EP0236160B1 - Radarantenne mit geringem Platzbedarf - Google Patents

Radarantenne mit geringem Platzbedarf Download PDF

Info

Publication number
EP0236160B1
EP0236160B1 EP87400131A EP87400131A EP0236160B1 EP 0236160 B1 EP0236160 B1 EP 0236160B1 EP 87400131 A EP87400131 A EP 87400131A EP 87400131 A EP87400131 A EP 87400131A EP 0236160 B1 EP0236160 B1 EP 0236160B1
Authority
EP
European Patent Office
Prior art keywords
reflector
axis
source
longitudinal axis
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400131A
Other languages
English (en)
French (fr)
Other versions
EP0236160A1 (de
Inventor
Bernard Estang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0236160A1 publication Critical patent/EP0236160A1/de
Application granted granted Critical
Publication of EP0236160B1 publication Critical patent/EP0236160B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/18Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is movable and the reflecting device is fixed

Definitions

  • the invention relates to airborne and onboard radar antennas, for monitoring and for air-surface firing control, placed in a radome.
  • Maritime surveillance radars and air-sea missile fire control radars have their antenna installed in a radome, located under the fuselage of the aircraft when it is airborne. This arrangement allows 360 ° surveillance. For reasons of cost and simplicity of aircraft and in particular aircraft, it is desirable that the radome is not retractable but installed at a fixed position under the fuselage.
  • the dimensions of the radome are defined by the additional allowable aerodynamic drag caused by the radome and by the space available between the lower part of the fuselage and the ground, during landing. Once these dimensions are fixed, the radome, and therefore the radar, must have the largest antenna possible in the available volume of the radome.
  • a surveillance radar makes a predetermined movement from its line of sight, which is the straight line joining the center of the antenna to the target. Two axes of articulation are then sufficient in the mechanical orientation of the antenna.
  • a fire control radar permanently measures the angular difference between the target and the missile in a horizontal plane.
  • the measurement must be independent of aircraft movements, and therefore the antenna must be stabilized along three axes.
  • a third mechanical axis is then necessary in order to be able to maintain the line of sight oriented on the missile whatever the movements of the aircraft.
  • the antenna in order to allow, after firing, the aircraft to make an evasive curve while continuing the guidance of the missile, the antenna must be stabilized in roll in order to keep the plane horizontal measurement.
  • a vertical axis allows a rotational movement to perform the 360 ° exploration and to counteract the yaw movements of the aircraft.
  • a rotation around the horizontal transverse axis makes it possible to compensate for the pitching movements.
  • a rotational movement around a longitudinal horizontal axis makes it possible to compensate for a rolling movement of the aircraft.
  • the reflector having a transversely elongated shape
  • the beam emitted by the antenna offers a higher resolution along the Y axis than along the Z axis. This is why, when 'a movement of the plane, it is essential to keep horizontal the direction in which the measurement provides maximum resolution by, for example, rotating the reflector.
  • Radar antennas already existing include a parabolic reflector and a monopulse energy source, better known by the Anglo-Saxon name "rear feed".
  • the source is the main active element, the parabolic element acting only as a reflector, both for transmission and for reception.
  • the source is fixed relative to the reflector.
  • the latter undergoes the movement of rotation around the transverse axis and the movement of rotation around the longitudinal axis.
  • the shape of the reflector looks like a strip cut from a paraboloid of revolution and placed vertically in the radome.
  • the last rotational movement around the longitudinal axis means that there must be a large space for the reflector to perform this third movement.
  • the size of the radome is determined, the size of the reflector is considerably reduced, and consequently the detection range of the radar is also reduced.
  • the object of the invention is to remedy this drawback by constructing an antenna of sufficient cross section and making it possible to carry out fire control, while keeping a small footprint.
  • An object of the invention is a radar antenna, more particularly intended to be installed in a radome on board an aircraft, and used for surveillance, tracking or fire control, comprising a transmitting source, a parabolic reflector of revolution around an axis passing through said source to form a beam of rays, means for orienting said beam along a first longitudinal axis called the roll axis and means for orienting along a second transverse axis called the pitch axis, l 'set being rotated about a third vertical axis called yaw axis.
  • the antenna is characterized in that the orientation means along the first longitudinal axis are constituted by means for rotating said source around the longitudinal axis.
  • the reflector remains fixed in roll with respect to the aircraft.
  • FIG 1 there is shown in perspective an antenna as it exists in the prior art.
  • the energy necessary for the emitting source is brought via a conduit 1, for example a waveguide, to a diffusion element 2 called in the following description: the source.
  • This assembly is integral with a reflector 4.
  • This reflector is a parabolic surface of revolution around a first axis R passing through the source which is placed at the focal point of the parabola. This axis represents the orientation of the aircraft, and is parallel to the longitudinal axis of the aircraft.
  • the reflector is placed behind the source.
  • the reflector and the source can pivot around a second axis Y also called transverse axis.
  • This rotation takes place with respect to an armature 5 which may consist of two arms 6 and 7 and which thus supports the source-reflector assembly.
  • This set is pivotally mounted around a third axis X perpendicular to the transverse axis Y, parallel to the axis A and which is called the longitudinal axis.
  • This new assembly is itself pivotally mounted around a fourth axis Z which is vertical. This last rotation is made relative to the aircraft.
  • the assembly consisting of the source 2 and the reflector 4 can therefore, as can be seen in FIG. 1, perform a complete rotation around the vertical axis Z in order to ensure a 360 ° exploration necessary for the monitoring function of the radar. It also allows yaw movements.
  • the rotation around the transverse axis Y is mechanically limited by the aircraft, and on the other hand by the bottom wall 9 of the radome 8 inside which the antenna is installed. This rotation compensates for pitching movements.
  • the rotation around the longitudinal axis X makes it possible to compensate for the roll movements of the aircraft, in particular while the latter is making turns such as the necessary evasive curves after a shot.
  • the rotation of the reflector 4 around the longitudinal axis X can only take place insofar as the shape of the reflector, once rotated with the armature 5, describes a space contained inside the radome 8
  • the height H delimiting the permitted height of the radome is imposed by the lower part of the fuselage and the ground during the landing. The shape of the reflector is therefore limited by this rotation around the longitudinal axis X.
  • FIG 2 there is shown simultaneously, and from the front, two different surfaces 14 and 15.
  • the first 14, symbolizes the surface of the reflector 4 according to the prior art.
  • the shape drawn is substantially that of a square.
  • two surfaces 18 are shown which are identical to the surface 14 and symbolize the size of the reflector 4 when it rotates around the longitudinal axis X.
  • the height H being imposed, it is easily understood that the shape of the reflector l 'is also.
  • the second surface 15 symbolizes the surface of the reflector 12 according to the invention. This almost completely fills the cross section of radome 8.
  • the antenna according to the invention is designed in the context of equipment with great performances.
  • the area of the reflector must be larger.
  • this reflector 12 also has a parabolic shape of revolution around the longitudinal axis X, coincident with the axis R of FIG. 1, but extends over almost the entire cross section of the radome.
  • This FIG. 3 also shows the trace 16 on the reflector 12 of the beam emitted by the source 2. Since the reflector has a transversely elongated shape, the beam emitted by the antenna has a very elongated shape vertically, and could be compared to a knife blade placed vertically.
  • the guide 1 is mounted integral with the source 2 rotating inside ball bearings 20. This rotation is obtained using a servo motor 21.
  • the reflector 12 remaining fixed and being a surface of revolution, when the source rotates around the X axis, making the beam pivot on itself with respect to the reflector, one obtains a rotation of the emission diagram of the antenna analogous to the rotation obtained in the prior art, when the source-reflector assembly rotated.
  • the invention makes it possible for a radome of determined size to obtain the largest possible antenna by replacing the roll stabilization of a large element which is the reflector, by the roll stabilization of an element much smaller than is the source.
  • the size of the servomotors and stabilization circuits is reduced, the power consumption is lower and the mass also lower.
  • the increase in the size of the reflector makes it possible to directly increase the detection range of the radar in a proportional manner.
  • the elimination of the rolling movement of the reflector makes it possible to reduce the useful height of the radome under the aircraft, and therefore to increase the ground clearance at the time of landing. For a determined detection range, the antenna is therefore compact.
  • the energy balance of the radar can be satisfied with a smaller antenna surface.
  • the rotation of the source can be brought to roll values which could not be obtained by rotation of the source-reflector assembly of the prior art. This allows the aircraft to take a much tighter turn.
  • the illumination of the source 2 in normal position forms on the reflector 12 an ellipse 16 having the width of the reflector for its major axis, and the height of the reflector for its minor axis.
  • the ellipse rotates around the same axis X while continuing to illuminate the reflector according to a trace 17.
  • the reflector is a paraboloid of revolution, the shape, and the characteristics of the beam, that is to say the antenna pattern, do not deform, and rotate around the same X axis, as if the reflector-source assembly rotated.
  • the lighting is partially outside the reflector.
  • the antenna gain is then decreases.
  • the fire control which requires roll rotation, being at close range, the reduced energy balance therefore allows a smaller antenna surface.
  • surveillance mode the search for a distant target requires the largest possible surface. This is then possible since in this mode, the rotation in roll of the source is not necessary and the reflector is fully lit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Claims (5)

  1. Radarantenne zur Überwachung, Verfolgung oder Geschoßleitung, mit einer Sender-Quelle (2), einem zu einer ersten Längsachse (X) drehsymmetrischen Parabolreflektor (12) mit im wesentlichen elliptischer Form, wobei die Längsachse durch die Quelle verläuft, um ein Strahlenbündel zu bilden, mit Mitteln zum Ausrichten des Bündels gemäß der ersten Längsachse, Rollachse genannt, und mit Mitteln zur Ausrichtung dieses Bündels gemäß einer zweiten, transversalen Achse (Y), Stampfachse genannt, wobei das Ganze um eine dritte, senkrechte Achse (Z), Mastachse genannt, drehbar ist, dadurch gekennzeichnet, daß die Quelle den Reflektor gemäß einem im wesentlichen elliptischen Diagramm gleich der Form des Reflektors beleuchtet und daß die Mittel zum Ausrichten gemäß der ersten Achse (X) aus Mitteln bestehen, mit denen die Quelle um die erste Achse (X) bezüglich des Reflektors gedreht wird.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß der Reflektor (12) um die Längsachse (X) drehfest ist.
  3. Radarantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie an Bord eines Flugzeugs unter einer Schutzhaube (8) verwendet wird.
  4. Antenne nach Anspruch 2, dadurch gekennzeichnet, daß die Oberfläche des Reflektors (12) in der Nähe des Querschnitts der Schutzhaube (8) liegt.
  5. Antenne nach einem beliebigen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Energie der Quelle (2) über eine Leitung (1) zugeführt wird, die den Reflektor durchquert, daß die Mittel zum Drehen der Quelle um die Längsachse (X) aus einem Regelmotor (21) bestehen, der die aus der Quelle und der Leitung bestehende Einheit zwischen Kugellarn (20) in Umdrehung versetzt und in einem bezüglich des Reflektors festen und hinter diesem liegenden Gehäuse (3) angeordnet ist, wobei diese Einheit um die zweite, transversale Achse (Y) durch die Mittel zur Ausrichtung gemäß der zweiten, transversalen Achse schwenkbar montiert ist.
EP87400131A 1986-01-28 1987-01-20 Radarantenne mit geringem Platzbedarf Expired - Lifetime EP0236160B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8601173 1986-01-28
FR8601173A FR2593646B1 (fr) 1986-01-28 1986-01-28 Antenne radar a faible encombrement.

Publications (2)

Publication Number Publication Date
EP0236160A1 EP0236160A1 (de) 1987-09-09
EP0236160B1 true EP0236160B1 (de) 1991-09-11

Family

ID=9331554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400131A Expired - Lifetime EP0236160B1 (de) 1986-01-28 1987-01-20 Radarantenne mit geringem Platzbedarf

Country Status (4)

Country Link
US (1) US4933681A (de)
EP (1) EP0236160B1 (de)
DE (1) DE3772797D1 (de)
FR (1) FR2593646B1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4112837A1 (de) * 1991-04-19 1992-10-22 Teldix Gmbh Zweiachsige schwenkvorrichtung fuer einen reflektor
FR2685081B1 (fr) * 1991-12-11 1994-02-04 Thomson Csf Structure a controle d'endommagement intrinseque, procede de fabrication et methode d'utilisation.
DE19544500C2 (de) * 1994-12-15 1999-07-08 Daimler Benz Aerospace Ag Reflektorantenne, insbesondere für einen Kommunikationssatelliten
US6266024B1 (en) * 1998-12-23 2001-07-24 Hughes Electronics Corporation Rotatable and scannable reconfigurable shaped reflector with a movable feed system
US6398444B1 (en) * 1999-11-19 2002-06-04 Raytheon Company Coupling for airport surveillance antennas and other rotating structures
US6677908B2 (en) * 2000-12-21 2004-01-13 Ems Technologies Canada, Ltd Multimedia aircraft antenna
WO2003028148A1 (en) * 2001-09-20 2003-04-03 Telefonaktiebolaget Lm Ericsson (Publ) Antenna system for an aircraft and method of operating the antenna system
US8808028B2 (en) * 2012-03-23 2014-08-19 Andrew Llc Integrated AISG connector assembly
EP4131647A1 (de) * 2021-08-06 2023-02-08 Aptiv Technologies Limited Radarantennenanordnung und radarsystem

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307183A (en) * 1957-03-11 1967-02-28 Boeing Co Conical scan radar system and antenna
GB866349A (en) * 1958-10-17 1961-04-26 Gen Electric Co Ltd Improvements in or relating to directive aerial systems
DE1303439B (de) * 1964-03-25 1973-08-30
CH515627A (de) * 1970-10-23 1971-11-15 Siemens Ag Albis Radar-Reflektor-Antenne
US3860930A (en) * 1973-08-23 1975-01-14 Texas Instruments Inc Radar antenna scan apparatus
US3898668A (en) * 1974-05-15 1975-08-05 Singer Co Integrated radiometric seeker gyro
GB1603657A (en) * 1977-09-13 1981-11-25 Marconi Co Ltd Systems for the transmission and/or reception of electromagnetic waves
US4173762A (en) * 1978-06-12 1979-11-06 Sperry Rand Corporation Reference signal generating apparatus
US4249174A (en) * 1979-05-31 1981-02-03 Rca Corporation Aircraft weather radar system
FR2513760A1 (fr) * 1981-09-25 1983-04-01 Thomson Csf Systeme d'equilibrage d'un couple de balourd, utilisation d'un tel systeme pour une antenne de radar aeroporte et antenne equilibree par un tel systeme
GB2127369B (en) * 1982-09-03 1985-11-20 Marconi Avionics Retractable radar scanner for aircraft
SE8304731L (sv) * 1982-09-03 1984-03-04 Marconi Avionics Flygburet forvarningssystem
FR2550390B1 (fr) * 1983-08-03 1985-11-29 Legall Jean Claude Monture d'antenne a stabilisation passive
US4772892A (en) * 1984-11-13 1988-09-20 Raytheon Company Two-axis gimbal

Also Published As

Publication number Publication date
EP0236160A1 (de) 1987-09-09
US4933681A (en) 1990-06-12
DE3772797D1 (de) 1991-10-17
FR2593646B1 (fr) 1988-07-29
FR2593646A1 (fr) 1987-07-31

Similar Documents

Publication Publication Date Title
CA1224562A (fr) Antenne demi-boucle pour vehicule terrestre
EP0236160B1 (de) Radarantenne mit geringem Platzbedarf
EP0655599A1 (de) Flugabwehrsystem und Flugabwehrkörper dafür
FR3004586A1 (fr) Radar meteorologique embarque a antenne rotative
FR2912513A1 (fr) Radar aeroporte notamment pour drone
FR2485275A1 (fr) Procede de pilotage d'orientation d'antenne sur un satellite et configuration de detecteurs mettant en oeuvre ce procede
EP3223032A1 (de) Sekundärradar für die erfassung von zielen in grosser höhe
EP3027499B1 (de) Zum schwimmen auf wasser fähiges seeobjekt mit einer einsetzbaren vorrichtung zum senden und/oder empfangen elektromagnetischer wellen
FR2687013A1 (fr) Aerien pour radar.
FR2713329A1 (fr) Missile.
FR2727934A1 (fr) Satellite geostationnaire stabilise 3-axes a surveillance radar de son espace environnant
EP1093561B1 (de) Passive selbstschutzvorrichtung für bewegliche objekte wie zum beispiel einen helikopter
WO2005066024A1 (fr) Systeme optronique modulaire embarquable sur un porteur
WO2018146430A2 (fr) Dispositif et procede d'etalonnage pour mesures radar
EP0032081B1 (de) Antenne mit einstellbarer Strahlrichtung für einen Nachrichtensatelliten
EP0437126B1 (de) Leitdatenübertragungssystem für optoelektronische Fernlenkprojektile
FR2807509A1 (fr) Dispositif de protection
FR2707386A1 (fr) Système d'observation aérienne à drone captif.
EP1369349A1 (de) Waffe, die eine Rakete enthält, und die an einem Tarnkappen-Flugzeug montiert ist, und Waffensystem, das ein Tarnkappen-Flugzeug und eine solche Waffe enthält
FR2764402A1 (fr) Systeme d'autoguidage pour missile
EP3028064B1 (de) Sonarsystem mit einer gekrümmten antenne oder einer für die übertragung desselben übertragungsmusters wie die gekrümmte antenne konfigurierten antenne
FR2743198A1 (fr) Procede pour compenser l'attenuation du rayonnement d'une antenne a haute frequence montee sur une structure ainsi perfectionnee
EP0438336B1 (de) Selbsttätig wegschwenkende Visiervorrichtung für an Bord befindliche optoelektronische Ausrüstung zur Ortung und Identifikation
EP0482987B1 (de) Kompaktes Visiergerät mit grossem Betrachtungswinkel für optoelektronische Ausrüstung zur Lokalisierung und Erfassung eines Ziels
FR2860884A1 (fr) Systemes radar pour engins aeriens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19880225

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19900212

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910911

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3772797

Country of ref document: DE

Date of ref document: 19911017

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931227

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050120