EP0231980B1 - Method for transmitting measuring signals of at least two sensors via an opticaltransmission link - Google Patents

Method for transmitting measuring signals of at least two sensors via an opticaltransmission link Download PDF

Info

Publication number
EP0231980B1
EP0231980B1 EP87200161A EP87200161A EP0231980B1 EP 0231980 B1 EP0231980 B1 EP 0231980B1 EP 87200161 A EP87200161 A EP 87200161A EP 87200161 A EP87200161 A EP 87200161A EP 0231980 B1 EP0231980 B1 EP 0231980B1
Authority
EP
European Patent Office
Prior art keywords
pulses
time
signal
optical
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87200161A
Other languages
German (de)
French (fr)
Other versions
EP0231980A2 (en
EP0231980A3 (en
Inventor
Jürgen Dipl.-Ing. Kordts
Reiner Uwe Dr. Orlowski
Ingobert Heinrich Gorlt
Gerhard Dr. Martens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envec Mess und Regeltechnik GmbH and Co
Original Assignee
Envec Mess und Regeltechnik GmbH and Co
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envec Mess und Regeltechnik GmbH and Co, Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV filed Critical Envec Mess und Regeltechnik GmbH and Co
Publication of EP0231980A2 publication Critical patent/EP0231980A2/en
Publication of EP0231980A3 publication Critical patent/EP0231980A3/en
Application granted granted Critical
Publication of EP0231980B1 publication Critical patent/EP0231980B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/16Electric signal transmission systems in which transmission is by pulses
    • G08C19/24Electric signal transmission systems in which transmission is by pulses using time shift of pulses
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/06Non-electrical signal transmission systems, e.g. optical systems through light guides, e.g. optical fibres

Definitions

  • the invention relates to a method for transmitting at least two measured values by means of light pulses directed from an optical transmitter over an optical transmission path to an optical receiver, the time interval between which is evaluated as a measure of the measured value.
  • a method of this type is known from EP-A1 00 75 701.
  • Optical transmission links and in particular optical fibers (LWL) are insensitive to electromagnetic interference. They are suitable for use in potentially explosive environments and enable measured values to be transmitted over long distances.
  • Energy from a voltage source is required for the electronic processing of the measured values and for the formation of the optical transmission pulses.
  • the required voltage is generated by photo elements, to which light output is supplied via an optical line.
  • batteries could also be provided in the measuring device. In any case, it is desirable to keep the energy consumption of the measuring device low.
  • the invention is therefore based on the object of designing the method of the type mentioned at the outset in such a way that the energy consumption for the optical transmission of the measured values is reduced.
  • the solution is achieved in that the measured values are transmitted directly in cyclical succession in always the same order, that an optical measurement pulse is transmitted for each measured value, the time interval from which an optical measurement pulse assigned to a previous measured value forms a measure of the size of the measured value, and that for each Cycle of measured values an optical identification pulse is transmitted, the time interval from a previous optical measurement pulse is smaller than the minimum possible time interval between two successive optical measurement pulses.
  • the invention is based on the knowledge that the majority of the energy required is used to form the optical signals. It was recognized that considerably less energy is required for the pulsed transmission which is already considered as an alternative in the known case than for transmission by means of modulated continuous light. In addition, the measurement information during pulse transmission cannot be falsified by variable attenuations of the transmission path.
  • the optical transmission path could be a free beam path.
  • a single optical fiber is preferably used, by means of which the measured values are transmitted in chronological succession.
  • One of the measured values is identified in the receiving device with the aid of the identification pulse.
  • measured values have to be transmitted, which can be in the range from zero to a maximum value
  • two successively transmitted optical measuring pulses are sent at a time interval t o + t n ', the constant time t o being greater than t k and the time t n 'depends on the measured value.
  • the minimum possible length of time between successive measurement pulses is certainly greater than the time interval between an identification pulse and the previous measurement pulse, so that a clear identification of the identification pulse can always be achieved at the receiving end.
  • a preferred embodiment of the invention is characterized in that the original measured values are converted into electrical square-wave signals, the duration of which depends in a predetermined manner on the size of the measured values, so that the start of the square-wave signal of the subsequently measured value is initiated by the termination of each square-wave signal and that an identification signal with a constant delay time compared to the start of a square wave signal associated with a predetermined measurement signal is generated.
  • the square-wave signals can subsequently be converted into needle pulses by differentiating stages, which are supplied as a sum signal to a control stage of an LED via a common line.
  • a preferred embodiment of the invention for which only a small amount of electronic circuit elements is required, is characterized in that the needle-pulse-shaped electrical output signals of the optical receiver, if necessary after amplification are converted by means of a flip-flop into square-wave pulses, the duration of which is greater than the delay time t k of the identification pulse and less than the difference between a minimum possible measurement time t 1 or t 2 and the delay time t k that these square-wave pulses are fed to a first input of a first AND gate are, while the input signal of the flip-flop is fed to the second input of the first AND gate, so that in-phase signals are generated at the output of the first AND gate, and that the inverted output signal of the flip-flop and the input signal of the flip-flop to a second AND gate are supplied, at the output of which successive signals are generated in accordance with the time interval between the measuring pulses.
  • the sizes of two measured values m1 and m2 are scanned by means of the capacitive sensors 1 and 2 by means of the transmission device shown in FIG.
  • the transmitting device finally forms optical pulses 3 from the determined capacitance values of the sensors 1 and 2, which are passed into the optical fiber and transmitted to the receiving device shown in FIG. 3.
  • a capacitive pressure sensor consists, for example, of a cylindrical base body, on the end faces of which metallized membranes are arranged, the spacings of which from counter electrodes change depending on the pressure.
  • the transmitting device consists of an oscillator stage 4, a differentiating and decoding stage, which contains the differentiating stages 5, 6 and 7 and a monostable flip-flop 8, and an optical transmitting stage with a light source, which preferably consists of a semiconductor laser diode 10.
  • Rectangular pulses a and b are generated by the oscillator stage 4, as shown in FIG. 2 as a function of time.
  • the time length t1 of each pulse a contains the information about the size of the capacitance of the sensor 1 and thus about the measured variable m1.
  • the time length t2 of the pulse b is a measure of the measured value m2.
  • a rectangular pulse sequence c ( Figure 2) is passed to the differentiating stage 6, at whose output a current pulse sequence f of Figure 2 institute.Der start of pulses c at the time t k with respect to the beginning of the to be identified Impulse b delayed.
  • the delay time t k can be predetermined by the capacitance C 1 and the resistor R 1. It must be less than the minimum possible value of the times t 1 and t 2.
  • tn t O + t1 ′
  • t2 t O + t2 ′.
  • the time t n contains the information about the nth measured value.
  • the fixed time t o results from the fact that the capacitances of sensors 1 and 2 already have a finite value if the measured variables m1 and / or m2 have the value zero.
  • the diodes D1, D2 and D3 suppress negative signals, so that a voltage sum signal according to g according to FIG. 2 is present at the control connection of the electronic switch 9, which voltage voltage consists of the sum of the needle-shaped signals d, e and f.
  • the light source is connected to the DC voltage U via the switch 9.
  • the light source 10 forms optical needle signals 3, which have the chronological sequence of the signals g according to FIG. 2.
  • the capacitor C2 which had previously been charged via the charging resistor R2, is discharged very quickly via the light source.
  • the short-term but high current flow through the light source then generates an optical pulse.
  • C2 can then recharge via R 2.
  • the average power consumption is low because the light source is only connected for a short time.
  • the peak current required to generate high optical pulses is taken from capacitor C2 to reduce the load on the voltage source.
  • a voltage Uo which is constantly regulated by a circuit, not shown, is required for the power supply of stages 4 to 8. Overall, only an average current of about 30 uA is required to power the entire transmitter.
  • the optical pulse signals 3, which run according to g in FIG. 2, are passed to the photodiode 11 of the receiving device shown in FIG Signals a and b correspond to Figure 2.
  • the output signals o and p are fed together with intermediate signals k and l to an evaluation circuit (not shown), at whose output a DC voltage proportional to the difference between the measured values (m1-m2) is then output.
  • an evaluation circuit can be constructed in a manner known to those skilled in the art, for example in the manner described in the earlier application P 35 28 416.1. In this way, for example, a pressure difference of a differential pressure sensor can be read directly.
  • the photodiode 11 of the photo amplifier 12 is followed by a current-voltage converter.
  • the photodiode 11 generates an electrical current from the optical signal, which then appears as a voltage signal at the output of the operational amplifier OP1.
  • This signal h is amplified again with the operational amplifier OP2.
  • the DC signal is separated in this stage with the capacitor C3 so that the dark current of the photodiode 11 and offset currents of the operational amplifier OP1 have no influence.
  • the signal is limited with the Zener diode D4 so that no overdrive can occur.
  • the comparator K then generates a TTL-compatible pulse signal i (see FIG. 4).
  • a reference voltage is generated with the resistors R3 and R4.
  • the comparator K switches when the input signal is larger than the reference signal. Interference signals contained in the signal h which are smaller than the reference signal are thus suppressed.
  • the needle pulse-shaped output signal of the comparator K now passes through the decoding circuit 13. There, the rectangular original signal is regenerated from the needle pulses.
  • the pulse diagram of this stage is shown in FIG. 4.
  • the monostable flip-flop reacts to the falling edge of the needle pulses i of the comparator K.
  • the pulse time t m of the monostable flip-flop MFF must be greater than the time t k and less than the time t 2.
  • the non-inverted output signal of the monostable flip-flop MFF reaches the gate U1, to which the needle pulse signal is also present.
  • the gate U1 then ensures that only the additional pulse of the needle pulse signal is passed on. This signal then reaches the reset input of the D flip-flop DFF.
  • the inverted output signal of the monostable flip-flop MFF reaches the gate U2. At its output the needle pulse signal appears without the additional pulse. This signal is now sent to the "clock" input of the D flip-flop, which works as a bistable flip-flop, which means that it jumps with every needle pulse.
  • a square-wave signal then appears at the output Q of the D flip-flop, the pulse time being high corresponding to the pulse time t 1 and thus the sensor capacitance C1 and the pulse time at low level corresponding to C2.
  • the correct assignment takes place with the additional pulse, which was blanked with the gate U1 and is at the reset input of the D flip-flop D-FF. This pulse appearing in time t 2 forces a reset of the D flip flop, so that a low level appears at output Q during this time.
  • the invention was explained on the basis of the description of a transmission of only two measured values for simplicity of illustration.
  • An advantageous application example is the pressure difference measurement.
  • it is advantageous not to transmit the value of the pressure difference directly, but rather the individual pressure values.
  • the energy expenditure for electronic conversion and evaluation of the pressure values for the pressure difference value can be delivered at the receiving end.
  • the circuits shown can be modified in a manner familiar to the person skilled in the art in order to be able to transmit more than two measured values, even then only one identification pulse being required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Optical Communication System (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Übertragung von mindestens zwei Meßwerten mittels von einem optischen Sender über eine optische Übertragungsstrecke zu einem optischen Empfänger geleiteter Lichtimpulse, deren zeitlicher Abstand als Maß für den Meßwert ausgewertet wird. Ein Verfahren dieser Art ist durch die EP-A1 00 75 701 bekannt.The invention relates to a method for transmitting at least two measured values by means of light pulses directed from an optical transmitter over an optical transmission path to an optical receiver, the time interval between which is evaluated as a measure of the measured value. A method of this type is known from EP-A1 00 75 701.

Optische Übertragungsstrecken und insbesondere Lichtwellenleiter (LWL) sind unempfindlich gegenüber elektromagnetischer Störstrahlung. Sie sind zur Verwendung in explosionsgefährdeter Umgebung geeignet und ermöglichen eine Meßwertübertragung über große Entfernungen.Optical transmission links and in particular optical fibers (LWL) are insensitive to electromagnetic interference. They are suitable for use in potentially explosive environments and enable measured values to be transmitted over long distances.

Im bekannten Fall wird ohne nähere Begründung bereits die Möglichkeit erwähnt, optische Signale in Form von Impulsfolgen zu übertragen, bei denen die Impulsphase moduliert wird.In the known case, the possibility of transmitting optical signals in the form of pulse sequences in which the pulse phase is modulated is already mentioned without further explanation.

Zur elektronischen Aufbereitung der Meßwerte und zur Bildung der optischen Sendeimpulse wird Energie aus einer Spannungsquelle benötigt. Im bekannten Fall wird die benötigte Spannung durch Photoelemente erzeugt, welchen Lichtleistung über eine optische Leitung zugeführt wird. Stattdessen könnten auch Batterien in der Meßeinrichtung vorgesehen werden. In jedem Fall ist es wünschenswert, den Energieverbrauch der Meßeinrichtung gering zu halten.Energy from a voltage source is required for the electronic processing of the measured values and for the formation of the optical transmission pulses. In the known case, the required voltage is generated by photo elements, to which light output is supplied via an optical line. Instead, batteries could also be provided in the measuring device. In any case, it is desirable to keep the energy consumption of the measuring device low.

Der Erfindung liegt deshalb die Aufgabe zugrunde, das Verfahren der eingangs genannten Art derart zu gestalten, daß der Energieverbrauch für die optische Übertragung der Meßwerte verringert wird.The invention is therefore based on the object of designing the method of the type mentioned at the outset in such a way that the energy consumption for the optical transmission of the measured values is reduced.

Die Lösung gelingt dadurch, daß die Meßwerte in stets gleicher Reihenfolge unmittelbar zyklisch aufeinanderfolgend übertragen werden, daß je Meßwert ein optischer Meßimpuls übertragen wird, dessen zeitlicher Abstand vom einem vorhergehenden Meßwert zugeordneten optischen Meßimpuls ein Maß für die Größe des Meßwerts bildet, und daß für jeden Zyklus von Meßwerten ein optischer Kennungsimpuls übertragen wird, dessen zeitlicher Abstand von einem vorhergehenden optischen Meßimpuls kleiner ist als der minimal mögliche zeitliche Abstand zwischen zwei aufeinanderfolgenden optischen Meßimpulsen.The solution is achieved in that the measured values are transmitted directly in cyclical succession in always the same order, that an optical measurement pulse is transmitted for each measured value, the time interval from which an optical measurement pulse assigned to a previous measured value forms a measure of the size of the measured value, and that for each Cycle of measured values an optical identification pulse is transmitted, the time interval from a previous optical measurement pulse is smaller than the minimum possible time interval between two successive optical measurement pulses.

Die Erfindung geht von der Erkenntnis aus, daß zur Bildung der optischen Signale der überwiegende Anteil der benötigten Energie verbraucht wird. Es wurde erkannt, daß für die im bekannten Fall bereits alternativ in Erwägung gezogene impulsförmige Übertragung bereits erheblich weniger Energie benötigt wird, als für eine Übertragung mittels modulierten Dauerlichts. Darüberhinaus können die Meßinformationen bei Impuls-Übertragung nicht durch variable Dämpfungen der Übertragungsstrecke verfälscht werden.The invention is based on the knowledge that the majority of the energy required is used to form the optical signals. It was recognized that considerably less energy is required for the pulsed transmission which is already considered as an alternative in the known case than for transmission by means of modulated continuous light. In addition, the measurement information during pulse transmission cannot be falsified by variable attenuations of the transmission path.

Dadurch, daß erfindungsgemäß nur ein einziger optischer Impuls pro Meßwert übertragen und nur ein einziger Kennungsimpuls für eine Gruppe von mehreren Meßwerten benötigt wird, ergibt sich ein sehr geringer Energieverbrauch, welcher von einer einzigen Lithium-Batterie über die gesamte Lebensdauer einer Meßeinrichtung zur Verfügung gestellt werden kann.The fact that, according to the invention, only a single optical pulse is transmitted per measured value and only a single identification pulse is required for a group of several measured values, there is a very low energy consumption which is made available by a single lithium battery over the entire service life of a measuring device can.

Die optische Übertragungsstrecke könnte eine Freistrahlstrecke sein. Vorzugsweise wird jedoch ein einziger LWL verwendet, durch welchen die Meßwerte in zeitlicher Aufeinanderfolge übertragen werden. In der Empfangseinrichtung wird einer der Meßwerte mit Hilfe des Kennungsimpulses identifiziert.The optical transmission path could be a free beam path. However, a single optical fiber is preferably used, by means of which the measured values are transmitted in chronological succession. One of the measured values is identified in the receiving device with the aid of the identification pulse.

Für die übrigen Meßimpulse ist keine Kennung erforderlich, da sie in stets gleichbleibender zyklischer Folge zum gekennzeichneten Meßwert übertragen werden. Für den Kennungimpuls wird erfindungsgemäß keine zusätzliche Übertragungszeit benötigt.No identification is required for the remaining measuring pulses, since they are transmitted in a constant, cyclical sequence to the marked measured value. According to the invention, no additional transmission time is required for the identification pulse.

Wenn Meßwerte übertragen werden müssen, die im Bereich von Null bis zu einem Maximalwert liegen können, ist es vorteilhaft, daß zwei aufeinanderfolgend übertragene optische Meßimpulse im zeitlichen Abstand to + tn′ gesendet werden, wobei die konstante Zeit to größer als tk und die Zeit tn′ vom Meßwert abhängig ist. Dann ist die minimal mögliche Länge der Zeit zwischen aufeinanderfolgenden Meßimpulsen mit Sicherheit größer als der Zeitabstand eines Kennungsimpulses vom vorhergehenden Meßimpuls, so daß empfangsseitig stets eine eindeutige Identifizierung des Kennungsimpulses erreichbar ist.If measured values have to be transmitted, which can be in the range from zero to a maximum value, it is advantageous that two successively transmitted optical measuring pulses are sent at a time interval t o + t n ', the constant time t o being greater than t k and the time t n 'depends on the measured value. Then the minimum possible length of time between successive measurement pulses is certainly greater than the time interval between an identification pulse and the previous measurement pulse, so that a clear identification of the identification pulse can always be achieved at the receiving end.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die originären Meßwerte in elektrische Rechteck-Signale umgewandelt werden, deren Dauer in vorbestimmter Weise von der Größe der Meßwerte abhängig ist, daß durch die Beendigung eines jeden Rechtecksignals der Beginn des Rechtecksignals des nachfolgend gemessenen Meßwerts initiiert wird, und daß ein Kennungssignal mit einer konstanten Verzögerungszeit gegenüber dem Beginn eines einem vorbestimmten Meßsignal zugeordneten Rechtecksignals erzeugt wird. Dabei können die Rechtecksignale nachfolgend durch Differenzierstufen in Nadelimpulse umgeformt werden, welche als Summensignal über eine gemeinsame Leitung einer Ansteuerstufe einer LED zugeführt werden.A preferred embodiment of the invention is characterized in that the original measured values are converted into electrical square-wave signals, the duration of which depends in a predetermined manner on the size of the measured values, so that the start of the square-wave signal of the subsequently measured value is initiated by the termination of each square-wave signal and that an identification signal with a constant delay time compared to the start of a square wave signal associated with a predetermined measurement signal is generated. The square-wave signals can subsequently be converted into needle pulses by differentiating stages, which are supplied as a sum signal to a control stage of an LED via a common line.

Eine bevorzugte Ausführung der Erfindung, für welche nur ein geringer Aufwand an elektronischen Schaltungselementen erforderlich ist, ist dadurch gekennzeichnet, daß die nadelimpulsförmigen elektrischen Ausgangssignale des optischen Empfängers gegebenenfalls nach Verstärkung mittels einer Kippstufe in Rechteckimpulse umgewandelt werden, deren Dauer größer als die Verzögerungszeit tk des Kennungsimpulses und kleiner als die Differenz aus einer minimal möglichen Meßzeit t₁ oder t₂ und der Verzögerungszeit tk ist, daß diese Rechteckimpulse einem ersten Eingang eines ersten Und-Gatters zugeführt werden, während dem zweiten Eingang des ersten Und-Gatters das Eingangssignal der Kippstufe zugeführt wird, so daß am Ausgang des ersten Und-Gatters den Kennungsimpulsen phasengleiche Signale entstehen, und daß das invertierte Ausgangssignal der Kippstufe und das Eingangssignal der Kippstufe einem zweiten Und-Gatter zugeführt werden, an dessen Ausgang entsprechend dem Zeitabstand der Meßimpulse aufeinanderfolgende Signale entstehen.A preferred embodiment of the invention, for which only a small amount of electronic circuit elements is required, is characterized in that the needle-pulse-shaped electrical output signals of the optical receiver, if necessary after amplification are converted by means of a flip-flop into square-wave pulses, the duration of which is greater than the delay time t k of the identification pulse and less than the difference between a minimum possible measurement time t 1 or t 2 and the delay time t k that these square-wave pulses are fed to a first input of a first AND gate are, while the input signal of the flip-flop is fed to the second input of the first AND gate, so that in-phase signals are generated at the output of the first AND gate, and that the inverted output signal of the flip-flop and the input signal of the flip-flop to a second AND gate are supplied, at the output of which successive signals are generated in accordance with the time interval between the measuring pulses.

Die Erfindung wird anhand der Beschreibung eines in der Zeichnung dargestellten vorteilhaften Ausführungsbeispiels näher erläutert.

Figur 1
zeigt ein Ausführungsbeispiel einer zur Ausübung des erfindungsgemäßen Verfahrens geeigneten sendeseitigen Schaltung.
Figur 2
zeigt an bezeichneten Stellen der Figur 1 meßbare charakteristische Signalverläufe.
Figur 3
zeigt ein Ausführungsbeispiel einer zur Ausübung des erfindungsgemäßen Verfahrens geeigneten empfangsseitigen Schaltung.
Figur 4
zeigt an bezeichneten Stellen der Figur 3 meßbare charakteristische Signalverläufe.
The invention is explained in more detail on the basis of the description of an advantageous exemplary embodiment shown in the drawing.
Figure 1
shows an embodiment of a transmission-side circuit suitable for carrying out the method according to the invention.
Figure 2
shows measurable characteristic signal curves at designated points in FIG.
Figure 3
shows an embodiment of a receiving circuit suitable for carrying out the method according to the invention.
Figure 4
3 shows measurable characteristic signal profiles at designated points in FIG.

Mittels der in Figur 1 dargestellten Sendeeinrichtung werden die Größen zweier Meßwerte m1 und m2 (z.B. Druckwerte) mittels der kapazitiven Sensoren 1 und 2 abgetastet.The sizes of two measured values m1 and m2 (eg pressure values) are scanned by means of the capacitive sensors 1 and 2 by means of the transmission device shown in FIG.

Die Sendeeinrichtung bildet aus den ermittelten Kapazitätswerten der Sensoren 1 und 2 schließlich optische Impulse 3, welche in den LWL geleitet und zur in Figur 3 dargestellten Empfangseinrichtung übertragen werden.The transmitting device finally forms optical pulses 3 from the determined capacitance values of the sensors 1 and 2, which are passed into the optical fiber and transmitted to the receiving device shown in FIG. 3.

Ein kapazitiver Drucksensor besteht beispielsweise aus einem zylindrischen Grundkörper, an dessen Stirnseiten jeweils metallisierte Membranen angeordnet sind, deren Abstände zu Gegenelektroden sich druckabhängig ändern.A capacitive pressure sensor consists, for example, of a cylindrical base body, on the end faces of which metallized membranes are arranged, the spacings of which from counter electrodes change depending on the pressure.

Die Sendeeinrichtung besteht aus einer Oszillatorstufe 4, einer Differenzier- und Dekodierstufe, welche die Differenzierstufen 5,6 und 7 und ein monostabiles Flip-Flop 8 enthält, sowie einer optischen Sendestufe mit einer Lichtquelle, die vorzugsweise aus einer Halbleiterlaserdiode 10 besteht.The transmitting device consists of an oscillator stage 4, a differentiating and decoding stage, which contains the differentiating stages 5, 6 and 7 and a monostable flip-flop 8, and an optical transmitting stage with a light source, which preferably consists of a semiconductor laser diode 10.

Von der Oszillatorsrstufe 4 werden Rechteckimpulse a und b erzeugt, wie sie in Figur 2 zeitabhängig dargestellt sind. Die zeitliche Länge t₁ eines jeden Impulses a enthält die Information über die Größe der Kapazität des Sensors 1 und somit über die Meßgröße m₁.Die zeitliche Länge t₂ des Impulses b ist entsprechend ein Maß für den Meßwert m₂.Rectangular pulses a and b are generated by the oscillator stage 4, as shown in FIG. 2 as a function of time. The time length t₁ of each pulse a contains the information about the size of the capacitance of the sensor 1 and thus about the measured variable m₁. The time length t₂ of the pulse b is a measure of the measured value m₂.

Wesentlich ist, daß die Impulszeiten t₁ und t₂ ohne Pause unmittelbar aufeinanderfolgen. Das wird mittels der Oszillatorstufe 4 mit dem Fachmann bekannten und in der Zeichnung nur angedeuteten elektronischen Schaltmitteln bewirkt (vergl. die ältere Anmeldung P 35 28 416.1). Dabei werden vornehmlich sich gegenseitig fortschaltende monostabile Kippstufen eingestzt, deren Schaltzustandsdauer von den Ladezeiten der Sensorkapazitäten 1 und 2 abhängig ist. Die Rechteckimpulse a bzw. b werden durch die Differenzierstufen 5 bzw. 7 in Nadelstromimpulse umgewandelt (vergl. Fig. 2 Pulsfolgen d und e).It is essential that the pulse times t 1 and t 2 follow one another immediately without a break. This is effected by means of the oscillator stage 4 with the electronic switching means known to the person skilled in the art and only indicated in the drawing (cf. the older application P 35 28 416.1). Here, mutually advancing monostable multivibrators are primarily used, the switching state duration of which depends on the charging times of the sensor capacities 1 and 2. The rectangular pulses a and b are converted into needle current pulses by the differentiating stages 5 and 7 (see FIG. 2 pulse sequences d and e).

Zusätzlich wird vom monostabilen Flip-Flop 8 eine Rechteck-Impulsfolge c (Figur 2) zur Differenzierstufe 6 geleitet, an deren Ausgang eine Stromimpulsfolge f gemäß Figur 2 erscheint.Der Beginn der Impulse c ist um die Zeit tk gegenüber dem Beginn des zu kennzeichnenden Impulses b verzögert. Die Verzögerungszeit tk ist durch die Kapazität C₁ und dem Widerstand R₁ vorgebbar. Sie muß kleiner sein als der minimal mögliche Wert der Zeiten t₁ und t₂.In addition, from the monostable flip-flop 8, a rectangular pulse sequence c (Figure 2) is passed to the differentiating stage 6, at whose output a current pulse sequence f of Figure 2 erscheint.Der start of pulses c at the time t k with respect to the beginning of the to be identified Impulse b delayed. The delay time t k can be predetermined by the capacitance C 1 and the resistor R 1. It must be less than the minimum possible value of the times t 1 and t 2.

Damit auch solche Meßwerte meßbar und übertragbar sind, welche von Null bis zu einem Maximalwert variieren können, bestehen die Zeiten t₁ und t₂ (allgemein tn) aus einer meßwertunabhängigen konstanten Zeit to zuzüglich einer meßwertabhängigen variablen Zeit t₁′ bzw. t₂′ (allgemein tn′). Also ist: t₁=t o + t₁′

Figure imgb0001
und t₂ = t o + t₂′.
Figure imgb0002

Bei einer beliebigen Anzahl von zu übertragenden Meßwerten gilt tn = t n ′+t o .
Figure imgb0003
Dabei enthält die Zeit tn′ jeweils die Information über den n-ten Meßwert.So that such measured values are measurable and transferable, which can vary from zero to a maximum value, the times t 1 and t 2 (generally t n ) consist of a measured value-independent constant time t o plus a measured value-dependent variable time t 1 ′ or t 2 ′ (general t n ′). So is: t₁ = t O + t₁ ′
Figure imgb0001
and t₂ = t O + t₂ ′.
Figure imgb0002

The following applies to any number of measured values to be transmitted tn = t n ′ + T O .
Figure imgb0003
The time t n 'contains the information about the nth measured value.

Im vorliegenden Fall ergibt sich die Festzeit to dadurch, daß die Kapazitäten der Sensoren 1 und 2 bereits einen endlichen Wert haben, wenn die Meßgrößen m1 und/oder m2 den Wert Null aufweisen.In the present case, the fixed time t o results from the fact that the capacitances of sensors 1 and 2 already have a finite value if the measured variables m1 and / or m2 have the value zero.

Die Dioden D1,D2 und D3 unterdrücken negative Signale, so daß am Steueranschluß des elektronischen Schalters 9 ein Spannungssummensignal gemäß g nach Figur 2 anliegt, welches aus der Summe der nadelförmigen Signale d, e und f besteht. Beim Vorhandensein dieser nadelförmigen Signale wird die Lichtquelle über den Schalter 9 an die Gleichspannung U gelegt. Infolgedessen bildet die Lichtquelle 10 optische Nadelsignale 3, welche die zeitliche Folge der Signale g nach Figur 2 aufweisen. Der Kondensator C2, der sich über den Ladewiderstand R2 vorher aufgeladen hatte, wird sehr schnell über die Lichtquelle entladen.The diodes D1, D2 and D3 suppress negative signals, so that a voltage sum signal according to g according to FIG. 2 is present at the control connection of the electronic switch 9, which voltage voltage consists of the sum of the needle-shaped signals d, e and f. In the presence of these needle-shaped signals, the light source is connected to the DC voltage U via the switch 9. As a result, the light source 10 forms optical needle signals 3, which have the chronological sequence of the signals g according to FIG. 2. The capacitor C2, which had previously been charged via the charging resistor R2, is discharged very quickly via the light source.

Der dabei auftretende kurzzeitige aber hohe Stromfluß durch die Lichtquelle erzeugt dann einen optischen Impuls. Während der langen Pausenzeiten zwischen zwei aufeinanderfolgenden Impulsen kann sich C2 dann wieder über R 2 aufladen. Der mittlere Stromverbrauch ist gering, weil die Lichtquelle nur kurzzeitig angeschlossen ist. Der für die Erzeugung hoher optischer Impulse benötigte Spitzenstrom wird dabei zur Verringerung der Belastung der Spannungsquelle dem Kondensator C2 entnommen.The short-term but high current flow through the light source then generates an optical pulse. During the long pause between two successive pulses, C2 can then recharge via R 2. The average power consumption is low because the light source is only connected for a short time. The peak current required to generate high optical pulses is taken from capacitor C2 to reduce the load on the voltage source.

Während die Lichtquelle von der ungeregelten Spannung einer Lithium-Batterie betrieben wird, ist zur Stromversorgung der Stufen 4 bis 8 eine durch eine nicht dargestellte Schaltung konstant geregelte Spannung Uo erforderlich. Insgesamt wird für die Stromversorgung der gesamten Sendeeinrichtung nur ein mittlerer Strom von etwa 30 uA benötigt.While the light source is operated by the unregulated voltage of a lithium battery, a voltage Uo which is constantly regulated by a circuit, not shown, is required for the power supply of stages 4 to 8. Overall, only an average current of about 30 uA is required to power the entire transmitter.

Die gemäß g nach Figur 2 verlaufenden optischen Puls-Signale 3 werden auf die Photodiode 11 der in Figur 3 dargestellten Empfangseinrichtung geleitet, welche aus dem Photoverstärker 12 und einer Dekodiereinheit 13 besteht und schließlich Signale o und p (Figur 4) liefert, welche den ursprünglichen Signale a und b nach Figur 2 entsprechen. Die Ausgangssignale o und p werden gemeinsam mit Zwischensignalen k und l einer nicht dargestellten Auswerteschaltung zugeführt, an deren Ausgang dann beispielsweise eine der Differenz der Meßwerte (m1-m2) proportionale Gleichspannung abgegeben wird. Eine solche Auswerteschaltung kann in dem Fachmann bekannter Weise aufgebaut sein, beispielsweise in der Weise, wie es in der älteren Anmeldung P 35 28 416.1 beschrieben ist. Auf diese Weise kann beispielsweise eine Druckdifferenz eines Differenzdrucksensors direkt abgelesen werden.The optical pulse signals 3, which run according to g in FIG. 2, are passed to the photodiode 11 of the receiving device shown in FIG Signals a and b correspond to Figure 2. The output signals o and p are fed together with intermediate signals k and l to an evaluation circuit (not shown), at whose output a DC voltage proportional to the difference between the measured values (m1-m2) is then output. Such an evaluation circuit can be constructed in a manner known to those skilled in the art, for example in the manner described in the earlier application P 35 28 416.1. In this way, for example, a pressure difference of a differential pressure sensor can be read directly.

Der Photodiode 11 des Photoverstärkers 12 ist ein Strom-Spannungswandler nachgeschaltet. Die Photodiode 11 erzeugt aus dem optischen Signal einen elektrischen Strom, der dann am Ausgang des Operationsverstärkers OP1 als Spannungssignal erscheint. Mit dem Operationsverstärker OP2 wird dieses Signal h nochmals verstärkt. Darüberhinaus wird in dieser Stufe das Gleichsignal mit dem Kondensator C3 abgetrennt, damit der Dunkelstrom der Photodiode 11 und Offsetströme des Operationsverstärkers OP1 keinen Einfluß haben. Mit der Zenerdiode D4 wird das Signal begrenzt, damit keine Übersteuerung vorkommen kann. Der Komparator K erzeugt dann ein TTL-kompatibles Pulssignal i (vergl. Figur 4). Mit den Widerständen R3 und R4 wird eine Referenzspannung erzeugt. Der Komparator K schaltet um, wenn das Eingangssignal größer als das Referenzsignal ist. Damit werden im Signal h enthaltene Störsignale unterdrückt, die kleiner als das Referenzsignal sind.The photodiode 11 of the photo amplifier 12 is followed by a current-voltage converter. The photodiode 11 generates an electrical current from the optical signal, which then appears as a voltage signal at the output of the operational amplifier OP1. This signal h is amplified again with the operational amplifier OP2. In addition, the DC signal is separated in this stage with the capacitor C3 so that the dark current of the photodiode 11 and offset currents of the operational amplifier OP1 have no influence. The signal is limited with the Zener diode D4 so that no overdrive can occur. The comparator K then generates a TTL-compatible pulse signal i (see FIG. 4). A reference voltage is generated with the resistors R3 and R4. The comparator K switches when the input signal is larger than the reference signal. Interference signals contained in the signal h which are smaller than the reference signal are thus suppressed.

Das nadelimpulsförmige Ausgangssignal des Komparators K durchläuft nun die Dekodierschaltung 13. Dort wird aus den Nadelimpulsen das rechteckförmige Ursprungssignal regeneriert. Das Impulsdiagramm dieser Stufe zeigt Figur 4. Das monostabile Flip-Flop reagiert auf die abfallende Flanke der Nadelimpulse i des Komparators K. Die Pulszeit tm des monostabilen Flip-Flops MFF muß größer als die Zeit tk und kleiner als die Zeit t₂ sein. Das nichtinvertierte Ausgangssignal des monostabilen Flip-Flops MFF gelangt an das Gatter U1, an dem auch das Nadelimpulssignal anliegt. Das Gatter U1 sorgt dann dafür, daß jeweils nur der Zusatzpuls des Nadelimpulssignals weitergegeben wird. Dieses Signal gelangt dann an den Reset-Eingang des D-Flip-Flops DFF. Das invertierte Ausgangssignal des monostabilen Flip-Flops MFF gelangt an das Gatter U2. An dessen Ausgang erscheint das Nadelimpulssignal ohne den Zusatzpuls. Diese Signal wird nun auf den "Clock"-Eingang des D-Flip-Flops gegeben, das als bistabile Kippstufe arbeitet, also mit jedem Nadelimpuls umspringt. Am Ausgang Q des D-Flip-Flops erscheint dann ein Rechtecksignal, wobei die Pulszeit bei High-Pegel entsprechend der Pulszeit t₁ und damit der Sensorkapazität C1 und die Pulszeit bei Low-Pegel entsprechend C2 zugeordnet werden kann. Die einwandfreie Zuordnung erfolgt mit dem Zusatzpuls, der mit dem Gatter U1 ausgetastet wurde und am Reset-Eingang des D-Flip-Flops D-FF liegt.Dieser in der Zeit t₂ erscheinende Impuls erzwingt ein Rücksetzen des D-Flip-Flops, so daß am Ausgang Q während dieser Zeit ein Low-Pegel erscheint.The needle pulse-shaped output signal of the comparator K now passes through the decoding circuit 13. There, the rectangular original signal is regenerated from the needle pulses. The pulse diagram of this stage is shown in FIG. 4. The monostable flip-flop reacts to the falling edge of the needle pulses i of the comparator K. The pulse time t m of the monostable flip-flop MFF must be greater than the time t k and less than the time t 2. The non-inverted output signal of the monostable flip-flop MFF reaches the gate U1, to which the needle pulse signal is also present. The gate U1 then ensures that only the additional pulse of the needle pulse signal is passed on. This signal then reaches the reset input of the D flip-flop DFF. The inverted output signal of the monostable flip-flop MFF reaches the gate U2. At its output the needle pulse signal appears without the additional pulse. This signal is now sent to the "clock" input of the D flip-flop, which works as a bistable flip-flop, which means that it jumps with every needle pulse. A square-wave signal then appears at the output Q of the D flip-flop, the pulse time being high corresponding to the pulse time t 1 and thus the sensor capacitance C1 and the pulse time at low level corresponding to C2. The correct assignment takes place with the additional pulse, which was blanked with the gate U1 and is at the reset input of the D flip-flop D-FF. This pulse appearing in time t 2 forces a reset of the D flip flop, so that a low level appears at output Q during this time.

Die Erfindung wurde der einfacheren Darstellbarkeit wegen anhand der Beschreibung einer Übertragung von nur zwei Meßwerten erläutert. Ein vorteilhaftes Anwendungsbeispiel ist die Druckdifferenzmessung. Dabei ist es zur Einsparung von senderseitig benötigter Energie vorteilhaft, nicht den Wert der Druckdifferenz direkt zu übertragen, sondern die Einzeldruckwerte. Dann kann der Energieaufwand zur elektronischen Wandlung und Auswertung der Druckwerte zum Druckdifferenzwert empfangsseitig geliefert werden. Die dargestellten Schaltungen können in dem Fachmann geläufiger Weise abgewandelt werden, um mehr als zwei Meßwerte übertragen zu können, wobei auch dann nur ein Kennungsimpuls benötigt wird.The invention was explained on the basis of the description of a transmission of only two measured values for simplicity of illustration. An advantageous application example is the pressure difference measurement. In order to save the energy required by the transmitter, it is advantageous not to transmit the value of the pressure difference directly, but rather the individual pressure values. Then the energy expenditure for electronic conversion and evaluation of the pressure values for the pressure difference value can be delivered at the receiving end. The circuits shown can be modified in a manner familiar to the person skilled in the art in order to be able to transmit more than two measured values, even then only one identification pulse being required.

Claims (7)

  1. A method of transmitting measurement values from at least two sensors by means of light pulses which are applied from an optical transmitter, via an optical transmission path, to an optical receiver and whose distance in time is evaluated as a measure for the measurement value, characterized in that the measurement values (m₁, m₂) are transmitted each time in the same order of succession, directly cyclically following each other, in that per measurement value an optical measuring pulse is transmitted whose distance in time (t₁, t₂) from an optical measuring pulse associated with a preceding measurement value is a measure for the magnitude of the measurement value, and in that for each cycle of measurement values an identification pulse is transmitted whose distance in time (tk) from an optical measuring pulse associated with a preceding measurement value is smaller than the smallest possible distance in time between two successive optical measuring pulses.
  2. A method as claimed in Claim 1, characterized in that two successively transmitted optical measuring pulses are transmitted with a distance in time t0 + tn', the constant time t0 being longer than tk and the time tn' being dependent on the measurement value.
  3. A method as claimed in Claim 1 or 2, characterized in that the transmission path is constituted by a single optical conductor (LWG), at the beginning of which a fight source, notably a semiconductor laser diode (10), couples in the measuring pulses and the identification pulse for supply to a photodetector (11).
  4. A method as claimed in any one of the Claims 1 to 3, characterized in that the original measurement values (m₁, m₂) are converted into electric squarewave signals (a, b) whose duration (t₁, t₂) is dependent on the magnitude of the measurement values in a predetermined manner, in that the termination of each squarewave signal (a and b respectively) initiates the beginning of the squarewave signal (a and b respectively) of the next measurement value measured and in that an identification signal (c, f) is generated with a constant delay tk with respect to the beginning of the squarewave signal (b) associated with a predetermined measuring signal (m₂).
  5. A method as claimed in Claim 4, characterized in that the squarewave signals (a,b,c) are converted into needle pulses (d,e,f) by differentiating stages (5,6,7).
  6. A method as claimed in Claim 5, characterized in that the needle pulses (d,e,f,) are applied, via a common conductor, to a driver stage (9) of an LED or of semiconductor diode (10).
  7. A method as claimed in any one of Claims 1 to 6, characterized in that the electrical output signals in the form of needle-shaped pulses of the optical receiver (12) are converted by means of a multivibrator stage (MFF) possibly after amplification, into square-wave pulses whose duration tm is longer than the delay tk and shorter than the difference between a shortest possible measuring time t₁ or t₂ and the delay tk, in that these squarewave pulses (k) are applied to a first input of a first AND-gate (U₁) whereas the other input of the first AND-gate receives the input signal (i) of the multivibrator stage (MFF), so that signals (m) having the same phase as the identification pulses (f) appear at the output of the first AND-gate (U₁) and in that the inverted output signal (1) and the input signal (i) of the multivibrator stage (MFF) are applied to a second AND-gate (U₂) at the output of which successive needle signals (n) appear in conformity with the distance in time between the measuring pulses.
EP87200161A 1986-02-07 1987-02-03 Method for transmitting measuring signals of at least two sensors via an opticaltransmission link Expired - Lifetime EP0231980B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3603800 1986-02-07
DE19863603800 DE3603800A1 (en) 1986-02-07 1986-02-07 METHOD FOR TRANSMITTING AT LEAST TWO MEASURED VALUES ON AN OPTICAL TRANSMISSION RANGE

Publications (3)

Publication Number Publication Date
EP0231980A2 EP0231980A2 (en) 1987-08-12
EP0231980A3 EP0231980A3 (en) 1989-08-02
EP0231980B1 true EP0231980B1 (en) 1993-10-13

Family

ID=6293592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87200161A Expired - Lifetime EP0231980B1 (en) 1986-02-07 1987-02-03 Method for transmitting measuring signals of at least two sensors via an opticaltransmission link

Country Status (4)

Country Link
US (1) US4864648A (en)
EP (1) EP0231980B1 (en)
JP (1) JPS62186398A (en)
DE (2) DE3603800A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937572A1 (en) * 1989-11-11 1991-05-16 Hartmann & Laemmle Elektronisc CNC measurement signal transmitter - uses fibre=optic link to distant processing unit, where signal contains information about value and direction changes
DE4215167A1 (en) * 1992-05-08 1993-11-11 Bayerische Motoren Werke Ag Fibre optical arrangement for motor vehicle - uses reflex signals to identify stations and carry state parameter values
US5460182A (en) * 1992-09-14 1995-10-24 Sextant Medical Corporation Tissue penetrating apparatus and methods
US5762609A (en) * 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
US5772597A (en) * 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
JP3320996B2 (en) * 1996-11-26 2002-09-03 株式会社東芝 WDM optical transmission equipment
FI115677B (en) 2003-12-19 2005-06-15 Suunto Oy wrist Computer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643949C3 (en) * 1976-09-29 1981-06-19 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for the pulsed transmission of analog voltage values of both polarities
DE3138074A1 (en) * 1981-09-24 1983-04-14 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR TRANSMITTING MEASURED VALUES TO A REMOTE SITE
DE3138073A1 (en) * 1981-09-24 1983-04-14 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR TRANSMITTING MEASURED VALUES TO A REMOTE SITE
JPS58154097A (en) * 1982-03-08 1983-09-13 横河電機株式会社 Optical transmission system
US4513403A (en) * 1982-08-04 1985-04-23 Exploration Logging, Inc. Data encoding and synchronization for pulse telemetry
US4694504A (en) * 1985-06-03 1987-09-15 Itt Electro Optical Products, A Division Of Itt Corporation Synchronous, asynchronous, and data rate transparent fiber optic communications link
DE3528416C2 (en) * 1985-08-08 1996-04-18 Envec Mess Und Regeltechn Gmbh Evaluation circuit for a capacitive sensor

Also Published As

Publication number Publication date
DE3603800A1 (en) 1987-08-13
EP0231980A2 (en) 1987-08-12
JPS62186398A (en) 1987-08-14
DE3787735D1 (en) 1993-11-18
US4864648A (en) 1989-09-05
EP0231980A3 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
DE69004597T2 (en) Accelerometer with pulse drive.
DE3507997A1 (en) FIRE DETECTOR
EP0238856B1 (en) Process and device to measure the fluorescence decay time of a fluorescent substance
EP0503272B1 (en) Circuit arrangement for measuring the capacitance ratio of two capacitors
DE3424052C2 (en)
EP0231980B1 (en) Method for transmitting measuring signals of at least two sensors via an opticaltransmission link
DE3419117A1 (en) OPTOELECTRICAL DISTANCE MEASURING DEVICE WITH A TIME DISCRIMINATOR FOR ACCURATE DETERMINATION OF THE TIMING OF ELECTRICAL IMPULSES
DE2221371B2 (en) Device for the wireless transmission of a measured value from a transducer to an evaluation circuit
EP0323871A2 (en) Voltage to frequency converter and its application in a fibre optic transmission system
DE2932990A1 (en) METHOD AND CIRCUIT FOR CONTROLLING A DEVICE THAT GIVES A SIGNAL OR RADIATION
EP0244883B1 (en) Method for data acquisition over an optical transmission line using optical sensors
DE102009046691B4 (en) sensor device
EP0272750A2 (en) Transmission arrangement for the measured values of a sensor
DE69019891T2 (en) Optical transformer.
DE3243074A1 (en) OPTICAL SENSOR
DE3443600C2 (en)
EP0091546B1 (en) Method and device for the optical transmission of electrical signals with positive and negative voltage values
DE2848097A1 (en) VEHICLE DETECTION SYSTEM
EP0343403B1 (en) Circuit for the self-excitation of a mechanical oscillation system to its characteristic resonant frequency
EP0124898A2 (en) Device for determining the duration of ultrasonic pulses in a fluid
DE3614850A1 (en) METHOD FOR DETERMINING THE DISTANCE OF AN OBJECT, AND CIRCUIT ARRANGEMENT FOR IMPLEMENTING THE METHOD
DE2643949C3 (en) Circuit arrangement for the pulsed transmission of analog voltage values of both polarities
DE69003157T2 (en) Fiber optic gyroscope.
DE3244010A1 (en) Device for measuring rotational speed
EP0986801B1 (en) Control and/or monitoring apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19900130

RTI1 Title (correction)
17Q First examination report despatched

Effective date: 19920901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3787735

Country of ref document: DE

Date of ref document: 19931118

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENVEC MESS- UND REGELTECHNIK GMBH + CO.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940120

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950413

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960125

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST