EP0237702B1 - Process for the continuous coking of pitches, and use of the coke obtained - Google Patents

Process for the continuous coking of pitches, and use of the coke obtained Download PDF

Info

Publication number
EP0237702B1
EP0237702B1 EP87100270A EP87100270A EP0237702B1 EP 0237702 B1 EP0237702 B1 EP 0237702B1 EP 87100270 A EP87100270 A EP 87100270A EP 87100270 A EP87100270 A EP 87100270A EP 0237702 B1 EP0237702 B1 EP 0237702B1
Authority
EP
European Patent Office
Prior art keywords
coking
pitch
coke
pitches
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87100270A
Other languages
German (de)
French (fr)
Other versions
EP0237702A2 (en
EP0237702A3 (en
Inventor
Manfred Morgenstern
Claus Bertrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruetgers Germany GmbH
Original Assignee
Ruetgerswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruetgerswerke AG filed Critical Ruetgerswerke AG
Priority to AT87100270T priority Critical patent/ATE45587T1/en
Publication of EP0237702A2 publication Critical patent/EP0237702A2/en
Publication of EP0237702A3 publication Critical patent/EP0237702A3/en
Application granted granted Critical
Publication of EP0237702B1 publication Critical patent/EP0237702B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material

Definitions

  • the invention relates to a method for the continuous coking of pitches, in particular hard coal tar pitches, and the use of the coke obtained by this method.
  • the process according to a) is high-temperature coking and, apart from a few special features, corresponds to the known coal coking process.
  • a hard coal tar pitch with a coking residue according to Brockmann-Muck of more than 50% is used as the input product.
  • the coke obtained is very hard and generally does not need to be calcined because of the high coking temperature of at least 1000 ° C.
  • the process is very labor-intensive. Because of the different physical and chemical properties of the hard pitch, the plants, in particular the brick lining, are much more susceptible to repair than those of coal than those of coal coking.
  • the process itself is discontinuous, so that a large number of chambers are necessary in order to enable quasi-continuous operation.
  • the process according to b) is a smoldering process at around 500 ° C.
  • hard coal tar soft pitches are also used.
  • the delayed coker was originally operated as a thermal cracker. However, it was soon recognized that it is an excellent device for producing highly anisotropic special cokes.
  • the smoldering coke obtained must be dried and calcined for further use. The plant costs are high, so that profitability is only given in the production of particularly high-quality coke or valuable oils. This is usually not the case with untreated coal tar pitch.
  • the method itself can be carried out quasi-continuously with at least two coker drums.
  • the process according to c) is also a smoldering process, but is carried out continuously.
  • the fluid coker is a thermal cracker for mineral oil residues.
  • the coke generated as a waste product is used as fuel. This process is less suitable for coal tar pitches because of the low oil and gas yield.
  • the object of the invention is therefore to develop a simple, inexpensive process for the coking of hard coal tar pitches and comparable products and to find suitable fields of application for the coke thus produced.
  • the object is achieved in that the hard pitch is coked in a rotary tube furnace provided with a broaching tool and heated from the outside at temperatures of the inner wall between 500 and 800 ° C. and a residence time of 0.5 to 1.5 hours, the resulting gases and Vapors are passed in countercurrent to the coking pitch, and the smoldering coke obtained is then calcined in the usual manner, preferably without prior cooling.
  • Aromatic residues with a softening point (EP) according to Kraemer-Sarnow (K.-S.) of at least 130 ° C and a coking residue according to Brockmann-Muck (B.-M.) of at least 45% by weight are referred to as hard pitch.
  • E softening point
  • K.-S. Kraemer-Sarnow
  • B.-M. coking residue
  • the rotary kiln should advantageously be divided into several sections that can be heated differently. The segments facing the feed side are heated to an outside temperature of approximately 850 ° C. by external heating. The outside temperature of the following sections can then drop to around 600 ° C.
  • the gases and vapors are conducted in countercurrent to the coking pitch.
  • the vapors are condensed after leaving the rotary kiln and can be used as a soot oil component or can be used for hard pitch production.
  • the feeding of an inert gas on the discharge side of the rotary kiln has proven to be helpful. This shortens the dwell time of the vapors in the coking zone and prevents soot formation and deposits in the subsequent vapor lines.
  • a screw that is conical towards the feed side and weighted with granular material has proven itself, which is at least about 1/3, preferably 1/2 times as long as the rotary tube and its inclination is greater than that of the rotary tube.
  • the broaching tool is preferably self-centering and is moved non-positively by the drum.
  • the pitch can be introduced in pieces, for example via a rotary valve, or in liquid form in the rotary kiln.
  • the smoked coke is discharged in pieces via another rotary valve and can be fed directly to the calciner. Since there is no need to cool the coke with water in the coking processes a) and b), considerably less time and energy is required for the calcination.
  • Rotary kilns are known to be used for the coking or calcination of solid fuels such as smoked coke and lignite or for the pyrolysis of predominantly solid waste
  • solid fuels such as smoked coke and lignite
  • pyrolysis of predominantly solid waste
  • a rotary kiln with an inner diameter of 0.8 m and a heated length of 7.2 m with a 4 m long conical screw in the front part, 75 kg / h of a hard coal tar pitch with an EP (K.-S.) of 150 ° C and a coking residue (B.-M.) of 50%.
  • the oven is divided into 6 sections, which are heated indirectly with gas.
  • the temperature of the outer wall in the area of the inlet is 850 ° C and drops to 700 ° C towards the outlet.
  • the pipe wall outside temperature is approximately 800 ° C on average over the individual heating zones.
  • the rotary tube is driven at 2 rpm.
  • the average residence time of the coking pitch in the rotary kiln is about 1.5 hours.
  • the oven shows no caking and the green coke is produced in pieces (74% by weight greater than 5 mm, 99% by weight greater than 1 mm).
  • the coke has a high density and strength. It is fed into a calcining drum without cooling or intermediate storage and calcined there at 1300 ° C in the usual way.
  • Example 1 is repeated with a throughput of 300 kg / h of pitch at a speed of 6 rpm.
  • the dwell time of the coking pitch in the rotary kiln is reduced to about 0.5 h. 71% by weight of green coke with 3.5% by weight of volatile and a bulk density of 0.5 g / cm 3, 11% by weight of heavy oil, 14% by weight of light oil and 4% by weight of gas and losses are produced .
  • the rotary kiln is flushed with 30 m 3 / h nitrogen in counterflow to the pitch. Gases and vapors leave the furnace on the pitch feed side and are condensed in two stages.
  • the green coke is immediately transferred to a conventional calcining drum and calcined there at 1300 ° C. 89% by weight of calcined coke with a residual hydrogen content of 0.1% by weight and a true density of 2.028 g / cm 3 are obtained.
  • the analyzes of the oils and the gas are contained in Tables I and II.
  • Table 111 the calcined coke (1) obtained according to the invention is compared in its properties with normal petro-coke (2) and with pitch coke from the horizontal chamber furnace (3). As usual, the examinations were carried out on shaped bodies.
  • the coke according to the invention is characterized by low CO 2 burnup and high electrical conductivity. Despite the higher conductivity compared to the usual pitch coke, its structure is finer and more uniformly mosaic-like, as the cross-sectional images show.
  • the advantages of the coking process according to the invention lie in the short coking time of 1.5 to 0.5 hours, the low capital expenditure and the easy operation. It is also possible to return the fine portion of the coke and coke it together with the bad luck.
  • the rods are graphitized at 2700 ° C and their physical properties compared to those of a reactor graphite made from Gilsonite coke:
  • the coke according to the invention is outstandingly suitable for the production of reactor graphite. It has an exceptionally low expansion coefficient and a low anisotropy coefficient for pitch coke made from normal, uncleaned hard pitch. Another advantage is its small pore volume.

Abstract

Coke for reactor graphite is produced continuously by coking a hard pitch with a softening point (K.-S.) above 130 DEG C. and a coking residue of at least 45% by weight in a rotary pipe furnace equipped with a moving device and subsequent calcination without intermediate cooling. The temperature of the inner wall of the indirectly heated furnace ranges from about 500 DEG to about 800 DEG C. The gases and vapors formed during the coking process are guided in countercurrent flow to the pitch.

Description

Die Erfindung betrifft ein Verfahren zum kontinuierlichen Verkoken von Pechen, insbesondere von Steinkohlenteerhartpechen, und die Verwendung des nach diesem Verfahren erhaltenen Kokses.The invention relates to a method for the continuous coking of pitches, in particular hard coal tar pitches, and the use of the coke obtained by this method.

Für die Verkokung hochsiedender steinkohlenteerstämmiger oder mineralölstämmiger Rückstände werden heute drei unterschiedliche Verkokungsverfahren angewandt:

  • a) das Horizontalkammer-Verkokungsverfahren,
  • b) das Delayed-Coking-Verfahren und
  • c) das Fluid-Coking-Verfahren.
Three different coking processes are used today for the coking of residues derived from coal tar or mineral oil.
  • a) the horizontal chamber coking process,
  • (b) the delayed coking process; and
  • c) the fluid coking process.

Das Verfahren nach a) ist eine Hochtemperaturverkokung und entspricht, von einigen Besonderheiten abgesehen, dem bekannten Kohleverkokungsverfahren. Als Einsatzprodukt wird ein Steinkohlenteerhartpech mit einem Verkokungsrückstand nach Brockmann-Muck von mehr als 50 % verwendet. Der erhaltene Koks ist sehr hart und braucht im allgemeinen wegen der hohen Verkokungstemperatur von mindestens 1000 °C nicht kalziniert zu werden. Das Verfahren ist sehr lohnintensiv. Die Anlagen, insbesondere die Ofenausmauerung, sind wegen der anderen physikalischen und chemischen Eigenschaften des Hartpechs gegenüber denen der Kohle wesentlich reparaturanfälliger als die der Kohleverkokung. Das Verfahren selbst ist diskontinuierlich, so daß eine Vielzahl von Kammern notwendig ist, um insgesamt.einen quasi-kontinuierlichen Betrieb zu ermöglichen.The process according to a) is high-temperature coking and, apart from a few special features, corresponds to the known coal coking process. A hard coal tar pitch with a coking residue according to Brockmann-Muck of more than 50% is used as the input product. The coke obtained is very hard and generally does not need to be calcined because of the high coking temperature of at least 1000 ° C. The process is very labor-intensive. Because of the different physical and chemical properties of the hard pitch, the plants, in particular the brick lining, are much more susceptible to repair than those of coal than those of coal coking. The process itself is discontinuous, so that a large number of chambers are necessary in order to enable quasi-continuous operation.

Das Verfahren nach b) ist ein Schwelverfahren bei etwa 500 °C. Als Einsatzprodukte kommen neben Rückständen der Mineralölindustrie auch Steinkohlenteerweichpeche zum Einsatz. Ursprünglich wurde der Delayed-Coker als thermischer Cracker betrieben. Es wurde jedoch bald erkannt, daß er eine ausgezeichnete Vorrichtung zur Herstellung hochanisotroper Spezialkokse ist. Der erhaltene Schwelkoks muß für die Weiterverwendung getrocknet und kalziniert werden. Die Anlagenkosten sind hoch, so daß eine Rentabilität nur bei der Erzeugung besonders hochwertiger Kokse oder wertvoller Öle gegeben ist. Dies ist bei unbehandelten Steinkohlenteerpechen normalerweise nicht der Fall. Das Verfahren selbst ist mit mindestens zwei Kokertrommeln quasi-kontinuierlich durchführbar.The process according to b) is a smoldering process at around 500 ° C. In addition to residues from the mineral oil industry, hard coal tar soft pitches are also used. The delayed coker was originally operated as a thermal cracker. However, it was soon recognized that it is an excellent device for producing highly anisotropic special cokes. The smoldering coke obtained must be dried and calcined for further use. The plant costs are high, so that profitability is only given in the production of particularly high-quality coke or valuable oils. This is usually not the case with untreated coal tar pitch. The method itself can be carried out quasi-continuously with at least two coker drums.

Das Verfahren nach c) ist ebenfalls ein Schwelverfahren, das jedoch kontinuierlich ausgeführt wird. Der Fluid-Coker ist ein thermischer Cracker für Mineralölrückstände. Der als Abfallprodukt entstehende Koks wird als Brennstoff verwendet. Für Steinkohlenteerpeche ist dieses Verfahren wegen der zu geringen ÖI- und Gasausbeute weniger geeignet.The process according to c) is also a smoldering process, but is carried out continuously. The fluid coker is a thermal cracker for mineral oil residues. The coke generated as a waste product is used as fuel. This process is less suitable for coal tar pitches because of the low oil and gas yield.

Aufgabe der Erfindung ist es daher, ein einfaches preiswertes Verfahren für die Verkokung von Steinkohlenteerhartpechen und vergleichbaren Produkten zu entwickeln und für den so erzeugten Koks geeignete Anwendungsgebiete zu finden. Die Aufgabe wird dadurch gelöst, daß das Hartpech in einem mit einem Räumwerkzeug versehenen, von außen beheizten Drehrohrofen bei Temperaturen der Innenwand zwischen 500 und 800 °C und einer Verweilzeit von 0,5 bis 1,5 h verkokt wird, wobei die entstehenden Gase und Dämpfe im Gegenstrom zum verkokenden Pech geführt werden, und der erhaltene Schwelkoks anschließend, vorzugsweise ohne vorherige Kühlung, in üblicher Weise kalziniert wird. Als Hartpech werden aromatische Rückstände mit einem Erweichungspunkt (EP) nach Kraemer-Sarnow (K.-S.) von mindestens 130 °C und einem Verkokungsrückstand nach Brockmann-Muck (B.-M.) von mindestens 45 Gew.-% bezeichnet. Sie können steinkohlenstämmig, wie z. B. Steinkohlenteerhartpech, oder auch mineralölstämmig sein, wie beispielsweise Petrohartpech aus der Benzinpyrolyse zur Herstellung von Olefinen. Der Drehrohrofen sollte zweckmäßigerweise in mehrere, unterschiedlich beheizbare Sektionen unterteilt sein. Durch eine äußere Beheizung werden die der Aufgabeseite zugewandten Segmente bis auf eine Außentemperatur von etwa 850 °C erhitzt. Die Außentemperatur der nachfolgenden Sektionen kann dann bis etwa 600 °C abfallen. Um eine Adsorption der Kondensate am Schwelkoks zu vermeiden, werden die Gase und Dämpfe im Gegenstrom zum verkokenden Pech geführt. Die Dämpfe werden nach dem Verlassen des Drehrohrofens kondensiert und können als Rußölkomponente verwendet oder der Hartpechherstellung zugeführt werden. Dabei hat sich die Einspeisung eines Inertgases an der Austragsseite des Drehrohrofens als hilfreich erwiesen. Die Verweilzeit der Dämpfe in der Verkokungszone wird dadurch verkürzt und die Rußbildung und Ablagerungen in den anschließenden Brüdenleitungen vermieden. Als Räumwerkzeug hat sich vor allem im vorderen Teil eine zur Aufgabeseite hin konische, mit körnigem Material beschwerte Schnecke bewährt, die mindestens etwa 1/3, vorzugsweise 1/2 mal so lang ist wie das Drehrohr und deren Neigung größer als die des Drehrohres ist. Daran kann sich eine Glattwalze anschließen. Das Räumwerkzeug ist vorzugsweise selbstzentrierend und wird kraftschlüssig von der Trommel bewegt. Das Pech kann stückig beispielsweise über eine Zellradschleuse oder flüssig in den Drehrohrofen eingebracht werden. Am Ende wird der Schwelkoks in stückiger Form über eine weitere Zellradschleuse ausgetragen und kann direkt der Kalziniereinrichtung zugeführt werden. Da das bei den Verkokungsverfahren a) und b) übliche Abkühlen des Kokses mit Wasser entfällt, ist wesentlich weniger Zeit und Energie für die Kalzinierung erforderlich.The object of the invention is therefore to develop a simple, inexpensive process for the coking of hard coal tar pitches and comparable products and to find suitable fields of application for the coke thus produced. The object is achieved in that the hard pitch is coked in a rotary tube furnace provided with a broaching tool and heated from the outside at temperatures of the inner wall between 500 and 800 ° C. and a residence time of 0.5 to 1.5 hours, the resulting gases and Vapors are passed in countercurrent to the coking pitch, and the smoldering coke obtained is then calcined in the usual manner, preferably without prior cooling. Aromatic residues with a softening point (EP) according to Kraemer-Sarnow (K.-S.) of at least 130 ° C and a coking residue according to Brockmann-Muck (B.-M.) of at least 45% by weight are referred to as hard pitch. You can come from coal, such as. B. hard coal tar pitch, or mineral oil origin, such as Petrohart pitch from gasoline pyrolysis for the production of olefins. The rotary kiln should advantageously be divided into several sections that can be heated differently. The segments facing the feed side are heated to an outside temperature of approximately 850 ° C. by external heating. The outside temperature of the following sections can then drop to around 600 ° C. In order to prevent the condensates from being adsorbed on the smoked coke, the gases and vapors are conducted in countercurrent to the coking pitch. The vapors are condensed after leaving the rotary kiln and can be used as a soot oil component or can be used for hard pitch production. The feeding of an inert gas on the discharge side of the rotary kiln has proven to be helpful. This shortens the dwell time of the vapors in the coking zone and prevents soot formation and deposits in the subsequent vapor lines. As a broaching tool, especially in the front part, a screw that is conical towards the feed side and weighted with granular material has proven itself, which is at least about 1/3, preferably 1/2 times as long as the rotary tube and its inclination is greater than that of the rotary tube. This can be followed by a smooth roller. The broaching tool is preferably self-centering and is moved non-positively by the drum. The pitch can be introduced in pieces, for example via a rotary valve, or in liquid form in the rotary kiln. At the end, the smoked coke is discharged in pieces via another rotary valve and can be fed directly to the calciner. Since there is no need to cool the coke with water in the coking processes a) and b), considerably less time and energy is required for the calcination.

Drehrohröfen werden zwar bekannterweise für die Verkokung bzw. Kalzinierung fester Brennstoffe wie Schwelkoks und Braunkohle oder zur Pyrolyse von überwiegend festen Abfällen verwendet, aber bei diesen bekannten Verfahren ist eine Verkokung der Einsatzprodukte an der heißen Wandung des Ofens nicht zu befürchten, oder sie tritt nur in vermindertem Umfang auf. Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert.Rotary kilns are known to be used for the coking or calcination of solid fuels such as smoked coke and lignite or for the pyrolysis of predominantly solid waste In these known processes, there is no fear of coking the feed products on the hot wall of the furnace, or it occurs only to a limited extent. The invention is illustrated by the following examples.

Beispiel 1example 1

In einem Drehrohrofen mit einem inneren Durchmesser von 0,8 m und einer beheizten Länge von 7,2 m mit einer 4 m langen konischen Schnecke im vorderen Teil werden 75 kg/h eines Steinkohlenteerhartpechs mit einem EP (K.-S.) von 150 °C und einem Verkokungsrückstand (B.-M.) von 50 % eingespeist. Der Ofen ist in 6 Sektionen unterteilt, die indirekt mit Gas beheizt werden. Die Temperatur der Außenwand im Bereich des Eintrags beträgt 850 °C und fällt zum Austrag hin auf 700 °C. Im Mittel über die einzelnen Heizzonen liegt die Rohrwand-Außentemperatur etwa bei 800 °C. Das Drehrohr wird mit 2 Upm angetrieben. Die mittlere Verweilzeit des verkokenden Pechs im Drehrohrofen beträgt etwa 1,5 h. Der Ofen zeigt keinerlei Anbackungen, und der Grünkoks fällt in stückiger Form (74 Gew.-% größer 5 mm, 99 Gew.-% größer 1 mm) an. Der Koks hat eine hohe Dichte und Festigkeit. Er wird ohne Abkühlung oder Zwischenlagerung in eine Kalziniertrommel eingespeist und dort bei 1300 °C in üblicher Weise kalziniert.In a rotary kiln with an inner diameter of 0.8 m and a heated length of 7.2 m with a 4 m long conical screw in the front part, 75 kg / h of a hard coal tar pitch with an EP (K.-S.) of 150 ° C and a coking residue (B.-M.) of 50%. The oven is divided into 6 sections, which are heated indirectly with gas. The temperature of the outer wall in the area of the inlet is 850 ° C and drops to 700 ° C towards the outlet. The pipe wall outside temperature is approximately 800 ° C on average over the individual heating zones. The rotary tube is driven at 2 rpm. The average residence time of the coking pitch in the rotary kiln is about 1.5 hours. The oven shows no caking and the green coke is produced in pieces (74% by weight greater than 5 mm, 99% by weight greater than 1 mm). The coke has a high density and strength. It is fed into a calcining drum without cooling or intermediate storage and calcined there at 1300 ° C in the usual way.

Beispiel 2Example 2

Das Beispiel 1 wird mit einem Durchsatz von 300 kg/h Pech bei einer Drehzahl von 6 Upm wiederholt. Die Verweilzeit des verkokenden Pechs im Drehrohrofen vermindert sich dabei auf etwa 0,5 h. Es entstehen 71 Gew.-% Grünkoks mit 3,5 Gew.-% Flüchtigem und einer Schüttdichte von 0,5 g/cm3, 11 Gew.-% Schweröl, 14 Gew.-% Leichtöl und 4 Gew.-% Gas und Verluste. Während der Verkokung wird der Drehrohrofen im Gegenstrom zum Pech mit 30 m3/h Stickstoff gespült. Gase und Dämpfe verlassen den Ofen an der Pechaufgabeseite und werden in zwei Stufen kondensiert. Der Grünkoks wird sofort in eine übliche Kalziniertrommel überführt und dort bei 1300 °C kalziniert. Es werden 89 Gew.-% kalzinierter Koks mit einem Restwasserstoffgehalt von 0,1 Gew.-% und einer wahren Dichte von 2,028 g/cm3 erhalten. Die Analysen der Öle und des Gases sind in den Tabellen I und II enthalten. In Tabelle 111 wird der erfindungsgemäß gewonnene kalzinierte Koks (1) in seinen Eigenschaften mit normalem Petrokoks (2) und mit Pechkoks aus dem Horizontalkammerofen (3) verglichen. Die Untersuchungen sind wie üblich an Formkörpern durchgeführt.Example 1 is repeated with a throughput of 300 kg / h of pitch at a speed of 6 rpm. The dwell time of the coking pitch in the rotary kiln is reduced to about 0.5 h. 71% by weight of green coke with 3.5% by weight of volatile and a bulk density of 0.5 g / cm 3, 11% by weight of heavy oil, 14% by weight of light oil and 4% by weight of gas and losses are produced . During the coking, the rotary kiln is flushed with 30 m 3 / h nitrogen in counterflow to the pitch. Gases and vapors leave the furnace on the pitch feed side and are condensed in two stages. The green coke is immediately transferred to a conventional calcining drum and calcined there at 1300 ° C. 89% by weight of calcined coke with a residual hydrogen content of 0.1% by weight and a true density of 2.028 g / cm 3 are obtained. The analyzes of the oils and the gas are contained in Tables I and II. In Table 111 the calcined coke (1) obtained according to the invention is compared in its properties with normal petro-coke (2) and with pitch coke from the horizontal chamber furnace (3). As usual, the examinations were carried out on shaped bodies.

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002
Figure imgb0003
Figure imgb0003

Der erfindungsgemäße Koks zeichnet sich durch geringen C02-Abbrand und hohe elektrische Leitfähigkeit aus. Seine Struktur ist trotz der höheren Leitfähigkeit gegenüber der des üblichen Pechkokses feiner und gleichmäßig mosaikartig, wie die Schliffbilder im Vergleich zeigen. Die Vorteile des erfindungsgemäßen Verkokungsverfahrens liegen in der kurzen Verkokungszeit von 1,5 bis 0,5 h, dem geringen Kapitalaufwand und der leichten Bedienung. Außerdem ist es möglich, den Feinanteil des Kokses zurückzuführen und mit dem Pech gemeinsam zu verkoken.The coke according to the invention is characterized by low CO 2 burnup and high electrical conductivity. Despite the higher conductivity compared to the usual pitch coke, its structure is finer and more uniformly mosaic-like, as the cross-sectional images show. The advantages of the coking process according to the invention lie in the short coking time of 1.5 to 0.5 hours, the low capital expenditure and the easy operation. It is also possible to return the fine portion of the coke and coke it together with the bad luck.

Bild 1Image 1

Pechkoks aus dem Horizontalkammerofen

Figure imgb0004
Pitch coke from the horizontal chamber furnace
Figure imgb0004

Bild 2picture 2

Pechkoks nach dem erfindungsgemäßen Verfahren

Figure imgb0005
Pitch coke by the process according to the invention
Figure imgb0005

Wegen der gleichmäßig mosaikartigen Struktur scheint der erfindungsgemäß hergestellte Koks für die Herstellung von Reaktorgraphit geeignet zu sein. Es ist bekannt, daß sich hierfür insbesondere Kokse mit niedrigem Anisotropiekoeffizient eignen. 100 Gew.-Teile des erfindungsgemäß hergestellten Kokses werden daher bis auf eine Korngröße von maximal 0,5 mm gemahlen und mit 27,5 Gew.-Teilen eines Standard-Elektrodenpechs gemischt. Diese Masse wird zu Testelektroden verpreßt und bei 900 °C gebrannt. Aus den Testelektroden werden Stäbchen geschnitten, die bei 1300 °C kalziniert werden. Sie haben eine wahre Dichte von 2,12 g/cm3 und einen thermischen Ausdehnungskoeffizienten (a) in Längs-und Querrichtung im Bereich von 20 bis 200 °C von

Figure imgb0006
Figure imgb0007
Daraus errechnet sich ein Anisotropiekoeffizient

  • 1/pG(lvon 1,11.
Because of the uniformly mosaic-like structure, the coke produced according to the invention appears to be suitable for the production of reactor graphite. It is known that cokes with a low anisotropy coefficient are particularly suitable for this. 100 parts by weight of the coke produced according to the invention are therefore ground to a maximum grain size of 0.5 mm and mixed with 27.5 parts by weight of a standard electrode pitch. This mass is pressed into test electrodes and fired at 900 ° C. Rods are cut from the test electrodes and calcined at 1300 ° C. They have a true density of 2.12 g / cm 3 and a coefficient of thermal expansion (a) in the longitudinal and transverse directions in the range from 20 to 200 ° C.
Figure imgb0006
Figure imgb0007
An anisotropy coefficient is calculated from this
  • 1 / pG (l of 1.11.

Die Stäbchen werden bei 2700 °C graphitiert und ihre physikalischen Eigenschaften mit denen eines Reaktorgraphits aus Gilsonite-Koks verglichen:

Figure imgb0008
The rods are graphitized at 2700 ° C and their physical properties compared to those of a reactor graphite made from Gilsonite coke:
Figure imgb0008

Wie die Analysendaten zeigen ist der erfindungsgemäße Koks hervorragend für die Herstellung von Reaktorgraphit geeignet. Er hat einen für Pechkoks aus normalem, nicht gereinigtem Hartpech außergewöhnlich niedrigen Ausdehnungskoeffizienten und einen geringen Anisotropiekoeffizienten. Ein weiterer Vorteil ist sein geringes Porenvolumen.As the analysis data show, the coke according to the invention is outstandingly suitable for the production of reactor graphite. It has an exceptionally low expansion coefficient and a low anisotropy coefficient for pitch coke made from normal, uncleaned hard pitch. Another advantage is its small pore volume.

Claims (3)

1. A process for the continuous coking of pitches, characterized in that hard pitch with a softening point (Kraemer-Sarnow) of at least 130°C and a coking residue (Brockmann-Muck) of at least 45% by weight is coked in an externally heatable tubular rotary kiln provided with a removal tool at inner-wall temperatures of between 500 and 800°C and for a dwell period of 0.5 to 1.5 hours, the gases and vapours formed being channelled in counterflow to the coking pitch and the low-temperature coke obtained being subsequently calcinated in conventional manner, preferably without preliminary cooling.
2. A process according to claim 1, characterized in that an inert gas is fed in at the delivery end of the tubular rotary kiln.
3. Use of the coke obtained according to claim 1 for the production of reactor graphite.
EP87100270A 1986-03-20 1987-01-12 Process for the continuous coking of pitches, and use of the coke obtained Expired EP0237702B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87100270T ATE45587T1 (en) 1986-03-20 1987-01-12 PROCESS FOR CONTINUOUS COKING OF PITCH AND USE OF THE OBTAINED COKE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3609348 1986-03-20
DE19863609348 DE3609348A1 (en) 1986-03-20 1986-03-20 METHOD FOR CONTINUOUS COOKING OF PECHES AND USE OF THE COOK RECOVED

Publications (3)

Publication Number Publication Date
EP0237702A2 EP0237702A2 (en) 1987-09-23
EP0237702A3 EP0237702A3 (en) 1988-02-10
EP0237702B1 true EP0237702B1 (en) 1989-08-16

Family

ID=6296819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87100270A Expired EP0237702B1 (en) 1986-03-20 1987-01-12 Process for the continuous coking of pitches, and use of the coke obtained

Country Status (11)

Country Link
US (1) US4764318A (en)
EP (1) EP0237702B1 (en)
JP (1) JPS62227991A (en)
AT (1) ATE45587T1 (en)
AU (1) AU585436B2 (en)
CA (1) CA1268438A (en)
CS (1) CS274289B2 (en)
DE (2) DE3609348A1 (en)
ES (1) ES2000091B3 (en)
PL (1) PL151853B1 (en)
ZA (1) ZA87673B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118066A (en) * 1993-10-22 1995-05-09 Tokai Carbon Co Ltd Production of high strength isotropic graphite material
US20060074598A1 (en) * 2004-09-10 2006-04-06 Emigholz Kenneth F Application of abnormal event detection technology to hydrocracking units
US7720641B2 (en) * 2006-04-21 2010-05-18 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to delayed coking unit
US8862250B2 (en) 2010-05-07 2014-10-14 Exxonmobil Research And Engineering Company Integrated expert system for identifying abnormal events in an industrial plant
US10836969B2 (en) * 2016-09-27 2020-11-17 Cleancarbonconversion Patents Ag Process reacting organic materials to give hydrogen gas

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357621A (en) * 1941-07-30 1944-09-05 Max B Miller & Co Inc Apparatus for coking petroleum residues
US3316183A (en) * 1963-12-12 1967-04-25 Exxon Research Engineering Co Shaped carbon articles and method of making
DE1796129A1 (en) * 1968-09-05 1972-03-02 Metallgesellschaft Ag Process for the continuous production of metallurgical shaped coke
US3756791A (en) * 1971-06-09 1973-09-04 Bethlehem Steel Corp Al and or coal derivatives method for simultaneously calcining and desulfurizing agglomerates co
US4053365A (en) * 1975-12-02 1977-10-11 Great Lakes Carbon Corporation Rotary calciner
DE2627479C2 (en) * 1976-06-18 1983-09-22 Bergwerksverband Gmbh, 4300 Essen Use of a molded coke as an adsorbent for sulfur oxides from exhaust gases
FR2385786A1 (en) * 1977-03-28 1978-10-27 Nord Pas Calais Houilleres PROCESS FOR OBTAINING MOLD COKE FROM NON-COKEFIABLE COALS
US4218288A (en) * 1979-02-12 1980-08-19 Continental Oil Company Apparatus and method for compacting, degassing and carbonizing carbonaceous agglomerates
DE2925202A1 (en) * 1979-06-22 1981-01-15 Rupert Hoell Plastic waste pyrolysis - by counterflow in inclined cylinder externally heated to high discharge temp.
US4303477A (en) * 1979-06-25 1981-12-01 Babcock Krauss-Maffei Industrieanlagen Gmbh Process for the pyrolysis of waste materials
CH645401A5 (en) * 1980-08-21 1984-09-28 Alusuisse METHOD FOR PRODUCING DESULFURED COOKED FOR ANODES USED IN ALUMINUM ELECTROLYSIS.
US4369171A (en) * 1981-03-06 1983-01-18 Great Lakes Carbon Corporation Production of pitch and coke from raw petroleum coke
DE3125609A1 (en) * 1981-06-30 1983-01-13 Rütgerswerke AG, 6000 Frankfurt METHOD FOR PRODUCING CARBON MOLDED BODIES
CA1260868A (en) * 1984-04-11 1989-09-26 Izaak Lindhout Process for calcining green coke

Also Published As

Publication number Publication date
JPS62227991A (en) 1987-10-06
ES2000091B3 (en) 1989-10-16
DE3760453D1 (en) 1989-09-21
CS186187A2 (en) 1990-09-12
AU7043487A (en) 1987-09-24
PL264723A1 (en) 1988-05-12
CA1268438A (en) 1990-05-01
US4764318A (en) 1988-08-16
ATE45587T1 (en) 1989-09-15
AU585436B2 (en) 1989-06-15
EP0237702A2 (en) 1987-09-23
EP0237702A3 (en) 1988-02-10
ES2000091A4 (en) 1987-12-01
PL151853B1 (en) 1990-10-31
DE3609348A1 (en) 1987-09-24
ZA87673B (en) 1987-09-16
CS274289B2 (en) 1991-04-11

Similar Documents

Publication Publication Date Title
DE2456575C2 (en) Process for the production of electrode coke
DE2730233C2 (en) Process for the production of highly crystalline petroleum coke
DE10138657A1 (en) Carbon/graphite product production, used for, e.g. aircraft brake preform, comprises providing coal tar pitch of specified softening point, providing coke flour, mixing coal tar pitch and coke flour, and extruding mixture
DE2700554B2 (en) Process for coking lignite-like coal
DE2542843A1 (en) PROCESS FOR THE PRODUCTION OF HIGHLY CRYSTALLINE PETROL COK
DE1909263A1 (en) Method and device for smoldering fine-grained bituminous substances which form a dust-like smoldering residue
DE2747495C2 (en) Process for continuously producing a coke
DE102004035934B4 (en) Process for the production of needle coke
EP0237702B1 (en) Process for the continuous coking of pitches, and use of the coke obtained
DE2458169A1 (en) PROCESS FOR PRODUCING COCK
DE3147677C2 (en) Delayed coking method
DE3630986C2 (en) Process for producing high purity coke
DE2903884C3 (en) Process for calcining and thermal desulphurisation of raw petroleum coke
DE2548946A1 (en) METHOD OF EXTRACTION OF COAL
DE2637097C3 (en) Process for the production of shaped coke for metallurgical purposes
DE3335484C2 (en)
DE4234785C2 (en) Process for the production of shaped activated carbon
DD144171A5 (en) METHOD FOR CONVERTING OLD RUBBER
DE2150376C3 (en) Process for the production of high quality coke with an acicular structure
EP0290002B1 (en) Process for the production of pyrolysis oil
DE19621252C1 (en) Production of charcoal replacement or activated charcoal
EP0174035B1 (en) Process for preparing needle coke with little irreversible volume expansion from coaltar pitch
DE2542842C3 (en) Process for the production of petroleum coke with excellent1 ™ · "11'11" 11 structure and device for carrying out the process
EP0316450B1 (en) Method of obtaining coke
DE2116504A1 (en) Process for the production of special cokes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

TCNL Nl: translation of patent claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19880126

17Q First examination report despatched

Effective date: 19890124

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 45587

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3760453

Country of ref document: DE

Date of ref document: 19890921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940105

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940111

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940128

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940202

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950112

Ref country code: AT

Effective date: 19950112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050112