the motor axis.
  • the recess 119 in the motor outer part 123 serves to receive a suspension of the counter-pressure parts and / or to cool the motor.
  • FIG. 2A shows the “parabola-like curve 144” mentioned above.
  • the parabola-like curve 144 consists of an arc 145, to which two straight lines 146, 147 adjoin. If the straight lines 146, 147 are extended beyond the circular arc 145, the straight lines 146, 147 enclose an angle ⁇ .
  • the angle ⁇ is always less than 180 °.
  • FIG. 3 shows a second axial section in the longitudinal axis direction through the rotary motor 100 along the line 111-111 from FIG. 1.
  • This section shows how a seal 117 is arranged in the outer circumferential surface 102 of the inner motor part 101, which, viewed in the circumferential direction, seals the outer circumferential surface 102 against the inner circumferential surface 124 of the outer motor part 123.
  • the expansion space 107 in the region of the working cam 104 is thereby sealed.
  • a special property of the seal 117 which can be readily understood from FIG. 3, is to be practically wear-free after the initial running-in process, since the motor outer part 123 and the motor inner part 101 can rotate relative to one another with any desired accuracy without play due to the bearings 141, 142.
  • FIG. 4 shows a third axial section in the longitudinal direction of the axis through the rotary motor 100 along the line IV-IV of FIG. 1.
  • Figure 4 is thus a section through the expansion space 108 for the working gases.
  • the expansion space 108 also has the concave shape of a parabola, a parabola-like curve described in FIG. 2A or a hyperbola.
  • the wall of the expansion space 108 merges continuously into the outer peripheral surface 102.
  • At one end of the expansion space 108 is the inlet opening 111 for the working gases flowing into the expansion space 108 and at the other end the outlet opening 114 for the expanded working gases.
  • FIG. 5 shows an axial section in the longitudinal axis direction along the line V-V of FIG. 1.
  • This section shows the counter pressure part 126 in the expansion space 107.
  • the counter pressure part 126 has a shape complementary to the wall of the expansion space 107 and is sealed against the wall of the expansion space 107 by a seal 137. It can also be seen here that there are no edges to be sealed in the circumferential direction between the counterpressure part 126 and the expansion space 107.
  • the spring 132 is part of the control device.
  • the head 131 of the counter pressure part 132 rests with four approximately conical surfaces on the surfaces of a recess 136 in the motor outer part 123.
  • the inner motor part 101 can be the stator and the outer motor part 123 can be the rotor.
  • the inner motor part 101 is the rotor and the outer motor part 123 is the stator.
  • FIG. 6 shows a section perpendicular to the central axis along the half center line VI-VI of FIG. 7 through a rotary motor 200.
  • the rotary motor 200 consists of a motor inner part 201 with an outer circumferential surface 202 and a motor outer part 204 surrounding the motor inner part 201 with an inner circumferential surface 206, the outer circumferential surface 202 and the inner circumferential surface 206, as can be seen from FIG. 7, lying closely opposite one another in the form of two ring surfaces.
  • Part of the inner peripheral surface 206 is between two section-shaped expansion spaces
  • Working cams 207, 208, 209 have been left standing.
  • the working cam 207 is sealed off from the annular outer peripheral surface 202 by a seal 213. This makes it possible for the working cam 207 to transmit the expansion pressure of the working gases as torque to the outer motor part 205.
  • An inlet opening 211 for the working gases opens into the expansion space 210.
  • a counterpressure part 203 which projects into the expansion space 210 and transmits the expansion pressure of the working gases to the engine inner part 201, is mounted.
  • the counter pressure part 203 is sealed off from the inner circumferential surface 206 by a parabolic seal 213.
  • the counter pressure part 203 covers an outlet opening 212 for the expanding working gases until the relative rotation of the two motor parts 201, 205 caused by the expansion against one another via a control, for. B. a ramp 219, which causes the counter-pressure part 203 to evade the working cam 207.
  • Each counter pressure part 203 is pressed by the pressure of a spring 204 against the inner surface 206 or the wall of the expansion space 210, the sealing being carried out in the circumferential direction by a seal 214.
  • the seal 214 has the same shape as the seal 137.
  • FIG. 7 shows a first axial section in the longitudinal direction of the axis through the rotary motor 200 along the line VII-VII of FIG. 6. From this section, it can be seen that the outer peripheral surface 202 and the inner peripheral surface 206 have the shape of complementary ring surfaces, the outer peripheral surface 202 having the convex shape and the inner peripheral surface 206 having the concave shape of the parabolic curves described above.
  • the convex and concave annular surfaces 202, 206 corresponding to the curves run, as has also been described above, with a sliding fit up to their outer edges, which appear as two circular slots 215, 216.
  • FIG. 8 shows a second axial section in the longitudinal direction of the axis through the rotary motor 200 along the line VIII-VIII of FIG. 6. This figure shows a section through a section-shaped expansion space 210 and corresponds to FIG. 4.
  • FIG. 9 finally shows a third axial section in the longitudinal direction of the axis through the rotary motor 200 along the line IX-IX of FIG. 6. From this section it can be seen that the counter pressure part 202 moves into the expansion space 210 and is held there by the spring 204. The counter pressure part 202 is sealed in the circumferential direction against the wall of the expansion space 210 by the seal 214, which is visible in cross section in FIG. 6. This seal 214 corresponds to the seal 137 from FIG. 5 and is described there in detail. The deflection of the counter-pressure part 203 when the inner motor part 201 rotates relative to the outer motor part 205 when the working cam 207 approaches is effected by a ramp 219 .
  • the difference between the rotary motor 100 and the rotary motor 200 is that in the rotary motor 100 the outer peripheral surface 102 has the concave shape and the inner peripheral surface 124 has the convex shape, while in the rotary motor 200 the outer peripheral surface 202 the convex shape and the inner peripheral surface 206 has the concave shape.
  • FIG. 14A shows the first embodiment of the Wenzel motor 70 with the expansion space 71, the working cam 72 and the counter pressure part 73.
  • This first embodiment corresponds to the motor principle shown in FIGS. 1 to 5.
  • FIG. 14B shows the second embodiment of the Wenzel motor 80, in which the counterpressure part 83 is fastened to the inner part, the working cam to the outer part and which corresponds to the motor principle shown in FIGS. 6 to 9.
  • the rotary motor 80 has the expansion space which can only be specified in cross section 81, the working cam 82 and the counter-pressure part 83.
  • the working gases enter the expansion space through the slot 84 from the inner part of the motor.
  • the expansion space can therefore only be specified in a cross-sectional line 81, since it is in the in Figure 14B is cut away outer motor part.
  • the labyrinth seal 85 is in this case firmly attached to the motor outer part 86.
  • FIG. 15 shows the Zettner motor 90 with the expansion space 91, the working cam 92, the counter-pressure part 93 and the inlet opening 94 for the working gases into the expansion space 91.
  • the rotary motor 90 works, for example, as an external rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Hydraulic Motors (AREA)
  • Supercharger (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Sealing Devices (AREA)
  • Power Steering Mechanism (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

A rotary engine in which the expansion pressure of a working gas is converted into a mechanical rotary movement consists of an inner engine element with an outer circumferential surface and an outer engine element which surrounds the inner element and has an inner circumferential surface, the two surfaces being disposed closely adjacent and facing each other. Disposed at, for example, the inner surface are three spaced projections, which transmit the expansion pressure of the gas to the inner element, and three expansion chambers between the projections. Four reaction members, which are each movable into the expansion chambers in turn and transmit the gas expansion pressure to the outer element, are mounted at the circumferential surface of the outer element. The two circumferential surfaces have the form of complementary annular surfaces, wherein in cross-section the inner surface has the shape of a concave, parabola-like curve and the outer surface the shape of a convex, parabola-like curve. The surfaces extend parallel to each other with close sliding fit up to their outer edges.

Description

Die Erfindung betrifft einen Rotationsmotor zur Umwandlung des Expansionsdruckes von Arbeitsgasen in eine mechanische Drehbewegung.The invention relates to a rotary motor for converting the expansion pressure of working gases into a mechanical rotary movement.

Es gibt bereits zahlreiche theoretisch durchdachte Motorkonzeptionen für Rotationsmotoren. Eine bedeutende Gruppe dieser Motoren zeichnet sich dadurch aus, daß zwei um eine gemeinsame Achse gelagerte und sich relativ zueinander drehbare Motorteile vorhanden sind, zwischen denen ein ringkörperförmiger Hohlraum vorhanden ist, wobei der Hohlraum von einem oder mehreren beweglichen Teilen und einem oder mehreren feststehenden Teilen unterbrochen und gegliedert wird. Die beweglichen Teile sind hierbei an dem einen Mortorteil und die feststehenden Teile an dem anderen Motorteil befestigt. Hierdurch wird der ringkörperförmige Hohlraum in Umfangsrichtung gesehen in Teilräume aufgeteilt, so daß jeweils zwischen einem feststehenden Teil und einem beweglichen Teil ein in seinem Volumen veränderbarer Expansionsraum entsteht. In diesen ringabschnittsförmigen Expansionsräumen findet die Expansion der Arbeitsgase statt. Die Arbeitsgase können heiße Verbrennungsgase sein, es kommen aber auch Dampf, Druckluft oder sämtliche bekannten Expansionsmedien in Frage.There are already numerous theoretically thought-out motor designs for rotary motors. A significant group of these motors is characterized by the fact that there are two motor parts mounted about a common axis and rotatable relative to one another, between which there is an annular hollow space, the hollow space being interrupted by one or more moving parts and one or more fixed parts and structured. The moving parts are attached to one Mortor part and the fixed parts to the other motor part. As a result, the annular body-shaped cavity is divided into subspaces, seen in the circumferential direction, so that an expansion space that can be changed in volume is created between a fixed part and a movable part. The expansion of the working gases takes place in these expansion sections in the shape of a ring section. The working gases can be hot combustion gases, but steam, compressed air or all known expansion media can also be used.

Bei dem vorbeschriebenen Motorkonzept entspricht der ringabschnittsförmige Expansionsraum dem Zylinderraum eines Hubkolbenmotors. Zur Funktionstüchtigkeit eines derartigen Rotationsmotors - ist es aber erforderlich, daß jeder Expansionsraum sowohl in Umfangsrichtung als auch in radialer Richtung nach außen abgedichtet werden kann, um ein Austreten der Arbeitsgase zu verhindern. Bei einem Hubkolbenmotor bestehen keine Probleme, den runden Kolben gegen den runden Zylinder abzudichten. Diese Abdichtung erfolgt mittels eines oder mehrerer Dichtungsringe mit entsprechender Vorspannung, welche unterschiedliche Temperaturausdehnungen des Materials kompensieren können, oder bei entsprechend kleinem Kolbenquerschnitt ganz ohne Kolbenringe. Bei rundlaufenden Motoren hat man es jedoch nicht mit einer ununterbrochenen Zylinderfläche, sondern mit einer unterbrochenen Fläche zu tun.In the engine concept described above, the expansion section in the form of a ring section corresponds to the cylinder space of a reciprocating piston engine. For the functionality of such a rotary motor - it is necessary that each expansion space can be sealed both in the circumferential direction and in the radial direction to the outside in order to prevent the working gases from escaping. With a reciprocating piston engine, there are no problems in sealing the round piston against the round cylinder. This sealing takes place by means of one or more sealing rings with a corresponding preload, which can compensate for different temperature expansions of the material, or with a correspondingly small piston cross section, without any piston rings. In the case of rotary engines, however, you are not dealing with an uninterrupted cylinder surface, but with an interrupted surface.

Bereits beim sogenannten « Wankelmotor sind hierbei erhebliche Schwierigkeiten aufgetreten, besonders an den Stellen, an denen mehrere abzudichtende Kanten zusammenlaufen. Das Problem des Fehlens einer befriedigenden Abdichtbarkeit ist bei sämtlichen vorbekannten Rotationsmotoren vorhanden. Dieses sei nachfolgend an sechs Beispielen von vorbekannten Motorkonzepten im Einzelnen besprochen.Considerable difficulties have already arisen with the so-called "Wankel engine", especially at the points where several edges to be sealed come together. The problem of the lack of a satisfactory sealability is present in all previously known rotary motors. This is discussed in detail below using six examples of previously known engine concepts.

DE-PS 2 83 368 (Schroeder). Diese Patentschrift beschreibt einen Rotationsmotor mit einem zylinderartigen Rotor und einem den Rotor umgebenden ringkörperförmigen Stator (Innenläufer), wobei an der Innenseite des Stators Schieber gelagert sind, die durch am Rotor befindliche Arbeitsnocken in den Stator zurückschiebbar sind und, in der Umfangsfläche des Rotors abschnittsförmige Ausnehmungen als Expansionsräume vorhanden sind, an deren einem Ende eine Brennkammer angeordnet ist und deren anderes Ende in eine Rampe ausläuft, die die Schieber in den Stator zurückschieben. Diesem Rotationsmotor haftet der entscheidende Nachteil an, daß der Schieber sowohl gegen den Stator als auch gegen den Rotor abgedichtet sein muß. Da der Expansionsraum in einem Axialschnitt in Achsenlängsrichtung gesehen, eine rechteckige Form aufweist, bedeutet die Abdichtung des Schiebers, daß, in dem Axialschnitt gesehen, an dem Schieber rechtwinkeligen Kanten abgedichtet werden müssen. Dieses ist dauerhaft nicht möglich.DE-PS 2 83 368 (Schroeder). This patent describes a rotary motor with a cylinder-like rotor and an annular body-shaped stator (inner rotor) surrounding the rotor, sliders being mounted on the inside of the stator, which can be pushed back into the stator by working cams located on the rotor and, in the peripheral surface of the rotor, section-shaped recesses are available as expansion spaces, at one end of which a combustion chamber is arranged and the other end of which runs into a ramp which push the slides back into the stator. This rotary motor has the crucial disadvantage that the slide must be sealed against both the stator and the rotor. Since the expansion space has a rectangular shape in an axial section in the longitudinal direction of the axis, the sealing of the slide means that, seen in the axial section, rectangular edges on the slide must be sealed. This is not possible permanently.

US-PS 12 39 853 (Walter). Der in dieser Patentschrift beschriebene Motor arbeitet nach dem gleichen Prinzip wie der Motor nach der vorbeschriebenen DE-PS 2 83 368. Die Verbrennungsgase strömen über ein Tellerventil in die ringförmige Brennkammer ein. Ein Schieber wird über eine außenliegende Hebelsteuerung in den Expansionsraum hinein- und herausgehoben. Auch hier hat der kreisabschnittsförmige Expansionsraum. einen rechteckigen Querschnitt, so daß die Notwendigkeit der Abdichtung von Kanten auch hier gegeben ist.U.S. Patent No. 12 39 853 (Walter). The engine described in this patent works on the same principle as the engine according to the previously described DE-PS 2 83 368. The combustion gases flow into the annular combustion chamber via a poppet valve. A slide is lifted into and out of the expansion space via an external lever control. Here, too, has the expansion section in the shape of a circular segment. a rectangular cross-section, so that there is also the need to seal edges.

US-PS 14 78 378 (Brown). In dieser Patentschrift ist ein Rotationsmotor beschrieben, bei dem durch eine ringkörperförmige Ausbildung des Expansionsraumes und des Arbeitsnockens bzw. des Kolbens versucht worden ist, die mit Kanten verbundenen Dichtungsprobleme zu beseitigen. Das Ergebnis besteht jedoch darin, daß die mit den Kanten verbundenen Dichtungsprobleme lediglich verlagert worden sind, da die Wandung des Expansionsraumes nicht voll kreisringförmig ist, sondern der Stator den Kolben von beiden Seiten jeweils mit spitzwinkeligen Kanten umfaßt. Diese spitzwinkeligen Kanten bilden in Umfangsrichtung gesehen, nicht abdichtbare kreisabschnittsförmige Durchlässe zwischen den Räumen vor und hinter den Kolbenringen.U.S. Patent 1,478,378 (Brown). In this patent, a rotary motor is described in which attempts have been made to eliminate the sealing problems associated with edges by means of a ring-shaped configuration of the expansion space and the working cam or the piston. The result, however, is that the sealing problems associated with the edges have only been shifted, since the wall of the expansion space is not completely circular, but the stator surrounds the piston from both sides with acute-angled edges. Seen in the circumferential direction, these acute-angled edges form non-sealable circular section-shaped passages between the spaces in front of and behind the piston rings.

US-PS 37 12 273 (Thomas). Aus einem Axialschnitt in Achsenlängsrichtung gesehen ist zu entnehmen, daß bei dem in dieser Patentschrift beschriebenen Motor der Stator mit spitzen kreisabschnittsförmigen Kanten in den Rotor hineinragt. Auch diese spitzen kreisabschnittsförmigen Kanten sind in Umfangsrichtung gesehen, nicht abdichtbar. Das bedeutet, daß der Druckraum vor dem umlaufenden Kolben, der die Arbeitsgase enthält, gegenüber dem Raum hinter dem Kolben nicht abdichtbar ist.U.S. Patent 37 12 273 (Thomas). From an axial section in the longitudinal direction of the axis, it can be seen that in the motor described in this patent, the stator protrudes into the rotor with pointed, circular-section-shaped edges. These pointed circular section-shaped edges are also seen in the circumferential direction and cannot be sealed. This means that the pressure space in front of the rotating piston, which contains the working gases, cannot be sealed off from the space behind the piston.

DE-OS 24 29 553 (Wenzel). Die Offenlegungsschrift beschreibt einen Kreiskolbenmotor mit Einlaß- und Auslaßöffnungen, der einen mit einer Dichtleiste an einem Arbeitsnocken versehenen Rotor auf einer Antriebswelle in einem Gehäuse aufweist, dessen Auslaßöffnungen durch Klappen gesteuert werden, wobei das Gehäuse und der Rotor mit Ausnahme des Arbeitsnockens im wesentlichen kreiszylindrische einander gegenüberliegende Flächen aufweisen, zwischen denen ein kreiszylindrischer Ringraum ausgebildet ist, in dem ein gesteuertes, den Druckraum sperrendes Dichtelement bewegbar ist. In einem Axialschnitt in Achsenlängsrichtung gesehen, hat der Druckraum einen rechteckigen Querschnitt, was bedeutet, das sowohl das Dichtelement als auch der Arbeitsnocken mindestens zwei abzudichtende Kanten aufweisen. Die gleichzeitige Abdichtung dieser Kanten sowohl in Umfangsrichtung als auch in radialer Richtung ist dauerhaft nicht möglich.DE-OS 24 29 553 (Wenzel). The laid-open specification describes a rotary engine with inlet and outlet openings, which has a rotor provided with a sealing strip on a working cam on a drive shaft in a housing, the outlet openings of which are controlled by flaps, the housing and the With the exception of the working cam, the rotor has essentially circular-cylindrical opposing surfaces, between which a circular-cylindrical annular space is formed, in which a controlled sealing element blocking the pressure space can be moved. Seen in an axial section in the longitudinal direction of the axis, the pressure chamber has a rectangular cross section, which means that both the sealing element and the working cam have at least two edges to be sealed. The simultaneous sealing of these edges both in the circumferential direction and in the radial direction is permanently impossible.

EP-AS 0 080 070 A1 (Zettner). In dieser Patentanmeldungsschrift wird ein Verbrennungsmotor beschrieben mit einem im Querschnitt kreisförmigen Rotor und einen den Rotor umgebenden ringkörperförmigen Stator (Innenläufer), der so ausgebildet ist, daß in der Umfangsfläche des Rotors ringabschnittsförmige Ausnehmungen als Expansionsräume vorhanden sind, an deren einem Ende eine Brennkammer angeordnet ist und deren anderes Ende in eine Rampe ausläuft. An der Innenseite des Stators sind Klappen schwenkbar gelagert, die in die Ausnehmungen des Rotors zur Aufnahme der Kräfte der expandierenden Verbrennungsgase hineinklappbar und durch die Rampe in den Stator rückklappbar sind. Auch bei diesem Rotationsmotor hat der Expansionsraum in einem Axialschnitt in Achsenlängsrichtung gesehen eine rechteckige Form, mit der Folge, daß sowohl an den Rampen als auch an den Klappen rechteckige, in Umfangsrichtung und in radialer Richtung abzudichtende Kanten auftreten. Die gleichzeitige Abdichtung dieser Kanten sowohl in Umfangsrichtung als auch in radialer Richtung ist dauerhaft nicht möglich.EP-AS 0 080 070 A1 (Zettner). In this patent application, an internal combustion engine is described with a rotor with a circular cross-section and a ring-shaped stator (inner rotor) surrounding the rotor, which is designed so that recesses in the form of expansion sections are present in the peripheral surface of the rotor as expansion spaces, at one end of which a combustion chamber is arranged and the other end ends in a ramp. Flaps are pivotally mounted on the inside of the stator, which can be folded into the recesses of the rotor to absorb the forces of the expanding combustion gases and can be folded back into the stator by the ramp. In this rotary motor, too, the expansion space has a rectangular shape in an axial section in the longitudinal direction of the axis, with the result that rectangular edges which have to be sealed in the circumferential direction and in the radial direction occur both on the ramps and on the flaps. The simultaneous sealing of these edges both in the circumferential direction and in the radial direction is permanently impossible.

Der Erfindung liegt daher die Aufgabe zugrunde, für Rotationsmotoren, die einen ringkörperförmigen Expansionsraum haben, der in Umfangsrichtung gesehen, von einem feststehenden und einem beweglichen Teil begrenzt ist, ein Dichtungssystem zu entwickeln, das in seinem Verschleißverhalten mindestens mit dem Zylinderdichtungssystem von Hubkolbenmotoren vergleichbar ist und das den Wirkungsgrad von Rotationsmotoren nicht negativ beeinflußt.The invention is therefore based on the object of developing a sealing system for rotary motors which have an annular expansion space, which is seen in the circumferential direction and is limited by a fixed and a moving part, the wear behavior of which is at least comparable to the cylinder sealing system of reciprocating piston engines and that does not negatively affect the efficiency of rotary motors.

Zur Lösung dieser Aufgabe geht die Erfindung als Stand der Technik von einem Rotationsmotor aus zur Umwandlung des Expansionsdruckes von Arbeitsgasen in eine mechanische Drehbewegung, mit einem Motorinnenteil mit einer zylinderartigen Außenumfangsfläche, einem das Motorinnenteil umgebenden Motoraußenteil mit einer zylinderartigen Innenumfangsfläche, wobei die Außenumfangsfläche und die Innenumfangsfläche einander gegenüberliegen, Lagern, mit denen Motorinnenteil und Motoraußenteil drehbar gegeneinander gelagert sind, mindestens einem an einer der zylinderartigen Umfangsflächen befindlichen Arbeitsnocken, der gegenüber der anderen zylinderartigen Umfangsfläche abgedichtet ist und den Expansionsdruck der Arbeitsgase auf das eine Motorteil überträgt, mindestens einer abschnittsförmigen Ausnehmung in der gleichen zylinderartigen Umfangsfläche im Anschluß an den Arbeitsnocken als Expansionsraum für die Arbeitsgase, einer Ein- und einer Austrittsöffnung in jedem Expansionsraum für die ein- und ausströmenden Arbeitsgase, mindestens einem an der anderen zylinderartigen Umfangsfläche beweglich gelagerten, in den Expansionsraum hineinragenden und den Expansionsdruck der Arbeitsgase auf das andere Motorteil übertragenden Gegendruckteil, welches im unbeeinflußten Zustand die Austrittsöffnung in jedem Expansionsraum für die Arbeitsgase verschließt und mindestens einer Steuereinrichtung für das Gegendruckteil, durch weiches das Gegendruckteil bei Annäherung des Arbeitsnockens aus dem Expansionsraum ausgelenkt wird, so daß die Austrittsöffnung freigegeben ist. Die Erfindung besteht darin, daß die beiden Umfangsflächen die Form von komplementären Ringflächen haben, wobei in einem Axialschnitt in Achsenlängsrichtung durch die Ringfläche und durch die Arbeitsnocken gesehen, die eine Ringfläche die Form einer konkaven parabelartigen Kurve und die andere Ringfläche die Form einer konvexen parabeiartigen Kurve aufweist und beide Ringflächen mit enger Gleitpassung parallel zueinander bis zu ihren Außenkanten verlaufen, die zwei kreisförmige Schlitze bilden. Durch die Ausgestaltung der Umfangsfläche als parabelartige Ringfläche werden sämtliche, sowohl in Umfangsrichtung als auch in radialer Richtung abzudichtende Kanten im Motorinneren und die hiermit zusammenhängenden Dichtungsprobleme im Motor vermieden.To achieve this object, the invention proceeds as prior art from a rotary engine for converting the expansion pressure of working gases into a mechanical rotary movement, with an engine inner part with a cylinder-like outer peripheral surface, an engine outer part surrounding the engine inner part with a cylindrical inner peripheral surface, the outer peripheral surface and the inner peripheral surface opposite each other, bearings with which the inner and outer parts of the motor are rotatably supported against one another, at least one working cam located on one of the cylindrical peripheral surfaces, which is sealed off from the other cylindrical peripheral surface and transmits the expansion pressure of the working gases to the one engine part, at least one section-shaped recess in the same cylindrical circumferential surface in connection to the working cam as an expansion space for the working gases, an inlet and an outlet opening in each expansion space for the inflowing and outflowing working gases, at least one counter-pressure part movably mounted on the other cylindrical peripheral surface, projecting into the expansion space and transmitting the expansion pressure of the working gases to the other engine part, which closes the outlet opening in each expansion space for the working gases in the unaffected state and at least a control device for the counter pressure part, by means of which the counter pressure part is deflected out of the expansion space when the working cam approaches, so that the outlet opening is released. The invention consists in that the two circumferential surfaces have the shape of complementary ring surfaces, being seen in an axial section in the longitudinal axis direction through the ring surface and through the working cams, the one ring surface having the shape of a concave parabolic curve and the other ring surface having the shape of a convex parallel-like curve has and both ring surfaces with a close sliding fit parallel to each other to their outer edges, which form two circular slots. By designing the circumferential surface as a parabolic ring surface, all edges to be sealed both in the circumferential direction and in the radial direction in the interior of the motor and the associated sealing problems in the motor are avoided.

In den Zeichnungen sind Ausführungsbeispiele der Erfindung wiedergegeben. Es zeigen :

  • Fig. 1 einen zur Motorachse senkrechten Mittelschnitt nach der halben Mittellinie I-I von Fig. 2 durch eine erste Ausführungsform des Rotationsmotors,
    • Fig. 1A einen Teilschnitt durch ein Gegendruckteil mit Abstreifkante,
    • Fig. 1B einen Teilschnitt durch ein Gegendruckteil mit einer Abstreifkante an einer Dichtung,
  • Fig. 2 einen Schnitt nach der Linie 11-11 von Fig. 1,
    • Fig. 2A eine parabelähnliche Kurve,
  • Fig. 3 einen Schnitt nach der Linie 111-111 von Fig. 1,
  • Fig. 4 einen Schnitt nach der Linie IV-IV von Fig. 1,
  • Fig. 5 einen Schnitt nach der Linie V-V von Fig. 1,
  • Fig. 6 einen zur Motorachse senkrechten Mittelschnitt nach der halben Mittellinie VI-VI von Fig. 7 durch eine zweite Ausführungsform des Rotationsmotors,
  • Fig. 7 einen Schnitt nach der Linie VII-VII von Fig. 6,
  • Fig. 8 einen Schnitt nach der Linie VIII-VIII von Fig. 6,
  • Fig. 9 einen Schnitt nach der Linie IX-IX von Fig. 6,
Exemplary embodiments of the invention are shown in the drawings. Show it :
  • 1 is a central section perpendicular to the motor axis along the half center line II of FIG. 2 by a first embodiment of the rotary motor,
    • 1A shows a partial section through a counter pressure part with a scraper edge,
    • 1B is a partial section through a counter pressure part with a scraper edge on a seal,
  • 2 shows a section along the line 11-11 of Fig. 1,
    • 2A is a parabola-like curve,
  • 3 shows a section along the line 111-111 of FIG. 1,
  • 4 shows a section along the line IV-IV of FIG. 1,
  • 5 shows a section along the line VV of FIG. 1,
  • 6 shows a central section perpendicular to the motor axis along the half center line VI-VI of FIG. 7 through a second embodiment of the rotary motor,
  • 7 is a section along the line VII-VII of Fig. 6,
  • 8 is a section along the line VIII-VIII of Fig. 6,
  • 9 is a section along the line IX-IX of Fig. 6,

Die nachfolgenden Zeichnungen sind jeweils teilweise geschnittene perspektivische Ansichten von bekannten Motoren, die mit den Merkmalen der Erfindung versehen sind :

  • Fig. 10 Schroeder-Motor,
  • Fig. 11 Walter-Motor,
  • Fig. 12 Brown-Motor,
  • Fig. 13 Thomas-Motor,
  • Fig. 14A Wenzel-Motor,
  • Fig. 14B Wenzel-Motor und
  • Fig. 15 Zettner-Motor.
The following drawings are perspective views, partly in section of known engines provided with the features of the invention:
  • 10 Schroeder motor,
  • 11 Walter engine,
  • 12 Brown motor,
  • 13 Thomas motor,
  • 14A Wenzel motor,
  • 14B Wenzel engine and
  • Fig. 15 Zettner engine.

In Figur 1 ist ein zur Motorachse senkrechter Mittelschnitt nach der halben Mittellinie I-I von Figur 2 durch einen Rotationsmotor 100 wiedergegeben. Bei dem Rotationsmotor 100 handelt es sich um eine erste Ausführungsform dieses Motortyps, die nachfolgend näher beschrieben wird.FIG. 1 shows a center section perpendicular to the motor axis along the half center line I-I of FIG. 2 through a rotary motor 100. The rotary motor 100 is a first embodiment of this type of motor, which is described in more detail below.

Der Rotationsmotor 100 besteht aus einem Motorinnenteil 101 mit einer zylinderartigen Außenumfangsfläche 102 und einem das Motorinnenteil 101 umgebenden Motoraußenteil 123 mit einer zylinderartigen Innenumfangsfläche 124, wobei die Außenumfangsfläche 102 und die Innenumfangsfläche 124 wie aus Figur 2 zu ersehen ist einander dicht gegenüber liegen. In der zylinderartigen Außenumfangsfläche 102 sind abschnitt förmige Ausnehmungen als Expansionsräume 107, 108, 109 für die den Rotationsmotor 100 antreibendes Arbeitsgas vorhanden. Zwischen jeweils zwei abschnittsförmigen Ausnehmungen, beispielsweise zwischen den Ausnehmungen 107, 108, bildet ein Teil der zylinderartigen Umfangsfiäche den Arbeitsnocken 104. In dem in Figur 1 dargestellten Beispiel hat der Rotationsmotor 1 drei Expansionsräume 107, 108, 109 und damit drei Arbeitsnocken 104, 105, 106. Der Expansionsraum 107 ist gegenüber der zylinderartigen Innenumfangsfläche 124 in Umfangsrichtung durch eine Dichtung 116 abgedichtet. Dadurch ist es möglich, daß der Arbeitsnocken 104 den Expansionsdruck der Arbeitsgase als Drehmoment auf das Motorinnenteil 101 überträgt. Die Expansionsräume 108, 109 sind in gleicher Weise durch Dichtungen 117, 118 abgedichtet. In den Expansionsraum 107 mündet eine Eintrittsöffnung 110 für die den Rotationsmotor 1 antreibenden Arbeitsgase. Entsprechendes gilt für die anderen Expansionsräume 108, 109.The rotary motor 100 consists of an inner motor part 101 with a cylindrical outer circumferential surface 102 and an outer motor part 123 surrounding the inner motor part 101 with a cylindrical inner circumferential surface 124, the outer circumferential surface 102 and the inner circumferential surface 124 being close to one another as can be seen in FIG. In the cylindrical outer peripheral surface 102, section-shaped recesses are provided as expansion spaces 107, 108, 109 for the working gas driving the rotary motor 100. Between two section-shaped recesses, for example between the recesses 107, 108, part of the cylindrical peripheral surface forms the working cam 104. In the example shown in FIG. 1, the rotary motor 1 has three expansion spaces 107, 108, 109 and thus three working cams 104, 105, 106. The expansion space 107 is sealed off from the cylinder-like inner circumferential surface 124 in the circumferential direction by a seal 116. This makes it possible for the working cam 104 to transmit the expansion pressure of the working gases as a torque to the engine inner part 101. The expansion spaces 108, 109 are sealed in the same way by seals 117, 118. An inlet opening 110 for the working gases driving the rotary motor 1 opens into the expansion space 107. The same applies to the other expansion rooms 108, 109.

Als Arbeitsgase können Druckluft, Wasserdampf, organische Dämpfe und auch Abgase verwandt werden, die unmittelbar den Eintrittsöffnungen 110, 111, 112 zugeführt werden. Außerdem können flüssige oder gasförmige Brennstoffe in einer externen Brennkammer mit einem Oxidator, z.B. Luftsauerstoff, verbrannt und die Verbrennungsgase durch die Eintrittsöffnungen hindurch in die Expansionsräume eingeleitet werden. Es ist aber auch möglich, durch die Eintrittsöffnungen hindurch die Brennstoffe direkt in die Expansionsräume einzuleiten und sie dort durch Zündkerzen, die beispielsweise in Drehrichtung gesehen in der Rückseite der Arbeitsnocken 104; 105, 106 angeordnet sein können, zu zünden und zu verbrennen.Compressed air, water vapor, organic vapors and also exhaust gases can be used as working gases, which are fed directly to the inlet openings 110, 111, 112. In addition, liquid or gaseous fuels can be placed in an external combustion chamber with an oxidizer, e.g. Atmospheric oxygen, burned and the combustion gases are introduced through the inlet openings into the expansion rooms. However, it is also possible to introduce the fuels directly into the expansion spaces through the inlet openings, and to introduce them there through spark plugs which, for example, in the direction of rotation, are seen in the rear of the working cams 104; 105, 106 can be arranged to ignite and burn.

An der zylinderartigen Innenumfangsfläche 124 des Motoraußenteils 123 ist ein in den Expansionsraum 107 hineinragendes und den Expansionsdruck der Arbeitsgase auf das Motoraußenteil 123 übertragendes Gegendruckteil 126 gelagert. Insgesamt sind am Motoraußenteil 123 vier Gegendruckteile 126, 127, 128, 129 vorhanden. Das Gegendruckteil 126 hindert außerdem die Arbeitsgase daran, aus der Austrittsöffnung 113 den Expansionsraum 107 zu verlassen, bis die durch die Expansion der Arbeitsgase bewirkte relative Drehung beider Motorteile 101, 123 gegeneinander über eine Steuerung das Gegendruckteil 126 dazu veranlaßt, dem Arbeitsnocken 106 auszuweichen und die Austrittsöffnung 113 freizugeben. Dieses kann in der Weise geschehen, daß der Arbeitsnocken 106 gegen den Druck einer Feder 132, 133, 134, 135 durch die in Figur 1 wiedergegebene Rampe 120, 121, 122 oder dergleichen in eine Ausnehmung 136 zurückgedrückt wird.On the cylinder-like inner circumferential surface 124 of the motor outer part 123 there is mounted a counter pressure part 126 which projects into the expansion space 107 and transmits the expansion pressure of the working gases to the motor outer part 123. A total of four counter pressure parts 126, 127, 128, 129 are present on the motor outer part 123. The counter-pressure part 126 also prevents the working gases from leaving the expansion space 107 from the outlet opening 113 until the relative rotation of the two motor parts 101, 123 relative to one another caused by the expansion of the working gases causes the counter-pressure part 126 to evade the working cam 106 and the Release outlet 113. This can be done in such a way that the working cam 106 is pressed back into a recess 136 against the pressure of a spring 132, 133, 134, 135 by the ramp 120, 121, 122 or the like shown in FIG.

Figur 1A gibt die in Bezug auf die zueinander relative Drehrichtung beider Motorteile 101, 123 hintere Kante 130 des Gegendruckteiles 126 wieder, die als Abstreifkante 130 ausgebildet sein kann und die Ablagerungen in den Expansionsräumen zu der jeweiligen Austrittsöffnung hin befördert.FIG. 1A shows the rear edge 130 of the counterpressure part 126 with respect to the relative direction of rotation of both motor parts 101, 123, which can be designed as a wiping edge 130 and conveys the deposits in the expansion spaces to the respective outlet opening.

Figur 1 B gibt eine zweite Möglichkeit wieder, die darin besteht, die Abstreifkante 141 an der Dichtung 137 des Gegendruckteiles 126 vorzusehen.1B shows a second possibility, which consists in providing the scraper edge 141 on the seal 137 of the counterpressure part 126.

In Figur 2 ist ein erster Axialschnitt in Achsenlängsrichtung durch den Rotationsmotor 100 nach der Linie 11-11 von Figur 1 wiedergegeben. Aus dem Schnitt durch die beiden Umfangsflächen 102, 124 ist zu ersehen, daß diese die Form von komplementären Ringflächen haben, wobei die eine Ringfläche 102 im Schnitt die Form einer konkaven parabelartigen Kurve und die andere Ringfläche 124 im Schnitt die Form einer konvexen parabelartigen Kurve aufweist. Unter dem Begriff « parabeiartige Kurve » sind die Parabel, die in Figur 2A beschriebene parabelähnliche Kurve und die Hyperbel zu verstehen. Die Ringflächen 102, 124 erhält man dadurch, daß man eine dieser parabelartigen Kurven um die Drehachse des Motors 1 rotieren läßt, wobei die Symmetrieachse der parabelartigen Kurve in jedem beliebigen Winkel auf der Drehachse stehen kann.FIG. 2 shows a first axial section in the longitudinal direction of the axis through the rotary motor 100 along the line 11-11 of FIG. 1. It can be seen from the section through the two circumferential surfaces 102, 124 that these have the shape of complementary ring surfaces, one ring surface 102 having the shape of a concave parabolic curve on average and the other ring surface 124 having the shape of a convex parabolic curve . The term “parallel-like curve” means the parabola, the parabola-like curve described in FIG. 2A and the hyperbola. The annular surfaces 102, 124 are obtained by rotating one of these parabolic curves around the axis of rotation of the motor 1, wherein the axis of symmetry of the parabolic curve can be at any angle on the axis of rotation.

Die beiden Ringflächen 102, 124 verlaufen mit enger Gleitpassung parallel zueinander bis zu ihren Außenkanten 103, 125, die zwei kreisförmige Schlitze 148, 149 bilden. Unter dem in der Technik an sich allgemein bekannten Begriff der « Gleitpassung » ist zu verstehen, daß der Abstand d zwischen den Kanten 103, 125 mindestens dem größten von folgenden drei Werten entspricht: der doppelten mittleren Rauhtiefe des Ringflächenmaterials oder dem Rund- und Planlaufschlag der Ringflächen 102, 124 oder den im Betrieb wirksamen Unterschieden der thermischen Ausdehnungskoeffizienten der Ringflächen 102, 124. Die radiale Abdichtung der Schlitze 148, 149 gegen den Außenraum erfolgt zusätzlich jeweils durch die Labyrinthdichtungen 150, 151, da schon die den Kurvenästen der parabelartigen Kurve entsprechenden Ringflächenteile als Labyrinthdichtungen wirken. In dem angegebenen Beispiel bestehen die Labyrinthdichtungen 150, 151 aus einer Dichtung mit einmaliger Umlenkung des Ausströmweges für die Arbeitsgase um 180°. Es versteht sich jedoch als eine bekannte Maßnahme gegebenenfalls Labyrinthdichtungen mit mehrmaliger Umlenkung zu verwenden, so wie diese beispielsweise aus der Turbinentechnik bekannt sind. Hierbei kann die Labyrinthdichtung in einem Axialschnitt in Achsenlängsrichtung gesehen, in jedem beliebigen Winkel zur Motorachse stehen. Die Ausnehmung 119 im Motoraußenteil 123 dient zur Aufnahme einer Aufhängung der Gegendruckteile und/oder zur Kühlung des Motors.The two ring surfaces 102, 124 run parallel to one another with a close sliding fit up to their outer edges 103, 125, which form two circular slots 148, 149. The term "sliding fit", which is generally known in the art, is to be understood that the distance d between the edges 103, 125 corresponds at least to the largest of the following three values: twice the mean roughness depth of the ring surface material or the radial and axial runout of the Ring surfaces 102, 124 or the differences in the thermal expansion coefficients of the ring surfaces 102, 124 which are effective during operation. The radial sealing of the slots 148, 149 from the outside is additionally effected by the labyrinth seals 150, 151, since the ring surface parts corresponding to the curve branches of the parabolic curve as Laby rinth seals work. In the example given, the labyrinth seals 150, 151 consist of a seal with a single deflection of the outflow path for the working gases by 180 °. However, it is understood to be a known measure to use labyrinth seals with multiple deflections, as is known, for example, from turbine technology. Here, the labyrinth seal can be seen in an axial section in the longitudinal direction of the axis, at any angle to the motor axis. The recess 119 in the motor outer part 123 serves to receive a suspension of the counter-pressure parts and / or to cool the motor.

Durch Lager 142, 143 auf beiden Seiten des Rotationsmotors 100 sind Motorinnenteil 101 und Motoraußenteil 123 drehbar gegeneinander gelagert.By bearings 142, 143 on both sides of the rotary motor 100, the motor inner part 101 and outer motor part 123 are rotatably supported against each other.

Figur 2A gibt die vorstehend genannte « parabelähnliche Kurve 144 wieder. Die parabelähnliche Kurve 144 besteht aus einem Kreisbogen 145, an dem sich zwei Gerade 146, 147 anschließen. Verlängert man die Geraden 146, 147 über den Kreisbogen 145 hinaus, so schließen die Geraden 146, 147 einen Winkel ∞ ein. Der Winkel α ist immer kleiner als 180°.FIG. 2A shows the “parabola-like curve 144” mentioned above. The parabola-like curve 144 consists of an arc 145, to which two straight lines 146, 147 adjoin. If the straight lines 146, 147 are extended beyond the circular arc 145, the straight lines 146, 147 enclose an angle ∞. The angle α is always less than 180 °.

In Figur 3 ist ein zweiter Axialschnitt in Achsenlängsrichtung durch den Rotationsmotor 100 nach der Linie 111-111 von Figur 1 wiedergegeben. Dieser Schnitt zeigt, wie in der Außenumfangsfläche 102 des Motorinnenteiles 101 eine Dichtung 117 angeordnet ist, die in Umfangsrichtung gesehen, die Außenumfangsfläche 102 gegen die Innenumfangsfläche 124 des Motoraußenteiles 123 abdichtet. Dadurch ist, wie nachfolgend noch im Einzelnen beschrieben wird, der Expansionsraum 107 im Bereich des Arbeitsnockens 104 abgedichtet. Eine besondere und aus Figur 3 ohne weiteres verständliche Eigenschaft der Dichtung 117 besteht darin, nach dem anfänglichen Einiaufvorgang praktisch verschleißfrei zu sein, da das Motoraußenteil 123 und das Motorinnenteil 101 durch die Lager 141, 142 sich mit jeder gewünschten Genauigkeit spielfrei relativ zueinander drehen können.FIG. 3 shows a second axial section in the longitudinal axis direction through the rotary motor 100 along the line 111-111 from FIG. 1. This section shows how a seal 117 is arranged in the outer circumferential surface 102 of the inner motor part 101, which, viewed in the circumferential direction, seals the outer circumferential surface 102 against the inner circumferential surface 124 of the outer motor part 123. As will be described in more detail below, the expansion space 107 in the region of the working cam 104 is thereby sealed. A special property of the seal 117, which can be readily understood from FIG. 3, is to be practically wear-free after the initial running-in process, since the motor outer part 123 and the motor inner part 101 can rotate relative to one another with any desired accuracy without play due to the bearings 141, 142.

In Figur 4 ist ein dritter Axialschnitt in Achsenlängsrichtung durch den Rotationsmotor 100 nach der Linie IV-IV von Figur 1 wiedergegeben. Figur 4 ist damit ein Schnitt durch den Expansionsraum 108 für die Arbeitsgase. Aus der Figur 4 ist zu ersehen, daß auch der Expansionsraum 108 die konkave Form einer Parabel, einer in Figur 2A beschriebenen parabelähnlichen Kurve oder einer Hyperbel aufweist. Die Wandung des Expansionsraumes 108 geht kontinuierlich in die Außenumfangsfläche 102 über. An einem Ende des Expansionsraumes 108 befindet sich die Eintrittsöffnung 111 für die in den Expansionsraum 108 einströmenden Arbeitsgase und am anderen Ende die Austrittsöffnung 114 für die expandierten Arbeitsgase.FIG. 4 shows a third axial section in the longitudinal direction of the axis through the rotary motor 100 along the line IV-IV of FIG. 1. Figure 4 is thus a section through the expansion space 108 for the working gases. It can be seen from FIG. 4 that the expansion space 108 also has the concave shape of a parabola, a parabola-like curve described in FIG. 2A or a hyperbola. The wall of the expansion space 108 merges continuously into the outer peripheral surface 102. At one end of the expansion space 108 is the inlet opening 111 for the working gases flowing into the expansion space 108 and at the other end the outlet opening 114 for the expanded working gases.

In Figur 5 ist ein Axialschnitt in Achsenlängsrichtung nach der Linie V-V von Figur 1 wiedergegeben. Dieser Schnitt zeigt das Gegendruckteil 126 im Expansionsraum 107. Das Gegendruckteil 126 hat eine zur Wandung des Expansionsraumes 107 komplementäre Form und ist gegen die Wandung des Expansionsraumes 107 durch eine Dichtung 137 abgedichtet. Auch hier ist ersichtlich, daß es zwischen dem Gegendruckteil 126 und dem Expansionsraum 107 keine in Umfangsrichtung abzudichtenden Kanten gibt. Durch die Anordnung der Dichtungen 116, 117, 118 in der Ringfläche 102 und der Dichtung 137 in dem Gegendruckteil 126, der Dichtung 138 in dem Gegendruckteil 127, usw. ist ersichtlich, daß die Ringfläche 102 und der komplementäre Ringfiächenabschnitt der Gegendruckteile 126, 127, 128, 129 im Schnitt nur die Form der vorstehend beschriebenen parabelartigen Kurve haben können. Nur dann entsteht beim Herausschieben eines Gegendruckteiles aus einem Expansionsraum sofort ein ausreichender Abstand zwischen den Dichtungen 116, 117, 118 und den Dichtungen 137, 138, 139, 140. Würden die Ringflächen 102, 124 an ihren Flanken Flächenteile haben, die beim Herausschieben des Gegendruckteiles parallel zueinander verlaufen, dann würden die Dichtungen 116, 117, 118 und die Dichtungen 137, 138, 139, 140 sich berühren, abtragen und dadurch einander abscheren. Die Feder 132 ist ein Teil der Steuereinrichtung. Der Kopf 131 des Gegendruckteiles 132 liegt mit vier etwa konischen Flächen an den Flächen einer Ausnehmung 136 im Motoraußenteil 123 an.FIG. 5 shows an axial section in the longitudinal axis direction along the line V-V of FIG. 1. This section shows the counter pressure part 126 in the expansion space 107. The counter pressure part 126 has a shape complementary to the wall of the expansion space 107 and is sealed against the wall of the expansion space 107 by a seal 137. It can also be seen here that there are no edges to be sealed in the circumferential direction between the counterpressure part 126 and the expansion space 107. The arrangement of the seals 116, 117, 118 in the annular surface 102 and the seal 137 in the counter pressure part 126, the seal 138 in the counter pressure part 127, etc. shows that the ring surface 102 and the complementary ring surface portion of the counter pressure parts 126, 127, 128, 129 can have on average only the shape of the parabolic curve described above. Only then does a sufficient distance between the seals 116, 117, 118 and the seals 137, 138, 139, 140 arise immediately when a counterpressure part is pushed out of an expansion space. Would the annular surfaces 102, 124 have surface parts on their flanks that are present when the counterpressure part is pushed out parallel to each other, then the seals 116, 117, 118 and the seals 137, 138, 139, 140 would touch, wear and thereby shear each other. The spring 132 is part of the control device. The head 131 of the counter pressure part 132 rests with four approximately conical surfaces on the surfaces of a recess 136 in the motor outer part 123.

Zu dem in den Figuren 1 bis 5 wiedergegebenen Rotationsmotor 100 ist noch darauf hinzuweisen, daß dieser nur beispielsweise mit drei ringabschnittsförmigen Expansionsräumen 107, 108, 109, drei Arbeitsnocken 104, 105, 106, und vier Gegendruckteilen 126, 127, 128, 129 wiedergegeben ist. Die Anzahl der Arbeitsnocken und der Gegendruckteile muß zueinander immer ungleich sein, um Todpunkte zu vermeiden, die bei einer Gleichheit der Anzahl auftreten würden.Regarding the rotary motor 100 shown in FIGS. 1 to 5, it should also be pointed out that this is only shown, for example, with three expansion sections 107, 108, 109, three working cams 104, 105, 106 and four counter pressure parts 126, 127, 128, 129 . The number of working cams and the counter pressure parts must always be unequal to one another in order to avoid dead spots which would occur if the number were equal.

Außerdem kann das Motorinnenteil 101 der Stator und das Motoraußenteil 123 der Rotor sein. Es ist aber auch umgekehrt möglich, nämlich daß das Motorinnenteil 101 der Rotor und das Motoraußentell 123 der Stator ist.In addition, the inner motor part 101 can be the stator and the outer motor part 123 can be the rotor. However, it is also possible in reverse, namely that the inner motor part 101 is the rotor and the outer motor part 123 is the stator.

In den Figuren 6 bis 9 ist eine zweite Ausführungsform des Rotationsmotors beschrieben. Figur 6 gibt einen zur Mittelachse senkrechten Schnitt nach der halben Mittellinie VI-VI von Figur 7 durch einen Rotationsmotor 200 wieder. Der Rotationsmotor 200 besteht aus einem Motorinnenteil 201 mit einer Außenumfangsfläche 202 und einem das Motorinnenteil 201 umgebenden Motoraußenteil 204 mit einer Innenumfangsfläche 206, wobei die Außenumfangsfläche 202 und die Innenumfangsfläche 206 wie aus Figur 7 zu ersehen ist, in Form von zwei Ringflächen einander dicht gegenüberliegen. Zwischen der Innenumfangsfläche 202 ist auch bei dieser Motorversion mindestens eine abschnittsförmige Ausnehmung in der Innenumfangsfläche 206 als Expansionsraum 210 für die Arbeitsgase vorhanden. Zwischen zwei abschnittsförmigen Expansionsräumen ist ein Teil der Innenumfangsfläche 206 als Arbeitsnocken 207, 208, 209 stehen gelassen worden. Der Arbeitsnocken 207 ist gegenüber der ringflächenförmigen Außenumfangsfläche 202 durch eine Dichtung 213 abgedichtet. Dadurch ist es möglich, daß der Arbeitsnocken 207 den Expansionsdruck der Arbeitsgase als Drehmoment auf das Motoraußenteil 205 überträgt. In den Expansionsraum 210 mündet eine Eintrittsöffnung 211 für die Arbeitsgase.A second embodiment of the rotary motor is described in FIGS. 6 to 9. FIG. 6 shows a section perpendicular to the central axis along the half center line VI-VI of FIG. 7 through a rotary motor 200. The rotary motor 200 consists of a motor inner part 201 with an outer circumferential surface 202 and a motor outer part 204 surrounding the motor inner part 201 with an inner circumferential surface 206, the outer circumferential surface 202 and the inner circumferential surface 206, as can be seen from FIG. 7, lying closely opposite one another in the form of two ring surfaces. In this engine version, too, there is at least one section-shaped recess in the inner peripheral surface 206 between the inner peripheral surface 202 as an expansion space 210 for the working gases. Part of the inner peripheral surface 206 is between two section-shaped expansion spaces Working cams 207, 208, 209 have been left standing. The working cam 207 is sealed off from the annular outer peripheral surface 202 by a seal 213. This makes it possible for the working cam 207 to transmit the expansion pressure of the working gases as torque to the outer motor part 205. An inlet opening 211 for the working gases opens into the expansion space 210.

An der ringflächenförmigen Außenumfangsfläche 202 des Motorinnenteiles 201 ist ein in den Expansionsraum 210 hineinragendes und den Expansionsdruck der Arbeitsgase auf das Motorinnenteil 201 übertragendes Gegendruckteil 203 gelagert. Das Gegendruckteil 203 ist gegenüber der Innenumfangsfläche 206 durch eine parabelartige Dichtung 213 abgedichtet. Außerdem deckt das Gegendruckteil 203 eine Austrittsöffnung 212 für die expandierenden Arbeitsgase solange ab, bis die durch die Expansion bewirkte relative Drehung beider Motorteile 201, 205 gegeneinander über eine Steuerung, z. B. eine Rampe 219, das Gegendruckteil 203 dazu veranlaßt, dem Arbeitsnocken 207 auszuweichen. Jedes Gegendruckteil 203 wird durch den Druck einer Feder 204 gegen die Innenfläche 206, bzw. die Wandung des Expansionsraumes 210 gedrückt, wobei die Abdichtung in Umfangsrichtung durch eine Dichtung 214 erfolgt. Die Dichtung 214 hat die gleiche Gestalt wie die Dichtung 137.On the annular outer peripheral surface 202 of the engine inner part 201, a counterpressure part 203, which projects into the expansion space 210 and transmits the expansion pressure of the working gases to the engine inner part 201, is mounted. The counter pressure part 203 is sealed off from the inner circumferential surface 206 by a parabolic seal 213. In addition, the counter pressure part 203 covers an outlet opening 212 for the expanding working gases until the relative rotation of the two motor parts 201, 205 caused by the expansion against one another via a control, for. B. a ramp 219, which causes the counter-pressure part 203 to evade the working cam 207. Each counter pressure part 203 is pressed by the pressure of a spring 204 against the inner surface 206 or the wall of the expansion space 210, the sealing being carried out in the circumferential direction by a seal 214. The seal 214 has the same shape as the seal 137.

In Figur 7 ist ein erster Axialschnitt in Achsenlängsrichtung durch den Rotationsmotor 200 nach der Linie VII-VII von Figur 6 wiedergegeben. Aus diesem Schnitt ist zu ersehen, daß die Außenumfangsfläche 202 und die Innenumfangsfläche 206 die Form von komplementären Ringflächen haben, wobei die Außenumfangsfläche 202 die konvexe Form und die Innenumfangsfläche 206 die konkave Form der vorstehend beschriebenen parabelartigen Kurven aufweisen. Die den Kurven entsprechenden konvexen und konkaven Ringfiächen 202, 206 verlaufen, wie gleichfalls vorstehend beschrieben worden ist, mit Gleitpassung bis zu ihren Außenkanten, die als zwei kreisförmige Schlitze 215, 216 erscheinen. Die radiale Abdichtung der Schlitze 215, 216 gegenüber dem Außenraum erfolgt jeweils durch die Labyrinthdichtungen 217, 218. Auch hier können gegebenenfalls die an sich bekannten Labyrinthdichtungen mit mehrmaliger Umlenkung verwendet werden.FIG. 7 shows a first axial section in the longitudinal direction of the axis through the rotary motor 200 along the line VII-VII of FIG. 6. From this section, it can be seen that the outer peripheral surface 202 and the inner peripheral surface 206 have the shape of complementary ring surfaces, the outer peripheral surface 202 having the convex shape and the inner peripheral surface 206 having the concave shape of the parabolic curves described above. The convex and concave annular surfaces 202, 206 corresponding to the curves run, as has also been described above, with a sliding fit up to their outer edges, which appear as two circular slots 215, 216. The radial sealing of the slots 215, 216 with respect to the outside space takes place in each case by means of the labyrinth seals 217, 218. Here, too, the labyrinth seals known per se with multiple deflections can optionally be used.

In Figur 8 ist ein zweiter Axialschnitt in Achsenlängsrichtung durch den Rotationsmotor 200 nach der Linie VIII-VIII von Figur 6 wiedergegeben. Diese Figur gibt einen Schnitt durch einen abschnittsförmigen Expansionsraum 210 wieder und entspricht der Figur 4.FIG. 8 shows a second axial section in the longitudinal direction of the axis through the rotary motor 200 along the line VIII-VIII of FIG. 6. This figure shows a section through a section-shaped expansion space 210 and corresponds to FIG. 4.

Figur 9 schließlich gibt einen dritten Axialschnitt in Achsenlängsrichtung durch den Rotationsmotor 200 nach der Linie IX-IX von Figur 6 wieder. Aus diesem Schnitt ist zu ersehen, daß das Gegendruckteil 202 in den Expansionsraum 210 hineinbewegt und dort durch die Feder 204 gehalten wird. Die Abdichtung des Gegendruckteiles 202 in Umfangsrichtung gegen die Wandung des Expansionsraumes 210 erfolgt durch die Dichtung 214, die in Figur 6 im Querschnitt sichtbar ist. Diese Dichtung 214 entspricht der Dichtung 137 aus Figur 5 und ist dort im einzelnen beschrieben. Die Auslenkung des Gegendruckteiles 203 bei einer relativen Drehung von Motorinnenteil 201 gegenüber dem Motoraußenteil 205 bei Annäherung des Arbeitsnockens 207 erfolgt durch eine Rampe 219. - FIG. 9 finally shows a third axial section in the longitudinal direction of the axis through the rotary motor 200 along the line IX-IX of FIG. 6. From this section it can be seen that the counter pressure part 202 moves into the expansion space 210 and is held there by the spring 204. The counter pressure part 202 is sealed in the circumferential direction against the wall of the expansion space 210 by the seal 214, which is visible in cross section in FIG. 6. This seal 214 corresponds to the seal 137 from FIG. 5 and is described there in detail. The deflection of the counter-pressure part 203 when the inner motor part 201 rotates relative to the outer motor part 205 when the working cam 207 approaches is effected by a ramp 219 .

Der Unterschied zwischen dem Rotationsmotor 100 und dem Rotationsmotor 200 besteht, wie aus den Zeichnungen ohne weiteres ersichtlich ist, zusammenfassend darin, daß beim Rotationsmotor 100 die Außenumfangsfläche 102 die konkave Form und die Innenumfangsfläche 124 die konvexe Form hat, während beim Rotationsmotor 200 die Außenumfangsfläche 202 die konvexe Form und die Innenumfangsfläche 206 die konkave Form hat.In summary, the difference between the rotary motor 100 and the rotary motor 200, as can be seen from the drawings, is that in the rotary motor 100 the outer peripheral surface 102 has the concave shape and the inner peripheral surface 124 has the convex shape, while in the rotary motor 200 the outer peripheral surface 202 the convex shape and the inner peripheral surface 206 has the concave shape.

Durch Anwendung der vorstehend beschriebenen Prinzipien in Bezug auf die Gestaltung der Umfangsflächen, der Expansionsräume, der Gegendruckteile sowie der Abdichtung dieser Teile gegeneinander, sowohl in Umfangsrichtung als auch gegen den Außenraum, ist es möglich, bekannte Motorkonzepte, die bisher infolge fehlender Dichtigkeit nicht realisierbar waren, zu funktionsfähigen Motoren fortzuentwickeln. Nachfolgend sei dieses an Hand von sieben Beispielen gezeigt. In sämtlichen nachfolgend beschriebenen Rotationsmotoren haben der Expansionsraum, der Arbeitsnocken und das Gegendruckteil in einem Axialschnitt in Achsenlängsrichtung gesehen, die Form einer wie vorstehend beschriebenen parabelartigen Kurve.

  • Figur 10 zeigt den Schroeder-Motor 30 mit dem Expansionsraum 31, dem Arbeitsnocken 32 und dem Gegendruckteil 33.
  • Figur 11 zeigt den Walter-Motor 40 mit dem Expansionsraum 41, dem Arbeitsnocken 42, dem Gegendruckteil 43 sowie der ventilgesteuerten Austrittsöffnung 44 für die Arbeitsgase.
  • Figur 12 zeigt den Brown-Motor 50 mit dem Expansionsraum 51, dem Arbeitsnocken 52 und dem Gegendruckteil 53.
  • Figur 13 zeigt den Thomas-Motor 60 mit dem Expansionsraum 61, dem Arbeitsnocken 62 und dem Gegendruckteil 63.
By applying the principles described above with regard to the design of the peripheral surfaces, the expansion spaces, the counter-pressure parts and the sealing of these parts against one another, both in the circumferential direction and against the exterior, it is possible to develop known engine concepts that were previously not possible due to the lack of tightness to develop into functional engines. This is shown below using seven examples. In all the rotary motors described below, the expansion space, the working cam and the counter pressure part have seen in an axial section in the longitudinal direction of the axis, the shape of a parabolic curve as described above.
  • FIG. 10 shows the Schroeder motor 30 with the expansion space 31, the working cam 32 and the counter pressure part 33.
  • FIG. 11 shows the Walter engine 40 with the expansion space 41, the working cam 42, the counter-pressure part 43 and the valve-controlled outlet opening 44 for the working gases.
  • FIG. 12 shows the Brown motor 50 with the expansion space 51, the working cam 52 and the counter pressure part 53.
  • FIG. 13 shows the Thomas motor 60 with the expansion space 61, the working cam 62 and the counter pressure part 63.

Figur 14A zeigt die erste Ausführungsform des Wenzel-Motors 70 mit dem Expansionsraum 71, dem Arbeitsnocken 72 und dem Gegendruckteil 73. Diese erste Ausführungsform entspricht dem in den Figuren 1 bis 5 dargestellten Motorprinzip. Figur 14B zeigt die zweite Ausführungsform des Wenzel-Motors 80, bei dem das Gegendruckteil 83 am Innenteil, der Arbeitsnocken am Außenteil befestigt ist und die dem in den Figuren 6 bis 9 dargestelltem Motorprinzip entspricht. Der Rotationsmotor 80 hat den jedoch nur im Querschnitt 81 angebbaren Expansionsraum, den Arbeitsnocken 82 und das Gegendruckteil 83. Die Arbeitsgase treten durch den Schlitz 84 aus dem Motorinnenteil in den Expansionsraum ein. Der Expansionsraum ist deshalb nur in einer Querschnittslinie 81 angebbar, da er sich in dem in Figur 14B weggeschnittenem Motoraußenteil befindet. Die Labyrinthdichtung 85 ist in diesem Falle fest am Motoraußenteil 86 angebracht.FIG. 14A shows the first embodiment of the Wenzel motor 70 with the expansion space 71, the working cam 72 and the counter pressure part 73. This first embodiment corresponds to the motor principle shown in FIGS. 1 to 5. FIG. 14B shows the second embodiment of the Wenzel motor 80, in which the counterpressure part 83 is fastened to the inner part, the working cam to the outer part and which corresponds to the motor principle shown in FIGS. 6 to 9. The rotary motor 80 has the expansion space which can only be specified in cross section 81, the working cam 82 and the counter-pressure part 83. The working gases enter the expansion space through the slot 84 from the inner part of the motor. The expansion space can therefore only be specified in a cross-sectional line 81, since it is in the in Figure 14B is cut away outer motor part. The labyrinth seal 85 is in this case firmly attached to the motor outer part 86.

Schließlich zeigt Figur 15 den Zettner-Motor 90 mit dem Expansionsraum 91, dem Arbeitsnocken 92, dem Gegendruckteil 93 und der Eintrittsöffnung 94 für die Arbeitsgase in den Expansionsraum 91. Der Rotationsmotor 90 arbeitet in dieser Ausführung beispielsweise als Außenläufer.Finally, FIG. 15 shows the Zettner motor 90 with the expansion space 91, the working cam 92, the counter-pressure part 93 and the inlet opening 94 for the working gases into the expansion space 91. In this embodiment, the rotary motor 90 works, for example, as an external rotor.

Weitere Einzelheiten der weiterentwickelten Rotationsmotoren nach den Figuren 10 bis 15, die jedoch die Erfindung nicht betreffen, sind aus den in der Beschreibungseinleitung aufgeführten Druckschriften zu entnehmen.Further details of the further developed rotary motors according to FIGS. 10 to 15, which, however, do not relate to the invention, can be found in the documents listed in the introduction to the description.

Stücklisteparts list

  • 100 Rotationsmotor100 rotary motor
  • 101 Motorinnenteil101 engine inner part
  • 102 Außenumfangsfläche102 outer peripheral surface
  • 103 Außenkante der Außenumfangsfläche103 outer edge of the outer peripheral surface
  • 104 Arbeitsnocken104 working cams
  • 105 Arbeitsnocken105 working cams
  • 106 Arbeitsnocken106 working cams
  • 107 Expansionsraum107 expansion room
  • 108 Expansionsraum108 expansion room
  • 109 Expansionsraum109 expansion room
  • 110 Eintrittsöffnung110 entrance opening
  • 111 Eintrittsöffnung111 entrance opening
  • 112 Eintrittsöffnung112 entrance opening
  • 113 Austrittsöffnung113 outlet opening
  • 114 Austrittsöffnung114 outlet opening
  • 115 Austrittsöffnung115 outlet opening
  • 116 Dichtung116 seal
  • 117 Dichtung117 seal
  • 118 Dichtung118 seal
  • 119 Ausnehmung119 recess
  • 120 Rampe120 ramp
  • 121 Rampe121 ramp
  • 122 Rampe122 ramp
  • 123 Motoraußenteil123 Motor outer part
  • 124 Innenumfangsfläche124 inner circumferential surface
  • 125 Außenkante der Innenumfangsfläche125 outer edge of the inner peripheral surface
  • 126 Gegendruckteil126 counter pressure part
  • 127 Gegendruckteil127 counter pressure part
  • 128 Gegendruckteil128 counter pressure part
  • 129 Gegendruckteil129 counter pressure part
  • 130 Abstreifkante am Gegendruckteil130 Scraper edge on the counter pressure part
  • 131 Kopf des Gegendruckteiles131 Head of the counter pressure part
  • 132 Feder132 spring
  • 133 Feder133 spring
  • 134 Feder134 spring
  • 135 Feder135 spring
  • 136 Ausnehmung136 recess
  • 137 Dichtung137 seal
  • 138 Dichtung138 seal
  • 139 Dichtung139 seal
  • 140 Dichtung140 seal
  • 141 Abstreifkante an der Dichtung141 Scraper edge on the seal
  • 142 Kugellager142 ball bearings
  • 143 Kugellager143 ball bearings
  • 144 parabelähnliche Kurve144 parabola-like curve
  • 145 Kreisbogenabschnitt145 circular arc section
  • 146 Gerade146 straight
  • 147 Gerade147 straight
  • 148 Schlitz148 slot
  • 149 Schlitz149 slot
  • 150 Labyrinthdichtung150 labyrinth seal
  • 151 Labyrinthdichtung151 labyrinth seal
  • 200 Rotationsmotor200 rotary motor
  • 201 Motorinnenteil201 engine inner part
  • 202 Außenumfangsfläche202 outer peripheral surface
  • 203 Gegendruckteil203 counter pressure part
  • 204 Feder204 spring
  • 205 Motoraußenteil205 outer motor part
  • 206 Innenumfangsfläche206 inner circumferential surface
  • 207 Arbeitsnocken207 working cams
  • 208 Arbeitsnocken208 working cams
  • 209 Arbeitsnocken209 working cams
  • 210 Expansionsraum210 expansion room
  • 211 Eintrittsöffnung211 entrance opening
  • 212 Austrittsöffnung212 outlet opening
  • 213 Dichtung213 seal
  • 214 Dichtung214 seal
  • 215 Schlitz215 slot
  • 216 Schlitz216 slot
  • 217 Labyrinthdichtung217 labyrinth seal
  • 218 Labyrinthdichtung218 labyrinth seal
  • 30 Schroeder-Motor30 Schroeder engine
  • 31 Expansionsraum31 expansion room
  • 32 Arbeitsnocken32 working cams
  • 33 Gegendruckteil33 counter pressure part
  • 40 Walter-Motor40 Walter engine
  • 41 Expansionsraum41 expansion room
  • 42 Arbeitsnocken42 working cams
  • 43 Gegendruckteil43 counter pressure part
  • 44 Austrittsöffnung44 outlet opening
  • 50 Brown-Motor50 Brown engine
  • 51 Expansionsraum51 expansion room
  • 52 Arbeitsnocken52 working cams
  • 53 Gegendruckteil53 counter pressure part
  • 60 Thomas-Motor60 Thomas engine
  • 61 Expansionsraum61 expansion room
  • 62 Arbeitsnocken62 working cams
  • 63 Gegendruckteil63 counter pressure part
  • 70 Wenzel-Motor (1. Ausführungsform)70 Wenzel motor (1st embodiment)
  • 71 Expansionsmotor71 expansion engine
  • 72 Arbeitsnocken72 working cams
  • 73 Gegendruckteil73 counter pressure part
  • 80 Wenzei-Motor (2. Ausführungsform)80 Wenzei motor (2nd embodiment)
  • 81 Querschnitt des Expansionsraumes81 Cross section of the expansion space
  • 82 Arbeitsnocken82 working cams
  • 83 Gegendruckteil83 counter pressure part
  • 84 Schlitz84 slot
  • 85 Labyrinthdichtung85 labyrinth seal
  • 86 Motoraußenteil86 outer motor part
  • 90 Zettner-Motor90 Zettner engine
  • 91 Expansionsraum91 expansion room
  • 92 Arbeitsnocken92 working cams
  • 93 Gegendruckteil93 counter pressure part
  • 94 Eintrittsöffnung94 entrance opening

Claims (14)

1. Rotary engine (100), for the conversion of the expansion pressure of working gases into a mechanical rotary movement, with an inner engine part (101) with a cylinder-like outer circumferential surface (102), an outer engine part (123) surrounding the inner engine part (101) and with a cylinder-like inner circumferential surface (124), wherein the outer circumferential surface (102) and the inner circumferential surface (124) each lie opposite the other, bearings (142, 143), by which the inner engine part (101) and the outer engine part (123) are borne each to be rotatable relative to the other, at least one working dog (104, 105, 106), which is at the one cylinder-like circumferential surface (102), is sealed off relative to the other cylinder-like circumferential surface (124) and which transmits the expansion pressure of the working gases to the one engine part (101), at least one segment-shaped recess in the same cylinder-like circumferential surface (102) adjoining the working dog (104, 105, 106) as expansion space (107, 108, 109) for the working gases, an entry opening (110, 111, 112) and an exit opening (113, 114, 115) in each expansion space (107, 108, 109) for the inflowing and outflowing working gases, at least one counterpressure part (126, 127, 128, 129), which is borne to be movable at the other cylinder-like circumferential surface (124), projects into the expansion space (107, 108, 109), transmits the expansion pressure of the working gases to the other engine part (123) and in the uninfluenced state closes off the exit opening (113, 114, 115) in each expansion space (107, 108, 109) for the working gases, and at least one control equipment for the counterpressure part (126, 127, 128, 129), through which the counterpressure part (126, 127, 128, 129) is deflected out of the expansion space (107, 108, 109) on approach of the working dog (104, 105, 106) so that the exit opening (113, 114, 115) is freed, characterised thereby, that both the circumferential surfaces (102, 124) have the shape of complementary annular surfaces, wherein - viewed in axial section in axial longitudinal direction through the annular surfaces (102, 124) and through the working dogs (104, 105, 106) - the one annular surface (102) displays the shape of a concave parabola-like curve and the other annular surface (124) displays the shape of a convex parabola-like curve and both annular surfaces (102, 104) extend each parallelly to the other in close sliding fit up to their outer edges (103, 104), which form two circular slots (148, 149).
2. Rotary engine according to claim 1, characterised thereby, that the curve is a parabola.
3. Rotary engine according to claim 1, characterised thereby, that the parabola-like curve is a hyperbola.
4. Rotary engine according to claim 1, characterised thereby, that the parabola-like curve consists of a circular arc portion (145) as crest curve and two straight lines (146, 147) continuing the circular arc portion (145) at its arc ends and including a preferably acute angle (a) (Fig. 2A).
5. Rotary engine according to the claims 1 to 4, characterised thereby, that the recesses in the concave annular surface (102), which serve as expansion spaces (107, 108, 109), each consist of an additional concavity in the base region of the concave annular surface (102), wherein the annular surface portions, which correspond to the curve branches of the parabola-like curve, extend each parallelly to the other in sliding fit and the crest lines, which correspond to the crest points, of both annular surfaces (101, 124) are disposed each at a spacing from the other so that the expansion space (107, 108, 109) is bounded by the concave annular surface (101), the convex annular surface (124), the front side of one and the rear side of another working dog (104, 105, 106).
6. Rotary engine according to the claims 1 to 4, characterised thereby, that each expansion space (107, 108, 109) - viewed in circumferential direction - is sealed off at its ends above the working dogs (104, 105, 106) each time by at least one respective seal (116, 117, 118) arranged in the concave annular surface (101) and bearing in sliding contact against the convex annular surface (124).
7. Rotary engine according to claim 6 characterised thereby, that the seal (116, 117, 118) lies in a plane which is given by an axial section in axial longitudinal direction.
8. Rotary engine according to the claims 1 to 7, characterised thereby, that the circular slots (148, 149) between inner engine part (101) and outer engine part (123) are each sealed off against the outer space by a respective labyrinth seal (150, 151).
9. Rotary engine according to claim 8, characterised thereby, that the annular surface portions, which correspond to the curve branches of the parabola-like curve, are parts of the labyrinth seals (150, 151).
10. Rotary engine according to claim 6, characterised thereby, that two adjacent expansion spaces (107, 108) are each sealed off from the other by a respective parabola-like seal (117).
11. Rotary engine according to the claims 1 to 10, characterised thereby, that the counterpressure part (126) projects into the expansion space (107) through a recess (136) in the engine part (123) with the convex annular surface (124), viewed in an axial section in axial longitudinal direction displays a shape complementary to the concave annular surface (102) of the expansion space (107) and bears in sliding fit against the concave annular surface (102).
12. Rotary engine according to claim 11, characterised thereby, that the counterpressure part (126) is sealed off from the concave annular surface (102) in the expansion space (107) in circumferential direction by at least one seal (137) bearing against this annular surface (102).
13. Rotary engine according to the claims 11 or 12, characterised thereby, that an edge (130) at the counterpressure part (126) or an edge (141) at the seal (137) in the counterpressure part (126) is constructed as stripper edge, by which the deposits in the expansion space (107) are transported in the direction of the exit opening (113).
14. Rotary engine according to the claims 1 to 13, characterised thereby, that the counterpressure part (126) itself displays a shape-locking fit in the expansion space (107) for the production of a sealing effect.
EP85905507A 1985-10-02 1985-10-02 Rotary engine Expired - Lifetime EP0240491B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1985/000513 WO1987002096A1 (en) 1985-10-02 1985-10-02 Rotary engine

Publications (2)

Publication Number Publication Date
EP0240491A1 EP0240491A1 (en) 1987-10-14
EP0240491B1 true EP0240491B1 (en) 1990-03-07

Family

ID=8165063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85905507A Expired - Lifetime EP0240491B1 (en) 1985-10-02 1985-10-02 Rotary engine

Country Status (11)

Country Link
US (1) US4890990A (en)
EP (1) EP0240491B1 (en)
JP (1) JPS62502205A (en)
AT (1) ATE50822T1 (en)
AU (1) AU577422B2 (en)
BR (1) BR8507295A (en)
DE (1) DE3576381D1 (en)
IL (1) IL80159A (en)
RU (1) RU1789036C (en)
WO (1) WO1987002096A1 (en)
ZA (1) ZA867452B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29513194U1 (en) * 1995-08-17 1995-11-23 Heidenescher, Ferdinand, 49143 Bissendorf Rotary piston internal combustion engine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2254888B (en) * 1991-03-05 1995-04-05 Ian Alexander Giles Rotary positive-displacement pump and engine
BE1010391A3 (en) * 1996-06-27 1998-07-07 Orphanidis Michalis Rotary piston volumetric effect machine and engine derived from such a machine
ES2544579T3 (en) 2002-07-30 2015-09-01 Takasago International Corporation Production procedure of an optically active beta-amino acid
WO2007129403A1 (en) * 2006-05-09 2007-11-15 Okamura Yugen Kaisha Rotary type fluid machine
US7793635B2 (en) * 2006-05-09 2010-09-14 Okamura Yugen Kaisha Rotary piston type internal combustion engine
CN101864991A (en) * 2010-06-10 2010-10-20 姚镇 Star rotary fluid motor or engine and compressor and pump
IL216439A (en) 2011-11-17 2014-02-27 Zettner Michael Rotary engine and process
ITBL20120010A1 (en) * 2012-11-30 2014-05-31 Ruggero Libralato ROTARY ENDOTHERMAL ENGINE WITH DOUBLE ROTATION CENTER, PERFECTED WITH WALL-RETAINING WALLS AND DIFFERENTIAL EXHAUSTS
US9291095B2 (en) * 2013-03-15 2016-03-22 Randy Koch Rotary internal combustion engine
US9464566B2 (en) 2013-07-24 2016-10-11 Ned M Ahdoot Plural blade rotary engine
CN110005606A (en) * 2019-03-28 2019-07-12 云大信 A kind of card slot pump installation and flow rate adjusting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1349096A (en) * 1970-11-05 1974-03-27 Timex Corp Electrically operated watch having means for increasing the power supply voltage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1442198A (en) * 1914-06-24 1923-01-16 Arthur Kitson Rotary pump, engine, or meter
GB113697A (en) * 1917-03-27 1918-03-07 Nikolai Demianovitch Shelikof An Improved Rotary Engine.
US1625233A (en) * 1922-08-23 1927-04-19 Cheever J Cameron Rotary engine
US1770141A (en) * 1927-05-31 1930-07-08 Albert J Meyer Pump
US1859618A (en) * 1929-09-18 1932-05-24 Ward W Cleland Rotary internal combustion engine
US2796030A (en) * 1953-05-29 1957-06-18 Nebel Franz Philip Rotary pump for handling viscous materials
US3249096A (en) * 1962-10-12 1966-05-03 Franceschini Enrico Rotating internal combustion engine
US3181512A (en) * 1963-04-22 1965-05-04 Fred J Hapeman Rotary internal combustion engine
GB1349521A (en) * 1970-01-01 1974-04-03 Oppenheim H Rotary-piston machines
AR212382A1 (en) * 1977-11-16 1978-06-30 Quiroga P ROTARY ENGINE WITH SIDE ACTING PISTONS
US4561834A (en) * 1983-07-13 1985-12-31 Poss Design Limited Rotary vaned pumps with fixed length and shearing knife-edged vanes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1349096A (en) * 1970-11-05 1974-03-27 Timex Corp Electrically operated watch having means for increasing the power supply voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29513194U1 (en) * 1995-08-17 1995-11-23 Heidenescher, Ferdinand, 49143 Bissendorf Rotary piston internal combustion engine

Also Published As

Publication number Publication date
WO1987002096A1 (en) 1987-04-09
IL80159A (en) 1992-07-15
IL80159A0 (en) 1986-12-31
US4890990A (en) 1990-01-02
JPS62502205A (en) 1987-08-27
ZA867452B (en) 1987-05-27
JPH0229841B2 (en) 1990-07-03
AU5013185A (en) 1987-04-24
RU1789036C (en) 1993-01-15
BR8507295A (en) 1987-11-03
DE3576381D1 (en) 1990-04-12
EP0240491A1 (en) 1987-10-14
AU577422B2 (en) 1988-09-22
ATE50822T1 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
EP0240491B1 (en) Rotary engine
DE4228639A1 (en) Cylinder machine
DE69725864T2 (en) INTERNAL COMBUSTION ENGINE WITH CENTRAL COMBUSTION CHAMBER
EP0085427B1 (en) Four-stroke internal-combustion engine
EP0080070A1 (en) Internal-combustion engine
DE2233014A1 (en) RECHARGEABLE ROTARY PISTON ENGINE
DE3150654C2 (en) Rotary piston internal combustion engine
WO1991019088A1 (en) Rotary piston internal combustion engine
DE3528139C2 (en) Internal combustion engine
DE2460949A1 (en) Combustion engine with rotating vane pistons - has piston to produce compressed air and combustion products driving second piston
EP0316346B1 (en) Rotating piston machine
CH660902A5 (en) INTERNAL COMBUSTION ENGINE.
DE3335742A1 (en) RECOVERY PISTON INTERNAL COMBUSTION ENGINE
DE69304310T2 (en) turbine
DE2346150C3 (en) Rotary piston engine
DE8513618U1 (en) Rotary piston machine
DE3321270A1 (en) Rotary engine
DE2349247A1 (en) IMPROVEMENTS TO COMBUSTION ENGINES
DE3027208A1 (en) Rotary piston IC engine - has rectangular pistons pivoted on rotor concentric in stator
EP0289644A1 (en) Rotary internal-combustion turbine
DE2405706A1 (en) ROTATION MECHANISM
DE9320837U1 (en) Internal combustion engine, in particular internal combustion engine with rotating pistons as a 3-disc rotary piston engine
DD280570A1 (en) ROTARY PISTON MACHINE WITH RINGFUL WORKING SPACE
DE1551150A1 (en) Rotary piston internal combustion engine
DE2608057A1 (en) Rotary piston engine with eccentric cylindrical piston - having sealing blades running on a casing spigot and wide sealing edge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880708

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZETTNER, MICHAEL L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 50822

Country of ref document: AT

Date of ref document: 19900315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3576381

Country of ref document: DE

Date of ref document: 19900412

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85905507.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970324

Year of fee payment: 12

Ref country code: AT

Payment date: 19970324

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970404

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970521

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971002

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971002

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

BERE Be: lapsed

Owner name: ZETTNER MICHAEL L.

Effective date: 19971031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971002

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

EUG Se: european patent has lapsed

Ref document number: 85905507.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST