EP0238440A1 - Fibre-optic microbend sensor - Google Patents

Fibre-optic microbend sensor Download PDF

Info

Publication number
EP0238440A1
EP0238440A1 EP19870810118 EP87810118A EP0238440A1 EP 0238440 A1 EP0238440 A1 EP 0238440A1 EP 19870810118 EP19870810118 EP 19870810118 EP 87810118 A EP87810118 A EP 87810118A EP 0238440 A1 EP0238440 A1 EP 0238440A1
Authority
EP
European Patent Office
Prior art keywords
fiber
sensor according
discontinuities
sensor
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19870810118
Other languages
German (de)
French (fr)
Other versions
EP0238440B1 (en
Inventor
Lucien G. Falco
Olivier M. Parriaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Priority to AT87810118T priority Critical patent/ATE58238T1/en
Publication of EP0238440A1 publication Critical patent/EP0238440A1/en
Application granted granted Critical
Publication of EP0238440B1 publication Critical patent/EP0238440B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/56Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
    • G01K5/62Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
    • G01K5/70Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording
    • G01K5/72Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording with electric transmission means for final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity

Definitions

  • the present invention relates, in general, to optical fiber sensors and, more particularly, to sensors which use the effect of the microbends of a fiber to detect a physical quantity or an environment parameter.
  • optical fiber detectors which modulate the intensity of the light transmitted by a fiber in response to a variation in the quantity to be measured. This intensity modulation in fact results in a variation in the attenuation of the fiber.
  • a particular type of detector belonging to the latter category is the micro-bend detector in which the attenuation of the fiber is caused by a local undulation of the angle of curvature of the fiber.
  • the Swiss patent CH 627 573 describes a device sensitive to the pressure of the weight of a body exerted on an optical fiber coated with a sheath whose internal surface is rough.
  • the article by M.B.J. Diemeer and F.S. Trommel “Fiber-optic microbend sensor” published in Optics Letters, Vol. 9, No 6 of June 1984 and the article by A.R. Mickelson et al entitled “Backscatter readout from serial microbending sensors” and published in Journal of Lightwave Technology, Vol. LT-2, No. 5, of October 1984, show examples of force sensors using ribbed plates, or jaws, to cause, on a fiber disposed between these jaws, microbends when a force is applied to said jaws.
  • the sensors either require external components, such as the jaws, or are difficult to manufacture and are not compatible with industrial requirements.
  • these sensors are primarily intended to detect the application of a force and are, a priori, not very applicable for detecting other quantities, such as an environment parameter.
  • an object of the invention is a fiber optic sensor capable of producing microbends of the fiber and not having the drawbacks mentioned above.
  • Another object of the invention is a sensor capable of detecting a physical quantity.
  • Another object of the invention is a sensor capable of detecting an environment parameter.
  • Another object of the invention is a sensor that does not require external components.
  • Another object of the invention is a sensor allowing mass production.
  • Figure 1 shows a partial view of a first embodiment of the sensor of the invention.
  • This is formed by an optical fiber 2 and its sheath 3.
  • the sheath has a coating 4 which has discontinuities 5. your discontinuities 5 are such that they have a periodicity "d" in a longitudinal direction and a circular asymmetry in a perpendicular nlan.
  • the optical fiber can be of multimode, monomode or bimode type.
  • the sheath may be made of a synthetic material 3, such as nylon, coated with a metallic layer 4 of a few tens of micrometers, for example copper or nickel. This metallic layer is, for example, obtained by chemical deposition.
  • the discontinuities of the metal layer can be achieved by means of a chemical attack, after deposition of a photosensitive resin and exposure through a suitable mask.
  • the operating principle of such a sensor is as follows. Under the effect of a temperature variation, the difference in the expansion coefficients of zones 4 and 5 of the outer surface of the fiber causes a deformation of the sheath and, consequently, of the fiber 2 in the form of a ripple (microcurves) of periodicity equal to the periodicity "d" of the discontinuities.
  • the periodicity "d" is linked to the propagation constant of the mode or modes guided by the fiber so that, for this or these modes, the attenuation (or the coupling between modes) caused by the micro-bends is maximum.
  • the structure of the sensor in FIG. 1 can advantageously be used to detect variations other than that of the temperature.
  • the sensor can be used as a humidity sensor.
  • the same structure can also be used to make an intrusion detector. Indeed, as soon as the zones 4 and 5 have different rigidities, a pressure exerted on the sheath by any body will have the effect of inducing micro-bends at the level of the sensor.
  • Figure 2 shows an alternative embodiment of the sensor of the invention. It should be noted that the shape of the zones 5 may be dependent on the technology used, chemical attack or attack mechanical, and / or the intended application.
  • FIG. 4 shows a first detection system incorporating the sensor of the invention.
  • OTDR Optical Time Domain Reflectometry
  • the fiber 2 can be of the type multimode or single mode.
  • the sensor 1 is produced on the fiber 2. It is also possible to have several sensors distributed, discreetly, over the entire length of the fiber or even to produce the sensor over the entire length of the fiber.
  • micro-bends are produced at the sensor 1, part of the light coming from the source 10 is returned to the source (backscattering effect) and is applied to the detection circuit 12 via the coupler 11 and the fiber optic 14.
  • FIG. 3 which shows, as a function of time t, the evolution of the power P of the signal received following a disturbance at the level of the sensor, it is possible to detect said disturbance.
  • the response of the sensor to the chosen environment parameter and the speed of propagation of the signal in the fiber 2 it is also possible to measure the variation of this parameter and the location of the disturbance.
  • microbends induced at the level of the sensor by the variation of an environment parameter, caused a transfer of energy from modes guided by the fiber to modes radiated at l outside of the fiber. Overall, such a phenomenon results in a loss of the energy transmitted by the fiber.
  • An example of an application using such a characteristic is shown in FIG. 5.
  • the fiber 2 is of the bimodal type and the light source 20 is designed to emit, in FIG. 2, two light signals of different modes or of different polarizations. These two signals will advantageously be modulated at medium frequency (for example at radio frequency).
  • Sensor 1 is of the type described previously, the period of discontinuities of which is adapted to allow the transfer of energy from one of the modes transmitted to the other.
  • the separator device 21 ensures the separation of the modes transmitted to either the detector 22, via the fiber 24, or the detector 23, via the fiber 25.
  • the effect of a disturbance at the level of the sensor 1 can be detected either by the detector 22, either by the detector 23 or by a comparison of the signals delivered by the two detectors 22 and 23.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

The invention relates to a fiber-optic detector and concerns more particularly a detector capable of producing microbends in an optical fiber in response to the variation of a physical quantity or of an environmental parameter. The sensor of the invention consists of an optical fiber provide with a sheath which is covered by a layer exhibiting periodic discontinuities. The sheath and its covering react to the variation of the parameter to be detected in such a manner as to produce microbends of the same periodicity as that of the discontinuities.

Description

La_ présente invention concerne, de manière générale, les capteurs à fibre optique et, plus particulièrement, les capteurs qui utilisent l'effet des microcourbures d'une fibre pour détecter une grandeur physique ou un paramètre d'environnement.The present invention relates, in general, to optical fiber sensors and, more particularly, to sensors which use the effect of the microbends of a fiber to detect a physical quantity or an environment parameter.

La technique de détection par fibre optique offre, par rapport aux techniques courantes, un grand nombre d'avantages parmi lesquels on peut citer: la compatibilité avec les systèmes de communication optique, l'insensibilité aux phénomènes électromagnétiques extérieurs et, de manière générale, l'aptitude à fonctionner dans un environnement sévère. Parmi les différents détecteurs à fibre optique, il existe une catégorie de détecteurs qui modulent l'intensité de la lumière transmise par.une fibre en réponse à une variation de la grandeur à mesurer. Cette modulation d'intensité se traduit en fait par une variation de l'atténuation de la fibre. Un type de détecteur particulier appartenant à cette dernière catégorie est le détecteur à microcourbures dans lequel l'atténuation de la fibre est provoquée par une ondulation locale de l'angle de courbure de la fibre. Le brevet suisse CH 627 573 décrit un dispositif sensible à la pression du poids d'un corps exercée sur une fibre optique revêtue d'une gaine dont la surface interne est rugueuse. L'article de M.B.J. Diemeer et F.S. Trommel "Fiber-optic microbend sensor" paru dans Optics Letters, Vol. 9, No 6 de juin 1984 et l'article de A.R. Mickelson et al intitulé "Backscatter readout from serial microbending sensors" et paru dans Journal of Lightwave Technology, Vol. LT-2, No 5, de Octobre 1984, montrent des exemples de capteurs de force utilisant des plaques nervurées, ou mâchoires, pour provoquer, sur une fibre disposée entre ces mâchoires, des microcourbures lorsqu'une force est appliquée sur lesdites mâchoires. Dans les exemples mentionnés ci-dessus, les capteurs soit nécessitent des composants externes, tels les mâchoires, soit sont d'une fabrication difficile peu compatible avec les exigences industrielles. De plus, ces capteurs sont avant tout destinés à détecter l'application d'une force et sont, à priori, peu applicables pour détecter d'autres grandeurs, telles qu'un paramètre d'environnement.The detection technique by optical fiber offers, compared to current techniques, a large number of advantages among which we can cite: compatibility with optical communication systems, insensitivity to external electromagnetic phenomena and, in general, the ability to function in a harsh environment. Among the various optical fiber detectors, there is a category of detectors which modulate the intensity of the light transmitted by a fiber in response to a variation in the quantity to be measured. This intensity modulation in fact results in a variation in the attenuation of the fiber. A particular type of detector belonging to the latter category is the micro-bend detector in which the attenuation of the fiber is caused by a local undulation of the angle of curvature of the fiber. The Swiss patent CH 627 573 describes a device sensitive to the pressure of the weight of a body exerted on an optical fiber coated with a sheath whose internal surface is rough. The article by M.B.J. Diemeer and F.S. Trommel "Fiber-optic microbend sensor" published in Optics Letters, Vol. 9, No 6 of June 1984 and the article by A.R. Mickelson et al entitled "Backscatter readout from serial microbending sensors" and published in Journal of Lightwave Technology, Vol. LT-2, No. 5, of October 1984, show examples of force sensors using ribbed plates, or jaws, to cause, on a fiber disposed between these jaws, microbends when a force is applied to said jaws. In the examples mentioned above, the sensors either require external components, such as the jaws, or are difficult to manufacture and are not compatible with industrial requirements. In addition, these sensors are primarily intended to detect the application of a force and are, a priori, not very applicable for detecting other quantities, such as an environment parameter.

Aussi un objet de l'invention est un capteur à fibre optique capable de produire des microcourbures de la fibre et ne présentant pas les inconvénients mentionnés ci-dessus.Also an object of the invention is a fiber optic sensor capable of producing microbends of the fiber and not having the drawbacks mentioned above.

Un autre objet de l'invention est un capteur capable de détecter une grandeur physique.Another object of the invention is a sensor capable of detecting a physical quantity.

Un autre objet de l'invention est un capteur capable de détecter un paramètre d'environnement.Another object of the invention is a sensor capable of detecting an environment parameter.

Un autre objet de l'invention est un capteur ne nécessitant pas de composants externes.Another object of the invention is a sensor that does not require external components.

Un autre objet de l'invention est un capteur permettant une fabrication en série.Another object of the invention is a sensor allowing mass production.

Les caractéristiques de l'invention sont définies dans les revendications et décrites ci-après dans le cadre d'exemples d'applications particuliers, en référence aux dessins joints dans lesquels:

  • - la figure 1 montre un premier exemple de réalisation d'un capteur selon l'invention;
  • - la figure 2 montre un deuxième exemple de réalisation d'un capteur selon l'invention;
  • - la figure 3 est un diagramme illustrant la réponse du capteur à un signal d'activation;
  • - la figure 4 montre un premier système de détection incorporant un capteur de l'invention; et
  • - la figure 5 montre un deuxième système de détection incorporant un capteur de l'invention.
The characteristics of the invention are defined in the claims and described below in the context of examples of particular applications, with reference to the accompanying drawings in which:
  • - Figure 1 shows a first embodiment of a sensor according to the invention;
  • - Figure 2 shows a second embodiment of a sensor according to the invention;
  • - Figure 3 is a diagram illustrating the response of the sensor to an activation signal;
  • - Figure 4 shows a first detection system incorporating a sensor of the invention; and
  • - Figure 5 shows a second detection system incorporating a sensor of the invention.

La figure 1 montre une vue partielle d'une première forme d'exécution du capteur de l'invention. Celui-ci est formé par une fibre optique 2 et sa gaine 3. La gaine comporte un revêtement 4 qui présente des discontinuités 5. tes discontinuités 5 sont telles qu'elles présentent une périodicité "d" selon une direction longitudinale et une asymétrie circulaire selon un nlan perpendiculaire. La fibre optique peut être de type multimode, monomode ou bimode. Dans le cas d'un capteur de température, la gaine pourra être constituée par une matière synthétique 3, telle le nylon, revêtue d'une couche métallique 4 de quelques dizaines de micromètres, par exemple de cuivre ou de nickel. Cette couche métallique est, par exemple, obtenue par dépôt chimique. Les discontinuités de la couche métallique peuvent être réalisées au moyen d'une attaque chimique, après dépôt d'une résine photosensible et exposition à travers un masque convenable. Le principe de fonctionnement d'un tel capteur est le suivant. Sous l'effet d'une variation de température, la différence des coefficients de dilatation des zones 4 et 5 de la surface extérieure de la fibre entraîne une déformation de la gaine et, par suite, de la fibre 2 sous la forme d'une ondulation (microcourbures) de périodicité égale à la périodicité "d" des discontinuités. La périodicité "d" est liée à la constante de propagation du ou des modes guidés par la.fibre de manière que, pour ce ou ces modes, l'atténuation (ou le couplage entre modes) provoquée par les microcourbures soit maximum.Figure 1 shows a partial view of a first embodiment of the sensor of the invention. This is formed by an optical fiber 2 and its sheath 3. The sheath has a coating 4 which has discontinuities 5. your discontinuities 5 are such that they have a periodicity "d" in a longitudinal direction and a circular asymmetry in a perpendicular nlan. The optical fiber can be of multimode, monomode or bimode type. In the case of a temperature sensor, the sheath may be made of a synthetic material 3, such as nylon, coated with a metallic layer 4 of a few tens of micrometers, for example copper or nickel. This metallic layer is, for example, obtained by chemical deposition. The discontinuities of the metal layer can be achieved by means of a chemical attack, after deposition of a photosensitive resin and exposure through a suitable mask. The operating principle of such a sensor is as follows. Under the effect of a temperature variation, the difference in the expansion coefficients of zones 4 and 5 of the outer surface of the fiber causes a deformation of the sheath and, consequently, of the fiber 2 in the form of a ripple (microcurves) of periodicity equal to the periodicity "d" of the discontinuities. The periodicity "d" is linked to the propagation constant of the mode or modes guided by the fiber so that, for this or these modes, the attenuation (or the coupling between modes) caused by the micro-bends is maximum.

La structure du capteur de la figure 1 peut être avantageusement mise à profit pour détecter d'autres variations que celle de la température. Ainsi, si les zones 4 et 5 de la gaine sont réalisées dans des matériaux présentant, pour un paramètre d'environnement donné tel que l'humidité, des coefficients d'absorption différents, le capteur peut être utilisé comme capteur d'humidité. La même structure peut également être utilisée pour réaliser un détecteur d'intrusion. En effet, dès lors que les zones 4 et 5 présentent des rigidités différentes, une pression exercée sur la gaine par un corps quelconque aura pour effet d'induire des microcourbures au niveau du capteur.The structure of the sensor in FIG. 1 can advantageously be used to detect variations other than that of the temperature. Thus, if zones 4 and 5 of the sheath are made of materials having, for a given environment parameter such as humidity, different absorption coefficients, the sensor can be used as a humidity sensor. The same structure can also be used to make an intrusion detector. Indeed, as soon as the zones 4 and 5 have different rigidities, a pressure exerted on the sheath by any body will have the effect of inducing micro-bends at the level of the sensor.

La figure 2 montre une variante de réalisation du capteur de l'invention. Il convient de noter que la forme des zones 5 peut être dépendante de la technologie utilisée, attaque chimique ou attaque mécanique, et/ou de l'application envisagée.Figure 2 shows an alternative embodiment of the sensor of the invention. It should be noted that the shape of the zones 5 may be dependent on the technology used, chemical attack or attack mechanical, and / or the intended application.

La figure 4 montre un premier système de détection incorporant le capteur de l'invention. Un tel système dit OTDR ("Optical Time Domain Reflectometry"), comporte une source de lumière modulée par impulsions 10, une fibre optique 2, un capteur 1, un coupleur 11 et un circuit de détection 12. La fibre 2 peut être du type multimode ou du type monomode. Le capteur 1 est réalisé sur la fibre 2. tl est également possible d'avoir plusieurs capteurs répartis, de manière discrète, sur toute la longueur de la fibre ou même de réaliser le capteur sur toute la longueur de la fibre. Lorsque des microcourbures sont produites au niveau du capteur 1, une partie de la lumière en provenance de la source 10 est renvoyée vers la source (effet de rétrodiffusion ou "backscattering") et est appliquée au circuit de détection 12 via le coupleur 11 et la fibre optique 14.FIG. 4 shows a first detection system incorporating the sensor of the invention. Such a system called OTDR ("Optical Time Domain Reflectometry"), comprises a pulse modulated light source 10, an optical fiber 2, a sensor 1, a coupler 11 and a detection circuit 12. The fiber 2 can be of the type multimode or single mode. The sensor 1 is produced on the fiber 2. It is also possible to have several sensors distributed, discreetly, over the entire length of the fiber or even to produce the sensor over the entire length of the fiber. When micro-bends are produced at the sensor 1, part of the light coming from the source 10 is returned to the source (backscattering effect) and is applied to the detection circuit 12 via the coupler 11 and the fiber optic 14.

Comme illustré sur la figure 3 qui montre, en fonction du temps t, l'évolution de la-puissance P du signal reçu suite à une perturbation au niveau du capteur, il est possible de détecter ladite perturbation. De même on conçoit aisément que, connaissant la réponse du capteur au paramètre d'environnement choisi et la vitesse de propagation du signal dans la fibre 2, on peut également mesurer la variation de ce paramètre et la localisation de la perturbation.As illustrated in FIG. 3 which shows, as a function of time t, the evolution of the power P of the signal received following a disturbance at the level of the sensor, it is possible to detect said disturbance. Similarly, it is easily understood that, knowing the response of the sensor to the chosen environment parameter and the speed of propagation of the signal in the fiber 2, it is also possible to measure the variation of this parameter and the location of the disturbance.

Dans les exemples précédents, on a mis à profit le fait que les microcourbures, induites au niveau du capteur par la variation d'un paramètre d'environnement, provoquaient un transfert d'énergie de modes guidés par la fibre vers des modes radiés à l'extérieur de la fibre. De manière globale, un tel phénomène se traduit par une perte de l'énergie transmise par la fibre. On peut, cependant, utiliser une autre caractéristique de ces capteurs à microcourbures, qui est de permettre un transfert d'énergie d'un mode guidé vers un autre mode guidé. Un exemple d'application utilisant une telle caractéristique est montré à la figure 5. La fibre 2 est du type bimodal et la source de lumière 20 est prévue pour émettre, dans la figure 2, deux signaux lumineux de modes différents ou de polarisations différentes. Ces deux signaux seront avantageusement modulés à fréquence moyenne (par exemple à fréquence radio). Le capteur 1 est du type décrit précédemment dont la période des discontinuités est adaptée pour permettre le transfert d'énergie d'un des modes transmis à l'autre. Le dispositif séparateur 21 assure la séparation des modes transmis à destination soit du détecteur 22, via la fibre 24, soit du détecteur 23, via la-fibre 25. L'effet d'une perturbation au niveau du capteur 1 pourra être détecté soit par le détecteur 22, soit par le détecteur 23 ou encore par une comparaison des signaux délivrés par les deux détecteurs 22 et 23.In the previous examples, we took advantage of the fact that the microbends, induced at the level of the sensor by the variation of an environment parameter, caused a transfer of energy from modes guided by the fiber to modes radiated at l outside of the fiber. Overall, such a phenomenon results in a loss of the energy transmitted by the fiber. One can, however, use another characteristic of these microcurve sensors, which is to allow a transfer of energy from a guided mode to another guided mode. An example of an application using such a characteristic is shown in FIG. 5. The fiber 2 is of the bimodal type and the light source 20 is designed to emit, in FIG. 2, two light signals of different modes or of different polarizations. These two signals will advantageously be modulated at medium frequency (for example at radio frequency). Sensor 1 is of the type described previously, the period of discontinuities of which is adapted to allow the transfer of energy from one of the modes transmitted to the other. The separator device 21 ensures the separation of the modes transmitted to either the detector 22, via the fiber 24, or the detector 23, via the fiber 25. The effect of a disturbance at the level of the sensor 1 can be detected either by the detector 22, either by the detector 23 or by a comparison of the signals delivered by the two detectors 22 and 23.

Claims (12)

1. Capteur à fibre optique capable de produire des microqourbu- res dans une fibre optique en réponse à la variation d'un paramètre d'environnement, caractérisé en ce que ladite fibre optique (2) est enrobée dans une gaine (3) réalisée dans un premier matériau et en ce que ladite gaine est revêtue d'une couche (4) d'un second matériau présentant des discontinuités périodiques (5), lesdits premier et second matériaux réagissant vis à vis dudit paramètre d'environnement de manière telle qu'une variation de ce dernier produise des microcourbures de même périodicité (d) que celle desdites discontinuités.1. A fiber optic sensor capable of producing micro-cores in an optical fiber in response to the variation of an environment parameter, characterized in that said optical fiber (2) is coated in a sheath (3) produced in a first material and in that said sheath is coated with a layer (4) of a second material having periodic discontinuities (5), said first and second materials reacting with respect to said environment parameter in such a way that a variation of the latter produces microbends of the same periodicity (d) as that of said discontinuities. 2. Capteur selon la revendication 1 et sensible à la variation de la température, caractérisé en ce que lesdits premier et second matériaux présentent des coefficients de dilatation différents.2. Sensor according to claim 1 and sensitive to the variation of the temperature, characterized in that said first and second materials have different coefficients of expansion. 3. Capteur selon la revendication 2, caractérisé en ce que ledit premier matériau est une matière plastique et en ce que ledit second matériau est un métal.3. Sensor according to claim 2, characterized in that said first material is a plastic and in that said second material is a metal. 4. Capteur selon la revendication 1, caractérisé en ce que ledit second matériau est un métal et en ce que lesdites discontinuités sont obtenues par attaque mécanique dudit métal.4. Sensor according to claim 1, characterized in that said second material is a metal and in that said discontinuities are obtained by mechanical attack on said metal. 5. Capteur selon la revendication 1, caractérisé en ce que ledit second matériau est un métal et en ce que lesdites discontinuités sont obtenues par attaque chimique dudit métal.5. Sensor according to claim 1, characterized in that said second material is a metal and in that said discontinuities are obtained by chemical attack on said metal. 6. Capteur selon la revendication 1 et sensible à l'humidité, caractérisé en ce que lesdits premier et second matériaux présentent des coefficients d'absorption différents.6. A sensor according to claim 1 and sensitive to humidity, characterized in that said first and second materials have different absorption coefficients. 7. Capteur selon la revendication 1 et sensible à la pression, caractérisé en ce que lesdits premier et second matériaux présentent des rigidités différentes.7. Sensor according to claim 1 and sensitive to pressure, characterized in that said first and second materials have different stiffnesses. 8. Capteur selon la revendication 1, caractérisé en ce que ladite fibre optique est une fibre monomode.8. Sensor according to claim 1, characterized in that said optical fiber is a single-mode fiber. 9. Capteur selon la revendication 1, caractérisé en ce que ladite fibre optique est une fibre multimode.9. Sensor according to claim 1, characterized in that said optical fiber is a multimode fiber. 10. Capteur selon la revendication 1, caractérisé en ce que ladite fibre optique est une fibre bimode.10. Sensor according to claim 1, characterized in that said optical fiber is a dual-mode fiber. 11. Capteur selon la revendication 1, caractérisé en ce que la périodicité desdites discontinuités est telle que les microcourbures, produites en réponse à une variation dudit paramètre d'environnement, entraînent un transfert d'énergie d'un ou plusieurs modes guidés par la fibre vers un ou plusieurs modes radiés à l'extérieur de ladite fibre.11. Sensor according to claim 1, characterized in that the periodicity of said discontinuities is such that the microbends, produced in response to a variation of said environment parameter, cause a transfer of energy from one or more modes guided by the fiber to one or more modes written off outside of said fiber. 12, Capteur selon la revendication 1, caractérisé en ce que la périodicité desdites discontinuités est telle que les microcourbures, produites en réponse à une variation dudit paramètre d'environnement, entraînent un transfert d'énergie d'un ou plusieurs modes guidés vers un ou plusieurs autres modes guidés par la fibre.12, A sensor according to claim 1, characterized in that the periodicity of said discontinuities is such that the microbends, produced in response to a variation of said environment parameter, cause a transfer of energy from one or more guided modes to one or more several other fiber-guided modes.
EP19870810118 1986-03-06 1987-03-03 Fibre-optic microbend sensor Expired - Lifetime EP0238440B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87810118T ATE58238T1 (en) 1986-03-06 1987-03-03 OPTICAL FIBER SENSOR WITH MICROWINDINGS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH885/86 1986-03-06
CH885/86A CH666552A5 (en) 1986-03-06 1986-03-06 MICRO-CURVED FIBER OPTIC SENSOR.

Publications (2)

Publication Number Publication Date
EP0238440A1 true EP0238440A1 (en) 1987-09-23
EP0238440B1 EP0238440B1 (en) 1990-11-07

Family

ID=4197441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870810118 Expired - Lifetime EP0238440B1 (en) 1986-03-06 1987-03-03 Fibre-optic microbend sensor

Country Status (7)

Country Link
US (1) US4846547A (en)
EP (1) EP0238440B1 (en)
JP (1) JPS62217205A (en)
AT (1) ATE58238T1 (en)
CA (1) CA1289793C (en)
CH (1) CH666552A5 (en)
DE (1) DE3765961D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208711A (en) * 1988-08-16 1989-04-12 Plessey Co Plc Fibre optic sensor
CN100543498C (en) * 2007-11-14 2009-09-23 山东大学 Tunnel tunnel face front exploring water inductor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667507B2 (en) * 1989-04-28 1997-10-27 株式会社フジクラ Fire detector
DE4011440A1 (en) * 1990-04-09 1991-10-10 Reinshagen Kabelwerk Gmbh Moisture or heat sensor element - uses abrupt contracting properties of various elements attenuating light content to control environmental indicator
DE4041169A1 (en) * 1990-12-21 1992-07-02 Reinshagen Kabelwerk Gmbh CABLE FOR LOCATING LIQUIDS
JPH06307953A (en) * 1993-04-27 1994-11-04 Hitachi Ltd Physical quantity detector
US5419636A (en) * 1993-08-12 1995-05-30 Sandia Corporation Microbend fiber-optic temperature sensor
US5831263A (en) * 1994-04-26 1998-11-03 Hitachi, Ltd. In-cylinder pressure sensing apparatus for multi-cylinder engine
US5411566A (en) * 1994-06-08 1995-05-02 At&T Corp. Optical fiber spatial mode converter using periodic core deformation
US5648724A (en) * 1996-02-08 1997-07-15 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Metallic time-domain reflectometry roof moisture sensor
US6429421B1 (en) 2000-01-21 2002-08-06 Luna Innovations, Inc. Flexible fiber optic microbend device, with interlocking flexible fibers, sensors, and method use
DE10141488B4 (en) * 2001-08-24 2007-09-13 Schwan-Stabilo Schwanhäusser Gmbh & Co. Kg pen
NO315342B1 (en) * 2001-12-27 2003-08-18 Optoplan As Fiber optic sensor
US6778715B2 (en) * 2002-11-06 2004-08-17 Fitel U.S.A. Corp. Optical fiber-based device with tunable birefringence
CA2424708A1 (en) * 2003-04-08 2004-10-08 Lee A. Danisch A method and apparatus for sensing impact between a vehicle and an object
US20060204164A1 (en) * 2005-03-08 2006-09-14 Gennadii Ivtsenkov Low cost fiber-optic gage and associated multi-channel all-optical data collecting system
JP2007064716A (en) * 2005-08-30 2007-03-15 Hitachi Cable Ltd Collision detection sensor
JP4891620B2 (en) * 2006-01-17 2012-03-07 日立電線株式会社 Impact detection sensor
US11994417B2 (en) * 2018-08-30 2024-05-28 Nec Corporation Utility pole deterioration detection system, utility pole deterioration detection apparatus, utility pole deterioration detection method, and non-transitory computer readable medium
GB201814891D0 (en) * 2018-09-13 2018-10-31 Optasense Holdings Ltd Fibre optic cables
CN114894225B (en) * 2022-07-13 2022-09-30 安徽省国盛量子科技有限公司 Distributed optical fiber sensor based on optical fiber microbend technology and manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891302A (en) * 1973-09-28 1975-06-24 Western Electric Co Method of filtering modes in optical waveguides
US4179187A (en) * 1977-08-12 1979-12-18 Corning Glass Works Multiple mode waveguide having cylindrical perturbations
US4372647A (en) * 1979-10-08 1983-02-08 Nippon Telegraph & Telephone Public Corporation Single mode optical fibers
US4443700A (en) * 1980-02-01 1984-04-17 Pedro B. Macedo Optical sensing apparatus and method
JPS5762004A (en) * 1980-05-30 1982-04-14 Showa Electric Wire & Cable Co Ltd Optical fiber for detecting oil leakage
US4372646A (en) * 1980-07-31 1983-02-08 Rockwell International Corporation Birefringent electromagnetic transmission line that preserves the state of polarized radiation propagating therein
JPS57133407A (en) * 1981-02-12 1982-08-18 Fujitsu Ltd Optical fiber
US4654520A (en) * 1981-08-24 1987-03-31 Griffiths Richard W Structural monitoring system using fiber optics
JPS59211820A (en) * 1983-05-16 1984-11-30 Sumitomo Electric Ind Ltd Sensor type optical fiber
US4701614A (en) * 1984-06-25 1987-10-20 Spectran Corporation Fiber optic pressure sensor
SE443656B (en) * 1984-07-20 1986-03-03 Ericsson Telefon Ab L M MICROBOOK LIKE OPTICAL FIBER CABLE
US4634856A (en) * 1984-08-03 1987-01-06 The United States Of America As Represented By The United States Department Of Energy Fiber optic moisture sensor with moisture-absorbing reflective target

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 7, no. 127 (P-201)[1272], 3 juin 1983; & JP-A-58 44 320 (MITSUBISHI DENKI K.K.) 15-03-1983 *
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 72 (P-345)[1795], 2 avril 1985; & JP-A-59 203 930 (SUMITOMO DENKI KOGYO K.K.) 19-11-1984 *
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 83 (P-348)[1806], 12 avril 1985; & JP-A-59 211 820 (SUMITOMO DENKI KOGYO K.K.) 30-11-1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208711A (en) * 1988-08-16 1989-04-12 Plessey Co Plc Fibre optic sensor
CN100543498C (en) * 2007-11-14 2009-09-23 山东大学 Tunnel tunnel face front exploring water inductor

Also Published As

Publication number Publication date
US4846547A (en) 1989-07-11
CH666552A5 (en) 1988-07-29
CA1289793C (en) 1991-10-01
DE3765961D1 (en) 1990-12-13
JPS62217205A (en) 1987-09-24
ATE58238T1 (en) 1990-11-15
EP0238440B1 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
EP0238440B1 (en) Fibre-optic microbend sensor
Kersey et al. Applications of fiber-optic sensors
US6925213B2 (en) Micromachined fiber optic sensors
EP0564366B1 (en) Fiber optic strain detector
US4414471A (en) Fiber optic acoustic signal transducer using reflector
US7714271B1 (en) Simple fiber optic seismometer for harsh environments
US20120206718A1 (en) Stimulated Brillouin System with Multiple FBG's
US5903685A (en) Sensor arrangement
FR2613477A1 (en) OPTICAL DISPLACEMENT AND PRESSURE SENSOR
WO1979000377A1 (en) Optical sensing apparatus and method
US6144790A (en) Contact fiber optic impact sensor
FR2593937A1 (en) OPTICAL FIBER SENSITIVE TO A MAGNETIC FIELD
US5694497A (en) Intrinsically self deforming fiber optic microbend pressure and strain sensor
US6998599B2 (en) Intensity modulated fiber optic microbend accelerometer
JPH0311644B2 (en)
JP2004233345A (en) Deflection sensor
USH371H (en) Optical fiber interferometer
Chakravartula et al. Sensitivity enhancement analysis due to different coating materials of Fibre Bragg Grating-based depth sensor for underwater applications
Fabiny et al. Interferometric fiber-optic Doppler velocimeter with high-dynamic range
JP2005351663A (en) Fbg humidity sensor and humidity measuring method using the fbg humidity sensor
Kishore et al. Fiber optic vibration sensors
Wang et al. All-optical accelerometer based on micromachined silicon wafer
EP0943906B1 (en) Fibre-optical force sensor, fabrication method and detection device using the sensor
CH644948A5 (en) Optical method for detecting and/or measuring physical quantities, and device for implementing this method
CN112179536B (en) Optical fiber pressure sensor, testing method and metal polarization maintaining optical fiber preparation method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19871109

17Q First examination report despatched

Effective date: 19890516

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901107

Ref country code: AT

Effective date: 19901107

REF Corresponds to:

Ref document number: 58238

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3765961

Country of ref document: DE

Date of ref document: 19901213

ITF It: translation for a ep patent filed

Owner name: LENZI & C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: S.A. CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECH

Effective date: 19910331

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010226

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010307

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010330

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020831

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050303