EP0239501B1 - Verfahren zur Trennung von Eisen aus organischen Uranlösungen - Google Patents

Verfahren zur Trennung von Eisen aus organischen Uranlösungen Download PDF

Info

Publication number
EP0239501B1
EP0239501B1 EP87400690A EP87400690A EP0239501B1 EP 0239501 B1 EP0239501 B1 EP 0239501B1 EP 87400690 A EP87400690 A EP 87400690A EP 87400690 A EP87400690 A EP 87400690A EP 0239501 B1 EP0239501 B1 EP 0239501B1
Authority
EP
European Patent Office
Prior art keywords
approximately
iron
uranium
phosphoric acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400690A
Other languages
English (en)
French (fr)
Other versions
EP0239501A1 (de
Inventor
André Textoris
Georges Lyaudet
André Bathelier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orano Cycle SA
Original Assignee
Compagnie Generale des Matieres Nucleaires SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Matieres Nucleaires SA filed Critical Compagnie Generale des Matieres Nucleaires SA
Publication of EP0239501A1 publication Critical patent/EP0239501A1/de
Application granted granted Critical
Publication of EP0239501B1 publication Critical patent/EP0239501B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/026Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents

Definitions

  • the invention relates to a process for the separation of iron from an organic solution containing uranium.
  • the subject of the invention is a process for extracting uranium present in phosphoric acid solutions, in particular in phosphoric acid solutions obtained from phosphate ores containing iron.
  • phosphates ores generally contain quantities of uranium which can be recovered during the attack of phosphates ores by sulfuric acid.
  • the subject of the invention is a process for extracting uranium from an organic solution containing it and contaminated with iron.
  • One aspect of the invention is to propose a method for separating iron contaminating an organic solution containing uranium, which method also makes it possible to extract the uranium at a high rate.
  • One of the other aspects of the invention is to propose a process allowing the easy use of solvents capable of extracting uranium with a high yield, while eliminating the problems due to the presence of iron.
  • One of the other aspects of the invention is to propose a method for extracting uranium comprising only one extraction-re-extraction cycle, avoiding a second purification cycle and the double reduction-oxidation operation to re-extract uranium, while overcoming the difficulties of conducting the direct alkaline re-extraction operation of uranium.
  • One aspect of the invention is to provide a method for separating iron contaminating an organic solution containing uranium, which method does not at any time require changing either the valence of uranium or that of iron.
  • One of the aspects of the invention is to propose a process for de-ironing phosphoric acid, applicable industrially and advantageously integrable in a plant for the production of phosphoric acid from natural phosphates in which it is also desired to recover the uranium. contained in said phosphates.
  • the amount of uranium that remains in the phase organic corresponds to at least about 85%, and is from about 85% to about 95% of the total amount of uranium contained in said initial organic solution, but generally the amount of uranium which passes into the aqueous phase does not exceed about 10%.
  • the amount of iron which passes into aqueous solution corresponds to approximately at least 60-70% of the total amount of iron contained in the initial organic solution.
  • the iron is at valence 3 and is advantageously in the form of Fe (PO4R2) 3, R representing the radical of the acid organophosphorus compound defined above and the uranium is at valence 6, and advantageously under form UO2 (PO4R2) 2, R representing the radical of the acid organophosphorus compound defined above.
  • the method according to the invention advantageously applies to initial organic solutions, in which the ratio between iron and uranium, Fe / U, is equal to or greater than about 0.8, in particular about 1, without upper limit.
  • the method according to the invention advantageously applies to initial organic solutions, in which the value of the Fe / U ratio varies from approximately 0.8 to approximately 2.5, and in particular from approximately 1 to approximately 2.5.
  • the process of the invention advantageously applies to initial organic solutions containing at least approximately 1,200 mg / l of iron and at least approximately 1,200 mg / l of uranium, since it makes it possible to eliminate the problems due to precipitation. subsequent iron.
  • the initial organic solutions contain from approximately 0.3 to approximately 3 g / l of uranium, in particular from approximately 0.4 to approximately 1.5 g / l d uranium and from about 1 to about 4 g / l of iron, especially about 1.2 g / l of iron.
  • the initial organic solution consists of a mixture of two extractants chosen from tri octyl phosphine oxide (TOPO), di n hexyl octyl methoxy phosphine oxide ( DinHMOPO), bis dibutoxy 1,3 propyl 2 phosphoric acid (BIDIBOPP) and bis dihexyloxy 1,3 propyl 2 phosphoric acid (BIDIHOPP) and in particular the following couples: (TOPO - BIDIBOPP), (TOPO - BIDIHOPP), (DinHMOPO - BIDIBOPP), (DinHMOPO - BIDIHOPP).
  • TOPO tri octyl phosphine oxide
  • DinHMOPO di n hexyl octyl methoxy phosphine oxide
  • BIDIBOPP bis dibutoxy 1,3 propyl 2 phosphoric acid
  • BIDIHOPP bis dihexyloxy 1,3 propyl 2 phospho
  • the initial organic solution containing iron and uranium comes from a starting phosphoric acid solution, containing uranium, in particular at a rate of approximately 50 to approximately 300 mg / l, and iron, in particular at a rate of approximately 1 to approximately 15 g / l, in particular from approximately 1 to approximately 10 g / l.
  • the U / Fe ratio is generally about 1/100 to 1/15, and goes to about 1/1 by adding a system of extractants mentioned above, to constitute the initial organic solution, the uranium passes into the initial organic solution, the iron passes mainly with phosphoric acid and part of the iron remains in the initial organic solution and must be removed.
  • Oxalic acid is advantageously used, in the implementation of the process of the invention, at a rate of approximately 8 to approximately 10 kg per kg of iron to be extracted.
  • Oxalic acid is generally used at a concentration of approximately 5 to approximately 50 g / l, in particular approximately 5 to approximately 30 g / l and preferably approximately 20 g / l.
  • Oxalic acid can be regenerated, for example by using calcium hydroxide Ca (OH) 2, at a rate of about 1 to about 4 kg, and sulfuric acid, at a rate of about 2 to about 8 kg , per kg of oxalic acid.
  • Ca (OH) 2 calcium hydroxide Ca (OH) 2
  • sulfuric acid at a rate of about 2 to about 8 kg , per kg of oxalic acid.
  • Oxalic acid is particularly advantageous insofar as it allows efficient separation iron and uranium, such that all of the uranium remains in the initial organic solution.
  • a mixture of phosphoric acid and sulfuric acid hereinafter designated by a sulfophosphoric mixture.
  • the phosphoric acid used in the sulfophosphoric mixture is desuranized.
  • desuranized phosphoric acid is meant phosphoric acid containing less than about 10 mg / l of uranium.
  • a mixture of phosphoric acid and sulfuric acid with a total normality of 12 N to 20 N is used.
  • the normality of sulfuric acid can vary from 3 N to 12 N
  • the normality of phosphoric acid can vary from 3 N to 12 N.
  • a mixture of sulfuric acid of normality 3 N and phosphoric acid of normality 9 N is used, when the content of iron contained in phosphoric acid is equal to or less than about 1.5 g / l.
  • iron content of phosphoric acid is more than about 1.5 g / l, you can proceed an increase in the sulfuric acid concentration, this then being advantageously greater than or equal to 9 N.
  • the H2SO4 / H3PO4 ratio in normality can then advantageously vary from 3 to 1/3.
  • the iron content of the phosphoric acid is greater than approximately 1.5 g / l, it is also possible to carry out a prior iron removal of the phosphoric acid, advantageously de-uranium-containing, that is to say containing less than approximately 10 mg / l of uranium, before making the sulfophosphoric mixture.
  • the iron content of the phosphoric acid is greater than approximately 1.5 g / l, it is possible to increase the concentration of sulfuric acid and together with a deferrization of the phosphoric acid, advantageously desuranized.
  • deuraniated and deferrized phosphoric acid intended for the preparation of the sulfophosphoric mixture, by taking deuraniated phosphoric acid, obtained from uraniferous phosphoric acid. containing iron, after the uranium has been extracted using one of the solvents defined above.
  • deuraniated and deferrized phosphoric acid can intervene in the process of the invention, in particular when the initial organic solution comes from a solution of uraniferous phosphoric acid, itself coming from ores phosphates.
  • the quantity of phosphoric acid sampled corresponds at most to approximately 10% of the quantity of phosphoric acid obtained from desuraniated phosphoric acid containing iron.
  • This desuranylated phosphoric acid is then reacted with one of the new or regenerated solvents defined above.
  • the iron contained in the deuranic phosphoric acid is extracted from the deuraniated phosphoric acid and passes into the new or regenerated solvent, and deuraniated and deferrized phosphoric acid is obtained.
  • de-ironed phosphoric acid is carried out by countercurrent extraction, for example, in five stages, with an organic solvent chosen from those mentioned above and new or regenerated on deuraniated phosphoric acid.
  • New or regenerated solvent is defined as the solvent practically free of uranium and iron, that is to say containing less than approximately 100 mg / l of iron, in particular less than approximately 10 mg / l of iron and less than about 10 mg / l of uranium, and containing in particular about 2 to 3 mg / l of uranium.
  • a solvent is regenerated when it has undergone an alkaline re-extraction, in particular using ammonium carbonate and ammonia before being reused either for the extraction of uranium or for iron removal phosphoric acid.
  • the deferrized and advantageously desuranized phosphoric acid used in the preparation of the sulfophosphoric mixture involved in the process of the invention generally has a concentration of approximately 1 M to 3 M.
  • the iron removal of phosphoric acid used in the constitution of the sulfophosphoric mixture used in the process of the invention contains from approximately 50 mg / l to approximately 600 mg / l of iron.
  • the de-ironed phosphoric acid used in the composition of the sulfophosphoric mixture is advantageously from approximately 3 N to approximately 5 N.
  • a mixture of sulfuric acid of normality 9 N and deferrized phosphoric acid of normality 3 N is used, or a mixture of sulfuric acid of normality of about 12 N and phosphoric acid normality 4 N.
  • the concentration of sulfophosphoric acid is approximately 450 g / l, taking into account the fact that sulfuric acid has two acid functions and that phosphoric acid has three acid functions.
  • the iron removal of the initial organic solution generally takes place by circulating one of the acids mentioned above against the current with respect to the circulation of the initial organic solution.
  • the number of stages used is approximately 1 to 6, and preferably 2 to 4.
  • the contact time between the initial organic solution and the acid is generally around 3 to 10 minutes.
  • the above organic phase obtained from the iron removal of the initial organic solution and containing the major part of the uranium is then advantageously washed, in particular with water, until a PO4 content in the solution is obtained. organic less than or equal to about 1 g / l.
  • Uranium is then re-extracted in an alkaline medium, from the washed organic phase.
  • Uranium is for example re-extracted using ammonium carbonate and ammonia to regulate the pH. This re-extraction makes it possible to dissolve in the ammonium carbonate a quantity of uranium corresponding to approximately 95% to approximately 100% of the total quantity contained in the initial organic solution.
  • the solvent travels through a loop.
  • the solvent is in a first step brought into contact with a starting phosphoric acid solution (uraniferous phosphoric acid containing iron) to extract the uranium).
  • a starting phosphoric acid solution uraniferous phosphoric acid containing iron
  • This initial organic solution is de-ironed in a second step, and the solvent thus de-ironed is subjected, in a third step, to washing, then to be subjected in a fourth step, to re-extraction, to re-extract the uranium.
  • the solvent thus deuranized is then subjected in a fifth step to acidification, since the previously mentioned re-extraction step generally takes place in an alkaline medium.
  • the acidification generally consists of phosphoric acid, advantageously de-ironed or sulfuric acid, which can come from the effluents obtained at the end of the first extraction step.
  • FIG. 1 One of the preferred variants of the process of the invention is shown diagrammatically in FIG. 1.
  • the stage for the preparation of phosphoric acid is shown in (1).
  • the initial organic solution (e) containing uranium and iron is subjected to a deferrization step (3), using one of the acids (f) mentioned above, introduced against the current.
  • This iron removal leads to an organic iron removal solution, represented by (g) and to acid loaded with iron, represented by (t).
  • the de-ironed organic solution (g) containing the uranium is then subjected to the washing step represented by (4) using water (h) introduced against the current.
  • the de-ironed organic solution (g) containing the uranium is represented by (i) at the end of the washing step.
  • the organic solution (i) is subjected to a re-extraction step represented in (5), using ammonium carbonate and ammonia (j) introduced against the current.
  • a re-extraction step represented in (5) On the one hand, an eluate of ammonium carbonate rich in uranium (k) is obtained, and on the other hand the desuranized solvent (m) leaving the re-extraction step.
  • the solvent (m) is subjected to an acidification step shown in (6), in particular using phosphoric acid (d1), introduced against the current and coming from the deuraniated effluents (d).
  • This example relates to the process of the invention in which oxalic acid is used to extract iron from an initial organic solution.
  • the uranium is not re-extracted at all. Except for the analytical dispersion, the contents of the uranium solvent on all the stages are identical.
  • Oxalic acid can then be regenerated by transforming iron oxalate into calcium oxalate by lime and the latter into oxalic acid by the action of sulfuric acid.
  • the reactions are as follows: Fe2 (C2O4) 3 + 3 Ca (OH) 2 ---> 2 Fe (OH) 3 + 3 CaC2O4 + 3H2O CaC2O4 + H2SO4 ---> CaSO4 + H2C2O4
  • Figure No. 2 is a block diagram of the inventive method, with removal of iron by oxalic acid. The figures are given for information only for a plant processing 80 m3 / h of phosphoric acid.
  • This extraction is carried out using a solvent (s) introduced against the current.
  • This initial organic solution (c) is subjected to a deferrization step shown in (2), using an oxalic acid solution (d) introduced against the current, at a flow rate of 3.5 m3 / h , to lead on the one hand to an iron oxalate (d1), at a flow rate of 3.5 m3 / h, and on the other hand to the deferrized organic solution containing uranium (e).
  • the deferrized organic solution containing the uranium (e) in step (3) is then washed, using neutral water (f), at a flow rate of 1.5 m3 / h, which leads to water acid (g) with a flow rate of 1.5 m3 / h and with the washed organic solution with iron removal containing uranium (h).
  • the deuranified solvent (k) is then acidified in step (5) using non-iron-depleted phosphoric acid (b1), introduced against the current, at a flow rate of 1.5 m3 / h from a portion phosphoric effluent (b).
  • step (5) an ammonium phosphate solution (m) is obtained, and the acidified solvent (s), at the rate of 4.9 m3 / h which is reintegrated in step d uranium extraction (1).
  • This example relates to the preparation of de-ironed phosphoric acid, advantageously de-uranium entering into the preparation of a sulfophosphoric mixture.
  • Desuranic phosphoric acid usually always contains significant amounts of iron. A certain amount of this iron-free acid may be available, by performing a continuous operation on an appropriate number of stages.
  • Figures No. 3 and 4 show schematically the method steps of the invention to realize the removal of iron from an initial organic solution, respectively, using a sulfophosphorique mixture in which the phosphoric acid is uranium-depleted and ironed.
  • FIG. 3 is shown by (a) the influent consisting sulfophosphorique mixture containing 1290 mg / l of iron and uranium.
  • the initial organic solution (c) is subjected to a de-ironing step represented by (3) using the sulfophosporic mixture in which the phosphoric acid has been previously de-ironed, introduced against the current over 2 to 6 stages.
  • the iron-free organic solution (d) is obtained (containing approximately 300 mg / l of iron) containing uranium and an effluent consisting of sulfophosphoric mixture loaded with iron (q), which is recycled into the defined influent above.
  • the deferrized organic solution (d) containing uranium is subjected to a washing step represented by (4), using water (e) introduced against the current and, on the one hand, acidic water (f) and the de-ironed and washed organic solution (g), containing uranium.
  • (1) shows the step of iron removal of deuranified phosphoric acid (b1) using the deuranized and iron removal solvent (k), introduced against the current.
  • Uranium phosphoric acid (b1) is an aliquot of uranium phosphoric acid (b), phosphoric acid (b1) representing approximately 10% by volume of uranium phosphoric acid (b).
  • the iron removal step leads to iron removal of phosphoric acid (b2) with a concentration of 4.62 M and containing 48 mg / l of iron, to which sulfuric acid is added (the addition of sulfuric acid is represented by (p)), under conditions such that the appropriate composition and acidity of the sulfophosphoric mixture.
  • the amount of iron in the solvent (s) relative to that of the solvent (k) is little modified, taking into account the fact that the solvent (k) serves to iron a small amount of phosphoric acid.
  • FIG. 4 is shown by (a) the influent consisting sulfophosphorique mixture in which the phosphoric acid has previously been de-ironed, containing 1290 mg / l of iron and uranium.
  • the initial organic solution (c) is subjected to a de-ironing step represented by (3) using a sulfophosphoric mixture in which the phosphoric acid has been previously de-ironed, introduced against the current over 5 stages.
  • the iron-free solvent (d) (containing approximately 300 mg / l of iron) containing uranium and an effluent consisting of sulfophosphoric mixture charged with iron (q) is obtained, which is reintroduced into the influent defined above. -above.
  • the de-ironed solvent (d) containing uranium is subjected to a washing step represented by (4) using water (e) introduced against the current and, on the one hand, acidic water (f) and the deferrized and washed solvent (g), containing uranium, are obtained.
  • the solvent (g) is subjected to a step of re-extracting the uranium represented by (5) using ammonium carbonate and ammonia (h) introduced against the current.
  • a uranium eluate (i) and the desuranic solvent (j) are obtained.
  • the solvent (j) is then acidified in an acidification step represented by (6) using deuranified and de-ironed phosphoric acid (b2) with a concentration of 3.4 M and containing 10 mg / l of iron, to obtain deuranized, iron-depleted solvent (k) and ammonium phosphate (m).
  • (1) shows the step of de-ironing of deuranified phosphoric acid (b1) using the de-uraniumized and de-ironed solvent (k).
  • Uranium phosphoric acid (b1) is an aliquot of uranium phosphoric acid (b), phosphoric acid (b1) representing approximately 10% by volume of phosphoric acid (b).
  • a fraction of the phosphoric acid (b) defined above is taken and it is subjected to a dilution using the washing water (f).
  • the deferrized phosphoric acid (b2) with a concentration of 3.4 M and containing 10 mg / l of iron is then mixed with introduced sulfuric acid, represented by (p) and it is the sulfophosphoric mixture (p1), which is introduced in the iron removal step (3) of the initial organic solution.
  • the amount of iron in the solvent (s) compared to that of the solvent (k) is little changed, account given that the solvent (k) is used to iron a small amount of phosphoric acid.
  • Example 3 Iron removal using a mixture of sulfuric and phosphoric acid.
  • This embodiment of the process of the invention has the advantage that sulfuric acid, which is the complementary reagent for carrying out the iron removal of the initial organic solution containing uranium and iron, can be recycled to the attack phosphates and the weight thereof in the balance of reagents for the overall operation will be zero or almost zero.
  • Solvent re-extraction tests were carried out using 12 N sulfuric acid (as comparison) and two sulphophosphoric mixtures, in which the phosphoric acid is de-ironed (containing less than about 50 mg / l of iron) and in which the normalities of sulfuric and phosphoric acid are respectively 9 N and 3 N and 3 N and 9 N.
  • FIG. 5 shows the process of the invention in which the sulfophosphoric mixture is used.
  • the uranium extraction is carried out in the step represented by (2) using one of the solvents organic mentioned above (s), introduced against the current, to give, on the one hand, effluents (b) made up of desuranic phosphoric acid and, on the other hand, an initial organic solution containing uranium and iron ( vs).
  • the initial organic solution (c) is then de-ironed in step (2), using a mixture of sulfuric acid and phosphoric acid, introduced against the current at a rate of 4.9 m3 / h (f), to lead on the one hand to an organic iron removal solution (e) containing uranium, and on the other hand to an iron removal effluent (g) consisting of the sulfophosphoric mixture loaded with iron, which is taken back to l attack of phosphates, which allows sulfuric acid to be reused.
  • the de-ironed organic solution (e) is then washed in step (3), using water (h) introduced against the current at a rate of 1.24 m3 / h, which gives water. acid (i) at a flow rate of 1.24 m3 / h and a washed organic solution containing uranium (k).
  • the solution (k) is then subjected to a step of re-extracting the uranium represented by (4), using ammonium carbonate (m) introduced against the current at a flow rate of 0.6 m3 / h, to lead on the one hand to a uranium-bearing eluate (n) and to a deferrized and deuranified, alkaline solvent (p).
  • the solvent (p) is then acidified in step (5) using non-iron-depleted phosphoric acid (b), introduced against the current, which leads to an ammonium phosphate solution (q) and with acid solvent (s) with a flow rate of 4.5 m3 / h.
  • the non-iron removal phosphoric acid (b1) comes from the effluent of phosphoric acid (b).
  • step (6) The formation of the above mixture of sulfophosphoric acid of normality 12 N is shown in step (6).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Claims (14)

  1. Verfahren zur Trennung von Eisen aus einer organischen uranhaltigen Ausgangslösung, die mindestens 1 g/l Eisen enthält, wobei diese organische Ausgangslösung ein organisches Lösungsmittel enthält umfassend ein System von Extraktionsmitteln gebildet aus:

    einem neutralen Phosphinoxid der Formel:
    Figure imgb0011
    oder der Formel (R₁)₃ P=O

    in der

    - R₁ und R₂ identisch oder verschieden sind, ein lineares oder verzweigtes Alkoylradikal darstellen, das von 4 bis 10 Kohlenstoffatome, insbesondere 6 aufweist),
    - m eine ganze Zahl zwischen 1 und 3 und insbesondere vom Wert 1 ist,
    - n eine ganze Zahl zwischen 4 und 10 und insbesondere vom Wert 7 ist,
    und einer organischen Phosphorsäureverbindung entsprechend der Formel:
    Figure imgb0012
    in der R₃, R₄, R₅, R₆ identisch oder verschieden sind, ein lineares oder verzweigtes Alkoylradikal darstellen, das mindestens 4 Kohlenstoffatome, insbesondere 4 bis 10 Kohlenstoffatome, bevorzugt 4 bis 6 Kohlenstoffatome aufweist, oder ein Arylradikal von 6 bis 10 Kohlenstoffatomen, wobei das Verfahren die Reaktion der genannten uranhaltigen organischen Lösung auf einer Säure ausgewählt aus Oxalsäure, einer Mischung aus Phosphorsäure und Schwefelsäure oder einer Mischung aus von Eisen befreiter Phosphorsäure und Schwefelsäure umfaßt, wobei das Uran in der organischen Ausgangslösung verbleibt und das Eisen in die wässrige Lösung übergeht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Eisen in Form von Fe(PO₄R₂)₃ vorliegt, wobei R ein Radikal der im Anspruch 1 definierten organischen Phosphorsäureverbindung darstellt und das Uran in Form von UO₂(PO₄R₂)₂ vorliegt, wobei R ein Radikal der im Anspruch 1 definierten organischen Phosphorsäureverbindung darstellt.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die organische Ausgangslösung aus einer Mischung von zwei Extraktionsmitteln gebildet ist ausgewählt aus Trioctylphosphinoxid (TOPO) Di-n-hexyloctylmethoxyphosphinoxid (DinHMOPO), Bisdibutoxy-1,3-propyl-2-phosphorsäure (BIDIBOPP) und Bisdihexyloxy-1,3-propyl-2-phosphorsäure (BIDIHOPP) und insbesondere den folgenden Paaren:

       (TOPO - BIDIBOPP),
       (TOPO - BIDIHOPP),
       (DinHMOPO - BIDIBOPP),
       (DinHMOPO - BIDIHOPP).
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in der organischen Ausgangslösung das Uran zu ungefähr 0,3 bis ungefähr 3 g/l, insbesondere von ungefähr 0,4 bis ungefähr 1,4 g/l enthalten ist und das Eisen zu ungefähr 1 bis 4 g/l, insbesondere zu ungefähr 1,2 g/l enthalten ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die organische Ausgangslösung, die das Eisen und das Uran enthält, von einer Phosphorsäurefällungslösung stammt, die Uran zu ungefähr 50 bis ungefähr 300 mg/l und Eisen zu ungefähr 1 bis ungefähr 15 g/l, insbesondere zu ungefähr 1 bis ungefähr 10 g/l enthält.
  6. Verfahren zur Trennung von Eisen aus einer Phosphorsäurefällungslösung, die Uran und Eisen enthält, dadurch gekennzeichnet, daß es die folgenden Schritte umfaßt:
    - das Wirkenlassen eines Lösungsmittels ausgewählt aus den folgenden Extraktionsmittelsystemen:

       (TOPO - BIDIBOPP),
       (TOPO - BIDIHOPP),
       (DinHMOPO - BIDIBOPP),
       (DinHMOPO - BIDIHOPP)

    auf die Phosphorsäurefällungslösung, die Uran und Eisen enthält und deren Gewichtsverhältnis U/Fe ungefähr 1/10 bis ungefähr 3/1000 ist, zur Herstellung
    - einerseits einer organischen Ausgangslösung gebildet aus dem genannten Lösungsmittel enthaltend mindestens ungefähr 95 % der Menge an Uran, die in der Fällungsphosphorsäure enthalten ist und mindestens 1 g/l Eisen und in der das Gewichtsverhältnis Fe/U größer oder gleich ungefähr 0,8 ist, insbesondere zwischen ungefähr 1/1 bis ungefähr 2,5/1,
    - und andererseits einer von Uran befreiten wässrigen Phase enthaltend die Phosphorsäure und ungefähr 80 % bis ungefähr 90 % des Eisens, das in der Phosphorsäurefällungslösung enthalten ist;
    - das Wirkenlassen einer Säure ausgewählt aus Oxalsäure, einer Mischung aus Phosphorsäure und Schwefelsäure oder einer Mischung aus von Eisen befreiter Phosphorsäure und Schwefelsäure auf die genannte organische Ausgangslösung zur Herstellung
    - einerseits einer wässrigen Phase enthaltend ungefähr 50 % bis ungefähr 90 %, insbesondere ungefähr 70 % des Eisens, das in der organischen Ausgangslösung enthalten ist und
    - andererseits einer organischen Phase enthaltend mindestens ungefähr 85 Gewichts-% des Urans, das in der organischen Ausgangslösung enthalten ist.
  7. Verfahren zur Trennung von Eisen aus einer Phosphorsäurelösung, die Uran und Eisen enthält, dadurch gekennzeichnet, daß es die folgenden Schritte umfaßt:
    - das Wirkenlassen eines Lösungsmittels ausgewählt aus den folgenden Extraktionsmittelsystemen:

       (TOPO - BIDIBOPP),
       (TOPO - BIDIHOPP),
       (DinHMOPO - BIDIBOPP),
       (DinHMOPO - BIDIHOPP)

    auf die Phosphorsäurefällungslösung, die Uran und Eisen enthält und deren Gewichtsverhältnis U/Fe ungefähr 1/10 bis ungefähr 3/1000 ist, zur Herstellung
    - einerseits einer organischen Ausgangslösung enthaltend das genannte Lösungsmittel enthaltend mindestens ungefähr 95 Gewichts-% der Menge an Uran, die in der Fällungsphosphorsäure enthalten ist und mindestens 1 g/l Eisen und in der das Gewichtsverhältnis Fe/U größer oder gleich ungefähr 1/1 ist, insbesondere zwischen ungefähr 1/1 bis ungefähr 2,5/1,
    - und andererseits einer von Uran befreiten wässrigen Phase enthaltend die Phosphorsäure und ungefähr 80 % bis ungefähr 90 % des Eisens, das in der Phosphorsäurefällungslösung enthalten ist;
    - das Wirkenlassen einer Säure ausgewählt aus Oxalsäure, einer Mischung aus Phosphorsäure und Schwefel säure oder einer Mischung aus von Eisen befreiter Phosphorsäure und Schwefelsäure auf die genannte organische Ausgangslösung zur Herstellung
    - einerseits einer wässrigen Phase enthaltend ungefähr 50 % bis ungefähr 90 %, insbesondere ungefähr 70 % des Eisens, das in der organischen Ausgangslösung enthalten ist und
    - andererseits einer organischen Phase enthaltend das Uran, das in der organischen Ausgangslösung enthalten ist.
  8. Verfahren zur Trennung von Eisen aus einer Phosphorsäurefällungslösung, die Uran und Eisen enthält, dadurch gekennzeichnet, daß es die folgenden Schritte umfaßt:
    - das Behandeln der Phosphorsäure mit einem Lösungsmittel ausgewählt aus den folgenden Extraktionsmittelsystemen:

       (TOPO - BIDIBOPP),
       (TOPO - BIDIHOPP),
       (DinHMOPO - BIDIBOPP),
       (DinHMOPO - BIDIHOPP),

    so daß einerseits eine wässrige Lösung erhalten wird, die die von Uran befreite Phosphorsäure und Eisen enthält und andererseits eine organische Ausgangslösung, die mindestens 1 g/l Eisen und mindestens ungefähr 95 Gewichts-% des Urans, das in der Phosphorsäurefällungslösung enthalten ist, enthält;
    - das Trennen des Eisens und des Urans durch Wirkenlassen einer Säure ausgewählt aus Oxalsäure, einer Mischung aus Phosphorsäure und Schwefelsäure oder einer Mischung aus von Eisen befreiter Phosphorsäure und Schwefelsäure auf die organische Ausgangslösung zur Herstellung
    - einerseits einer organischen Phase, die mindestens ungefähr 85 Gewichts-% des Urans enthält und
    - andererseits einer wässrigen Phase, die Eisen enthält;
    - das Waschen der organischen Phase bis der Gehalt an PO₄ gleich oder kleiner als ungefähr 1 g/l ist,
    - das Reextrahieren in alkalischem Milieu, insbesondere Ammoniumcarbonat, des Urans, das in der gewaschenen organischen Phase enthalten ist, mit Hilfe von Ammoniumcarbonat.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß bei Verwendung von Oxalsäure, diese zu ungefähr 8 bis ungefähr 10 kg pro kg Eisen verwendet wird und durch Verwendung von Calciumhydroxid Ca(OH)₂ zu ungefähr 1 bis ungefähr 4 kg und Schwefelsäure zu ungefähr 2 bis ungefähr 8 kg pro kg Oxalsäure regeneriert wird.
  10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die verwendete Säure eine Mischung aus Schwefelsäure und Phosphorsäure ist, deren Gesamtnormalität zwischen 12 N bis 20 N liegt.
  11. Verfahren nach einem der Ansprüche 1 bis 8 und 10, dadurch gekennzeichnet, daß die Normalität der Phosphorsäure zwischen 3 N bis 12 N variiert und die Normalität der Schwefelsäure zwischen 3 N bis 12 N variiert.
  12. Verfahren nach einem der Ansprüche 1 bis 8 und 10, dadurch gekennzeichnet, daß die verwendete Säure eine Mischung aus Schwefelsäure der Normalität 3 N und Phosphorsäure der Normalität 9 N ist, wobei die Phosphorsäure eine Menge an Eisen gleich oder kleiner als ungefähr 1,5 g/l enthält.
  13. Verfahren nach einem der Ansprüche 1 bis 8 und 10, dadurch gekennzeichnet, daß die verwendete Säure eine Mischung aus 9 N Schwefelsäure und 3 N Phosphorsäure ist, die von Eisen befreit ist und mindestens ungefähr 50 mg/l bis ungefähr 600 mg/l Eisen enthält.
  14. Verfahren nach einem der Ansprüche 1 bis 8 und 10 bis 13, dadurch gekennzeichnet, daß die in der Mischung aus Schwefelsäure und Phosphorsäure verwendete Phosphorsäure von Uran befreit ist und mindestens ungefähr 10 mg/l Uran enthält.
EP87400690A 1986-03-28 1987-03-26 Verfahren zur Trennung von Eisen aus organischen Uranlösungen Expired - Lifetime EP0239501B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8604558A FR2596383B1 (fr) 1986-03-28 1986-03-28 Procede de separation du fer a partir d'une solution organique contenant de l'uranium
FR8604558 1986-03-28

Publications (2)

Publication Number Publication Date
EP0239501A1 EP0239501A1 (de) 1987-09-30
EP0239501B1 true EP0239501B1 (de) 1991-07-24

Family

ID=9333703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400690A Expired - Lifetime EP0239501B1 (de) 1986-03-28 1987-03-26 Verfahren zur Trennung von Eisen aus organischen Uranlösungen

Country Status (7)

Country Link
US (1) US5017344A (de)
EP (1) EP0239501B1 (de)
BR (1) BR8701444A (de)
ES (1) ES2025176B3 (de)
FR (1) FR2596383B1 (de)
MA (1) MA20922A1 (de)
YU (1) YU55287A (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990206B1 (fr) 2012-05-07 2014-06-06 Commissariat Energie Atomique Nouveaux composes bifonctionnels utiles comme ligands de l'uranium(vi), leurs procedes de synthese et leurs utilisations
FR3038326A1 (fr) * 2015-06-30 2017-01-06 Areva Mines Procede de separation du fer d'une phase organique contenant de l'uranium et procede d'extraction de l'uranium d'une solution aqueuse d'acide mineral contenant de l'uranium et du fer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288568A (en) * 1960-11-18 1966-11-29 Tokyo Shibaura Electric Co Direct dissolution of water-insoluble uranium compounds by contact with neutral organic solvents pretreated with nitric acid
US4105741A (en) * 1976-03-08 1978-08-08 Freeport Minerals Company Process for recovery of uranium from wet process phosphoric acid
DE2652766A1 (de) * 1976-03-09 1977-09-22 Robert Dr Michel Verfahren zur herstellung von phosphorsaeure aus phosphatgestein
US4258013A (en) * 1977-09-14 1981-03-24 Earth Sciences Inc. Uranium recovery from wet process phosphoric acid
US4162230A (en) * 1977-12-28 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Method for the recovery of actinide elements from nuclear reactor waste
US4255392A (en) * 1978-07-13 1981-03-10 Wyoming Mineral Corp. Method of separating iron from uranium
FR2494258A1 (fr) * 1980-11-14 1982-05-21 Commissariat Energie Atomique Procede de recuperation de l'uranium present dans des solutions d'acide phosphorique
US4490336A (en) * 1981-05-27 1984-12-25 Prodeco, Inc. Process for stripping uranium from an alkyl pyrophosphoric acid
US4435367A (en) * 1981-07-21 1984-03-06 Wyoming Mineral Corporation Barren solvent wash by oxidized raffinate acid in the process of uranium extraction from phosphoric acid
US4430309A (en) * 1981-08-12 1984-02-07 Wyoming Mineral Corporation Acid wash of second cycle solvent in the recovery of uranium from phosphate rock

Also Published As

Publication number Publication date
EP0239501A1 (de) 1987-09-30
ES2025176B3 (es) 1992-03-16
BR8701444A (pt) 1988-01-05
FR2596383B1 (fr) 1990-10-26
YU55287A (en) 1988-10-31
FR2596383A1 (fr) 1987-10-02
US5017344A (en) 1991-05-21
MA20922A1 (fr) 1987-10-01

Similar Documents

Publication Publication Date Title
EP0238402B1 (de) Verfahren zur Trennung von seltenen Erden
CA1201597A (fr) Procede d'extraction et de separation de l'uranium, du thorium et des terres rares par traitement de solutions aqueuses de chlorures de ces elements
FR2459837A1 (fr) Procede pour la recuperation d'uranium a partir d'acide phosphorique obtenu par voie humide
EP0388250A1 (de) Verfahren zum Aufschluss von Erzen der seltenen Erden
US10494697B2 (en) Method of refining of scandium oxide from concentrates using solvent extraction
EP0090692B1 (de) Verfahren zur Rückgewinnung und Reinigung einer rückständigen Schwefelsäure welche Titansalze enthält
CA2025152A1 (fr) Procede de traitement de minerais contenant des terres rares
EP0297998A1 (de) Verfahren zur Extraktion und Reinigung von Gallium aus Bayer-Lösungen
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
WO1979000142A1 (en) Uranium recovery from wet process phosphoric acid
CA1079424A (fr) Procede de traitement d'effluents nitriques
EP0043765B1 (de) Verfahren zur Abtrennung dreiwertiger Aktinide und Lanthanide aus einer sauren wässrigen Lösung
US9932654B2 (en) Extraction of uranium from wet-process phosphoric acid
CA1142364A (fr) Procede de recuperation globale de l'uranium, des terres rares, du thorium et de l'yttrium contenus dans une solution acide
EP0239501B1 (de) Verfahren zur Trennung von Eisen aus organischen Uranlösungen
WO2017001494A1 (fr) Procede de separation du fer d'une phase organique contenant de l'uranium et procede d'extraction de l'uranium d'une solution aqueuse d'acide mineral contenant de l'uranium et du fer
EP0210934B1 (de) Verfahren zur Abtrennung und Verwertung seltener Erdmetalle und Uran aus Urantetrafluoridkonzentrat
EP0233121B1 (de) Verfahren zum Entfernen von Blei aus Seltenerdmetallen
US4435367A (en) Barren solvent wash by oxidized raffinate acid in the process of uranium extraction from phosphoric acid
KR20140123040A (ko) 습식 인산으로부터의 우라늄의 추출
EP0251399A1 (de) Verfahren zum Trennen oder zum Rückgewinnen von Plutonium und nach diesem Verfahren erzeugtes Plutonium
FR2627478A1 (fr) Procede de traitement de residus contenant des terres rares et du cobalt
CA1117768A (en) Process for recovering uranium from wet process phosphoric acid
FR2465687A1 (fr) Procede de recuperation globale de l'uranium, des terres rares, du thorium et de l'yttrium contenus dans une solution acide
CA1095689A (en) Simultaneous extraction and recovery of uranium and vanadium from wet process acids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE ES FR GB NL

17P Request for examination filed

Effective date: 19880307

17Q First examination report despatched

Effective date: 19900326

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE ES FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19920214

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920220

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2025176

Country of ref document: ES

Kind code of ref document: B3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920331

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930331

BERE Be: lapsed

Owner name: CIE GENERALE DES MATIERES NUCLEAIRES COGEMA

Effective date: 19930331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000316

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST