EP0343403B1 - Circuit for the self-excitation of a mechanical oscillation system to its characteristic resonant frequency - Google Patents

Circuit for the self-excitation of a mechanical oscillation system to its characteristic resonant frequency Download PDF

Info

Publication number
EP0343403B1
EP0343403B1 EP89107994A EP89107994A EP0343403B1 EP 0343403 B1 EP0343403 B1 EP 0343403B1 EP 89107994 A EP89107994 A EP 89107994A EP 89107994 A EP89107994 A EP 89107994A EP 0343403 B1 EP0343403 B1 EP 0343403B1
Authority
EP
European Patent Office
Prior art keywords
circuit
amplifier
voltage
input
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89107994A
Other languages
German (de)
French (fr)
Other versions
EP0343403A1 (en
Inventor
Martin Pfändler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP0343403A1 publication Critical patent/EP0343403A1/en
Application granted granted Critical
Publication of EP0343403B1 publication Critical patent/EP0343403B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0261Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken from a transducer or electrode connected to the driving transducer

Definitions

  • the invention relates to a circuit arrangement for self-excitation of natural resonance vibrations of the mechanical vibration system of a level sensor with an electromechanical transducer system, which is arranged in the feedback circuit of an electronic amplifier circuit, so that it is excited by the output AC voltage of the amplifier circuit to mechanical vibrations and an AC voltage to the input of the amplifier circuit Provides frequency of mechanical vibrations, wherein the amplifier circuit contains an operational amplifier with a non-linear gain characteristic, which results in a greater gain with small values of the input signal than with larger values of the input signal.
  • a circuit arrangement of this type is known from EP-A-240 360.
  • the nonlinear gain characteristic solves a problem that occurs in particular in mechanical vibration systems of level sensors.
  • the reaching of a predetermined level in a container with the aid of a mechanical oscillation system excited to natural resonance vibrations takes advantage of the fact that the vibrations cease when the sensor is immersed in the product due to the strong damping, while the re-insertion of the vibrations indicates that the level falls below the installation height of the sensor has fallen. If the sensor in the process container is exposed to high temperatures in such an application, the transmission factor of the sensor can change so much that it can no longer oscillate, which leads to an incorrect display of the fill level. In the same way, fillings (e.g.
  • lime, flour that tend to build up have a strong effect: If the buildup is strong, the sensor can no longer swing, so that it is incorrectly displayed that the sensor is covered, although in reality it is not immersed in the filling and is only covered with neck. If the gain of the amplifier circuit is increased to avoid this problem, the external vibration sensitivity becomes too great. This means that if the sensor is covered, vibrations on the container, which are caused, for example, by vibrators or flowing material, can cause output voltages from the amplifier circuit, which pretend that the sensor is not covered and is carrying out natural resonance vibrations, in which case the level is incorrectly displayed.
  • the nonlinear gain characteristic ensures safe start-up even under unfavorable operating conditions and reduces the risk of incorrect displays of the vibration state without the external vibration sensitivity becoming too great.
  • the feedback circuit of the operational amplifier contains a non-linear resistor with a positive temperature coefficient in series with a series resonant circuit formed from an inductance and a capacitance.
  • the nonlinear amplifier characteristic curve arises from the fact that the nonlinear resistance has a smaller one when the vibrations begin Has resistance value than in the stationary vibration state.
  • this circuit arrangement is complex, and it contains circuit elements which are not used with the usual semiconductor circuit technology.
  • diode function generators which are formed by an operational amplifier with a feedback resistor that varies depending on the signal amplitude.
  • the feedback circuit has a plurality of parallel branches, each of which contains a resistor in series with a diode.
  • the resistance values are graded in such a way that the diodes become conductive when the input signal has different values and then switch on the series resistance in parallel in the feedback branch. This results in a functional characteristic in the form of a broken line. However, this effect only occurs for one of the two current directions, because all diodes are blocked for the other current direction.
  • this AC voltage In order to change an AC voltage according to the functional characteristic, this AC voltage must be set on one side to the reference potential, so that it changes only on one side.
  • This known circuit arrangement is therefore not suitable for the self-excitation of natural resonance vibrations of the mechanical vibration system of a level sensor by means of an alternating voltage that is symmetrical with respect to the reference potential.
  • the object of the invention is to provide a circuit arrangement of the type specified in the introduction, which contains only circuit elements of conventional semiconductor circuit technology and which enables self-excitation of natural resonance vibrations of the mechanical vibration system of a level sensor by means of an alternating voltage which is symmetrical with respect to the reference potential.
  • this object is achieved in that the feedback circuit of the operational amplifier contains two resistors connected in series and that one of the two resistors has two semiconductor diodes connected in parallel in opposite directions.
  • a second embodiment of the invention is that the inverting input of the operational amplifier is connected to ground through a circuit branch which contains a field effect transistor, and that the current path resistance of the field effect transistor is variable by a control voltage applied to its gate electrode, which is different from the output voltage of the operational amplifier depends.
  • FIG. 1 shows, as an example of a mechanical vibration system that is to be excited to vibrate at the natural resonance frequency, a fill level sensor 10 with two vibrating bars 12, 14.
  • the vibrating bars are set into flexural-phase bending vibrations, which are so strongly damped when the bars are immersed in the product that the vibrations cease, whereby it can be determined that the filling material has reached a predetermined filling level, while conversely the re-insertion of the vibrations indicates that the filling level has again fallen below the level to be monitored.
  • the vibrating rods 12, 14 are each fastened at one end to a membrane 16 which is clamped at the edge in a holder 18.
  • an electromechanical transducer system 20 is connected to the membrane 16, which has a transmitter transducer 22 and a receiver transducer 24.
  • the transmitter converter 22 is connected to the output of an amplifier circuit 30 and is designed such that it converts an electrical alternating voltage (or an electrical alternating current) supplied by the amplifier circuit 30 into a mechanical oscillation which acts on the membrane 16 and on the oscillating rods 12, 14 is transmitted.
  • the reception converter 24 is connected to the input of the amplifier circuit 30 and is designed such that it converts the mechanical oscillation of the oscillation system 10 into an electrical alternating voltage of the same frequency.
  • This AC input voltage is amplified by the amplifier circuit, and the amplified AC output voltage of the same frequency thus obtained is applied to the transmitter converter 22.
  • the electromechanical transducers 22, 24 can be of any type known per se, for example electromagnetic or electrodynamic transducers with coils, magnetostrictive transducers, piezoelectric transducers or the like. In the described embodiment, it is assumed that it is a piezoelectric transducer which contains, in a known manner, a piezo crystal arranged between two electrodes, which undergoes a change in shape when an electrical voltage is applied to the two electrodes, and vice versa in the case of a mechanically forced one Shape change creates an electrical voltage between the two electrodes.
  • the transmitter converter 22 and the receiver converter 24 can therefore be of the same type.
  • the amplifier circuit 30 contains an input amplifier 32, the input terminals of which are connected to the two electrodes of the receiving transducer 24, a bandpass filter 34 connected to the output of the input amplifier 32, and a power amplifier 36, the output electrodes of which are connected to the two electrodes of the transmitter transducer 22.
  • the bandpass filter 34 is tuned to the natural resonance frequency of the electromechanical oscillation system 10 to be excited, so that the electrical AC voltage is selectively amplified with this frequency. This can be the frequency of the fundamental oscillation or the frequency of a harmonic of the natural resonance of the mechanical oscillation system 10.
  • the peculiarity of the amplifier circuit 30 is that its gain characteristic, depending on the size of the input signal, is so non-linear that the amplification is greater for small amplitudes of the input signal than for large amplitudes.
  • this non-linear gain characteristic of the amplifier circuit 30 is achieved in that the input amplifier 32 is designed with a non-linear gain.
  • Fig. 2 shows an embodiment of the input amplifier 32, which gives the desired non-linear gain characteristic with particularly simple means.
  • the input amplifier 32 is designed as a differential amplifier with an operational amplifier 40.
  • the two inputs of the operational amplifier 40 are connected via identical resistors 41, 42 of the resistance value R 1 to the two electrodes of the receiving transducer 24, so that the voltage between these electrodes forms the input voltage U e of the differential amplifier.
  • In the leading from the output to the inverting input feedback branch of the operational amplifier 40 are two resistors 43, 44 with the resistance values R2 and R3 in series, and two further resistors 45, 46 with the same resistance values R2 and R3 are in series between the non-inverting input of the operational amplifier 40 and ground connected.
  • Two semiconductor diodes 47, 48 are connected in parallel in opposite directions to resistor 44, and in a corresponding manner two further semiconductor diodes 49, 50 are connected in parallel in opposite directions to resistor 46.
  • the differential amplifier shown in FIG. 2 has the following mode of operation: If the mechanical oscillation system 10 is at rest when the device is switched on, the receiving transducer 24 initially only emits very small voltages which are caused by slight external vibrations, thermal noise and similar interference effects. These small voltages are amplified by the differential input amplifier 32. As long as the resulting output voltage U a of the differential input amplifier is so small that the voltage drops across the resistors 44 and 46 are smaller than the forward voltage of the semiconductor diodes 47, 48, 49, 50 (which is about 0.6 V for silicon diodes ), the semiconductor diodes block in both directions and the resistors 44 and 46 are fully effective.
  • the gain factor V of the differential input amplifier is 32 Those components of the output voltage U a whose frequencies are in the pass band of the bandpass filter 34 reach the final amplifier 36, from which they are further amplified with linear amplification.
  • the signal components amplified in this way are converted by the transducer 22 into mechanical vibrations, which excite the mechanical vibration system 10 to produce a natural resonance vibration.
  • This natural resonance oscillation is converted by the receiving converter 24 into an electrical AC voltage, which is fed to the input of the differential input amplifier 32 and is amplified by it in the manner described above. In this way, the vibrations of the mechanical vibration system 10 rock up.
  • the output voltage U a is determined by the constant gain factor V 1, so that it is proportional to the input voltage U e with a relatively high steepness is.
  • the amplifier circuit 30 has a high input sensitivity, so that a reliable start-up is ensured even with weak interference effects and with temperature-related changes in the transmission factor and with build-ups on the oscillating rods 12, 14.
  • the output voltage U a reaches a value U a1 due to the amplification with the amplification factor V1, which is equal to the forward voltage of the semiconductor diodes 47, 48, 49, 50.
  • the gain factor V therefore has the smaller value V2, so that the output voltage U a rises less steeply as a function of the input voltage U e .
  • the input sensitivity of the amplifier circuit is therefore reduced, so that voltages which are generated by interference vibrations cannot reach values which simulate a resonant vibration of the mechanical vibration system 10.
  • Fig. 4 shows another embodiment of the input amplifier 32, which also gives the desired non-linear gain characteristic.
  • the Input amplifier 32 from two amplifier stages.
  • the first amplifier stage corresponds to the input amplifier of FIG. 2 with the only difference that the resistors 44 and 46 with the semiconductor diodes 47, 48 and 49, 50 connected in parallel in opposite directions are omitted.
  • the remaining components of this amplifier stage which correspond to those of the input amplifier of FIG. 2, are designated by the same reference numerals as in FIG. 2.
  • the two electrodes of the receiving transducer 24 are connected via the same resistors 41, 42 of the resistance value R 1 to the two inputs of the operational amplifier 40, so that the voltage between these electrodes forms the input voltage U e of the differential amplifier.
  • the second amplifier stage contains an operational amplifier 60, the non-inverting input of which is connected to the output of the first amplifier stage, so that the output voltage U a 'of the first amplifier stage forms the input voltage of the second amplifier stage, the output voltage U a of which also represents the output voltage of the input amplifier 32.
  • a resistor 61 with the resistance value R4.
  • a circuit branch which contains a resistor 62 with the resistance value R5 in series with the current path of a field effect transistor 63.
  • the resistance R FET of the field effect transistor 63 depends on the control voltage applied to its gate electrode.
  • This control voltage is obtained from the output voltage U a by rectification by means of a rectifier circuit which contains two semiconductor diodes 64, 65 and a smoothing circuit with a capacitor 66 in parallel with a resistor 67.
  • the current path resistance R FET of the field effect transistor 63 is dependent on the amplitude of the output voltage U a .
  • the relationships between the amplification factors V I , V II , V G and the voltages U e , U a ', U a are shown in the diagrams in FIG. 5.
  • the diagram A shows the voltage-dependent course of the gain factor V I and the diagram B shows the relationship between the input voltage U e and the output voltage U a 'of the first amplifier stage.
  • the gain factor V 1 is constant, so that the voltage U a ' is proportional to the input voltage U e .
  • the diagrams C and D show the conditions for the second amplifier stage in a corresponding manner. Up to a value U a1 'of the voltage U a' has the amplification factor V II a relatively large constant value V II1, so that the output voltage U a of the voltage U a 'with a relatively large slope is proportional.
  • diagram E shows the total amplification factor V G of the input amplifier 32, which results from the product of the two amplification factors V I and V II
  • diagram F shows the corresponding relationship between the Input voltage U e and the output voltage U a .
  • diagram F of FIG. 5 is very similar to diagram B of FIG. 3.
  • the input amplifier has a large amplification factor and therefore a high input sensitivity for small values of the input voltage U e , while the amplification factor is smaller for higher values of the input voltage and consequently the input sensitivity is reduced.
  • the embodiment of FIG. 4 therefore gives the same advantageous effects as were previously explained for the embodiment of FIG. 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Amplifiers (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Selbsterregung von Eigenresonanzschwingungen des mechanischen Schwingsystems eines Füllstandssensors mit einem elektromechanischen Wandlersystem, das im Rückkopplungskreis einer elektronischen Verstärkerschaltung angeordnet ist, so daß es durch die Ausgangswechselspannung der Verstärkerschaltung zu mechanischen Schwingungen angeregt wird und zum Eingang der Verstärkerschaltung eine Wechselspannung mit der Frequenz der mechanischen Schwingungen liefert, wobei die Verstärkerschaltung einen Operationsverstärker mit nichtlinearer Verstärkungskennlinie enthält, die bei kleinen Werten des Eingangssignals eine größere Verstärkung als bei größeren Werten des Eingangssignals ergibt.The invention relates to a circuit arrangement for self-excitation of natural resonance vibrations of the mechanical vibration system of a level sensor with an electromechanical transducer system, which is arranged in the feedback circuit of an electronic amplifier circuit, so that it is excited by the output AC voltage of the amplifier circuit to mechanical vibrations and an AC voltage to the input of the amplifier circuit Provides frequency of mechanical vibrations, wherein the amplifier circuit contains an operational amplifier with a non-linear gain characteristic, which results in a greater gain with small values of the input signal than with larger values of the input signal.

Eine Schaltungsanordnung dieser Art ist aus der EP-A-240 360 bekannt. Durch die nichtlineare Verstärkungskennlinie wird ein Problem gelöst, das insbesondere bei mechanischen Schwingsystemen von Füllstandssensoren auftritt. Zur Feststellung des Erreichens eines vorbestimmten Füllstands in einem Behälter mit Hilfe eines zu Eigenresonanzschwingungen angeregten mechanischen Schwingsystems wird die Tatsache ausgenutzt, daß die Schwingungen beim Eintauchen des Sensors in das Füllgut infolge der starken Dämpfung aussetzen, während das Wiedereinsetzen der Schwingungen anzeigt, daß der Füllstand unter die Einbauhöhe des Sensors gefallen ist. Wird bei einer solchen Anwendung der Sensor im Prozeßbehälter hohen Temperaturen ausgesetzt, so kann sich dadurch der Übertragungsfaktor des Sensors so stark ändern, daß er nicht mehr anschwingen kann, wodurch es zu einer Fehlanzeige des Füllstands kommt. In gleicher Weise wirken sich stark zur Ansatzbildung neigende Füllgüter (z.B. Kalk, Mehl) aus: Bei starker Ansatzbildung kann der Sensor nicht mehr anschwingen, so daß fälschlich angezeigt wird, daß der Sensor bedeckt ist, obwohl er in Wirklichkeit nicht in das Füllgut eintaucht und nur mit Ansatz bedeckt ist. Wenn zur Vermeidung dieses Problems die Verstärkung der Verstärkerschaltung erhöht wird, wird die Fremdvibrationsempfindlichkeit zu groß. Dies bedeutet, daß bei bedecktem Sensor Vibrationen am Behälter, die beispielsweise durch Rüttler oder vorbeiströmendes Füllgut verursacht werden, Ausgangsspannungen der Verstärkerschaltung verursachen können, die vortäuschen, daß der Sensor nicht bedeckt ist und Eigenresonanzschwingungen ausführt, wobei dann fälschlicherweise ein zu niedriger Füllstand angezeigt wird. Durch die nichtlineare Verstärkungskennlinie wird ein sicheres Anschwingen auch unter ungünstigen Betriebsbedingungen gewährleistet und die Gefahr von Fehlanzeigen des Schwingungszustands verringert, ohne daß die Fremdvibrationsempfindlichkeit zu groß wird.A circuit arrangement of this type is known from EP-A-240 360. The nonlinear gain characteristic solves a problem that occurs in particular in mechanical vibration systems of level sensors. To make a statement the reaching of a predetermined level in a container with the aid of a mechanical oscillation system excited to natural resonance vibrations takes advantage of the fact that the vibrations cease when the sensor is immersed in the product due to the strong damping, while the re-insertion of the vibrations indicates that the level falls below the installation height of the sensor has fallen. If the sensor in the process container is exposed to high temperatures in such an application, the transmission factor of the sensor can change so much that it can no longer oscillate, which leads to an incorrect display of the fill level. In the same way, fillings (e.g. lime, flour) that tend to build up have a strong effect: If the buildup is strong, the sensor can no longer swing, so that it is incorrectly displayed that the sensor is covered, although in reality it is not immersed in the filling and is only covered with neck. If the gain of the amplifier circuit is increased to avoid this problem, the external vibration sensitivity becomes too great. This means that if the sensor is covered, vibrations on the container, which are caused, for example, by vibrators or flowing material, can cause output voltages from the amplifier circuit, which pretend that the sensor is not covered and is carrying out natural resonance vibrations, in which case the level is incorrectly displayed. The nonlinear gain characteristic ensures safe start-up even under unfavorable operating conditions and reduces the risk of incorrect displays of the vibration state without the external vibration sensitivity becoming too great.

Bei der aus der EP-A-240 360 bekannten Schaltungsanordnung enthält der Rückkopplungskreis des Operationsverstärkers einen nichtlinearen Widerstand mit positivem Temperaturkoeffizient in Reihe mit einem aus einer Induktivität und einer Kapazität gebildeten Serienschwingkreis. Die nichtlineare Verstärkerkennlinie entsteht dadurch, daß der nichtlineare Widerstand beim Einsetzen der Schwingungen einen kleineren Widerstandswert als im stationären Schwingungszustand hat. Da außerdem das mechanische Schwingungsgebilde in einer kapazitiven Brücke liegt, die über eine zweite Induktivität an den Ausgang des Operationsverstärkers angekoppelt ist, ist diese Schaltungsanordnung aufwendig, und sie enthält Schaltungselemente, die in der üblichen Halbleiterschaltungstechnik ungern verwendet werden.In the circuit arrangement known from EP-A-240 360, the feedback circuit of the operational amplifier contains a non-linear resistor with a positive temperature coefficient in series with a series resonant circuit formed from an inductance and a capacitance. The nonlinear amplifier characteristic curve arises from the fact that the nonlinear resistance has a smaller one when the vibrations begin Has resistance value than in the stationary vibration state. In addition, since the mechanical oscillation structure lies in a capacitive bridge, which is coupled to the output of the operational amplifier via a second inductance, this circuit arrangement is complex, and it contains circuit elements which are not used with the usual semiconductor circuit technology.

Aus der Zeitschrift "Wireless World", Band 73, Nr. 12, Dezember 1967, Seiten 594-598, sind Dioden-Funktionsgeneratoren bekannt, die durch einen Operationsverstärker mit in Abhängigkeit von der Signalamplitude veränderlichem Rückkopplungswiderstand gebildet sind. Zur Erzielung des veränderlichen Rückkopplungswiderstands weist der Rückkopplungskreis mehrere parallele Zweige auf, von denen jeder einen Widerstand in Serie mit einer Diode enthält. Die Widerstandswerte sind so abgestuft, daß die Dioden bei unterschiedlichen Werten des Eingangssignals leitend werden und dann jeweils den in Serie dazu liegenden Widerstand parallel in den Rückkopplungszweig einschalten. Dadurch ergibt sich eine Funktionskennlinie in Form eines gebrochenen Linienzugs. Diese Wirkung tritt jedoch nur für eine der beiden Stromrichtungen ein, denn für die andere Stromrichtung sind alle Dioden gesperrt. Um eine Wechselspannung gemäß der Funktionskennlinie zu verändern, muß diese Wechselspannung einseitig auf das Bezugspotential festgelegt werden, so daß sie sich nur nach einer Seite verändert. Diese bekannte Schaltungsanordnung eignet sich daher nicht für die Selbsterregung von Eigenresonanzschwingungen des mechanischen Schwingsystems eines Füllstandssensors durch eine zum Bezugspotential symmetrische Wechselspannung.From the magazine "Wireless World", volume 73, No. 12, December 1967, pages 594-598, diode function generators are known, which are formed by an operational amplifier with a feedback resistor that varies depending on the signal amplitude. In order to achieve the variable feedback resistance, the feedback circuit has a plurality of parallel branches, each of which contains a resistor in series with a diode. The resistance values are graded in such a way that the diodes become conductive when the input signal has different values and then switch on the series resistance in parallel in the feedback branch. This results in a functional characteristic in the form of a broken line. However, this effect only occurs for one of the two current directions, because all diodes are blocked for the other current direction. In order to change an AC voltage according to the functional characteristic, this AC voltage must be set on one side to the reference potential, so that it changes only on one side. This known circuit arrangement is therefore not suitable for the self-excitation of natural resonance vibrations of the mechanical vibration system of a level sensor by means of an alternating voltage that is symmetrical with respect to the reference potential.

Aufgabe der Erfindung ist die Schaffung einer Schaltungsanordnung der eingangs angegebenen Art von einfachem Aufbau, die nur Schaltungselemente der üblichen Halbleiterschaltungstechnik enthält und die Selbsterregung von Eigenresonanzschwingungen des mechanischen Schwingsystems eines Füllstandssensors durch eine zum Bezugspotential symmetrische Wechselspannung ermöglicht.The object of the invention is to provide a circuit arrangement of the type specified in the introduction, which contains only circuit elements of conventional semiconductor circuit technology and which enables self-excitation of natural resonance vibrations of the mechanical vibration system of a level sensor by means of an alternating voltage which is symmetrical with respect to the reference potential.

Gemäß einer ersten Ausführungsform der Erfindung wird diese Aufgabe dadurch gelöst, daß der Rückkopplungskreis des Operationsverstärkers zwei in Serie geschaltete Widerstände enthält, und daß einem der beiden Widerstände zwei Halbleiterdioden gegensinnig parallelgeschaltet sind.According to a first embodiment of the invention, this object is achieved in that the feedback circuit of the operational amplifier contains two resistors connected in series and that one of the two resistors has two semiconductor diodes connected in parallel in opposite directions.

Eine zweite Ausführungsform der Erfindung besteht darin, daß der invertierende Eingang des Operationsverstärkers durch einen Schaltungszweig, der einen Feldeffekttransistor enthält, mit Masse verbunden ist, und daß der Strompfadwiderstand des Feldeffekttransistors durch eine an dessen Gate-Elektrode angelegte Steuerspannung veränderlich ist, die von der Ausgangsspannung des Operationsverstärkers abhängt.A second embodiment of the invention is that the inverting input of the operational amplifier is connected to ground through a circuit branch which contains a field effect transistor, and that the current path resistance of the field effect transistor is variable by a control voltage applied to its gate electrode, which is different from the output voltage of the operational amplifier depends.

Nachfolgend werden Ausführungsbeispiele der Erfindung beschrieben, die in der Zeichnung dargestellt sind. In der Zeichnung zeigt:

Fig. 1
das Blockschaltbild einer Schaltungsanordnung zur Erregung eines mechanischen Schwingsystems zu Eigenresonanzschwingungen,
Fig. 2
das Schaltbild einer Ausführungsform des Eingangsverstärkers der Schaltungsanordnung von Fig. 1,
Fig. 3
Diagramme zur Erläuterung der Funktionsweise des Eingangsverstärkers von Fig. 2,
Fig. 4
das Schaltbild einer anderen Ausführungsform des Eingangsverstärkers von Fig. 2 und
Fig. 5
Diagramme zur Erläuterung der Funktionsweise des Eingangsverstärkers von Fig. 4.
Exemplary embodiments of the invention are described below, which are shown in the drawing. The drawing shows:
Fig. 1
the block diagram of a circuit arrangement for exciting a mechanical vibration system to natural resonance vibrations,
Fig. 2
1 shows the circuit diagram of an embodiment of the input amplifier of the circuit arrangement of FIG. 1,
Fig. 3
2 to illustrate the operation of the input amplifier of FIG. 2,
Fig. 4
the circuit diagram of another embodiment of the input amplifier of Fig. 2 and
Fig. 5
4 to illustrate the operation of the input amplifier of FIG. 4.

Fig. 1 zeigt als Beispiel für ein mechanisches Schwingsystem, das zu Schwingungen mit der Eigenresonanzfrequenz angeregt werden soll, einen Füllstandssensor 10 mit zwei Schwingstäben 12, 14. Die Schwingstäbe werden in gegenphasige Biegeschwingungen versetzt, die beim Eintauchen der Stäbe in das Füllgut so stark gedämpft werden, daß die Schwingungen aussetzen, wodurch festgestellt werden kann, daß das Füllgut einen vorbestimmten Füllstand erreicht hat, während umgekehrt das Wiedereinsetzen der Schwingungen anzeigt, daß der Füllstand wieder unter die zu überwachende Höhe gefallen ist. Die Schwingstäbe, 12, 14 sind jeweils mit einem Ende an einer Membran 16 befestigt, die am Rand in einer Halterung 18 eingespannt ist.1 shows, as an example of a mechanical vibration system that is to be excited to vibrate at the natural resonance frequency, a fill level sensor 10 with two vibrating bars 12, 14. The vibrating bars are set into flexural-phase bending vibrations, which are so strongly damped when the bars are immersed in the product that the vibrations cease, whereby it can be determined that the filling material has reached a predetermined filling level, while conversely the re-insertion of the vibrations indicates that the filling level has again fallen below the level to be monitored. The vibrating rods 12, 14 are each fastened at one end to a membrane 16 which is clamped at the edge in a holder 18.

Zur Erzeugung der Eigenresonanzschwingungen des mechanischen Schwingsystems 10 ist mit der Membran 16 ein elektromechanisches Wandlersystem 20 verbunden, daß einen Sendewandler 22 und einen Empfangswandler 24 aufweist. Der Sendewandler 22 ist an den Ausgang einer Verstärkerschaltung 30 angeschlossen und so ausgebildet, daß er eine von der Verstärkerschaltung 30 gelieferte elektrische Wechselspannung (bzw. einen elektrischen Wechselstrom) in eine mechanische Schwingung umsetzt, die auf die Membran 16 und auf die Schwingstäbe 12, 14 übertragen wird. Der Empfangswandler 24 ist mit dem Eingang der Verstärkerschaltung 30 verbunden und so ausgebildet, daß er die mechanische Schwingung des Schwingsystems 10 in eine elektrische Wechselspannung der gleichen Frequenz umsetzt. Diese Eingangswechselspannung wird von der Verstärkerschaltung verstärkt, und die dadurch erhaltene verstärkte Ausgangswechselspannung der gleichen Frequenz wird an den Sendewandler 22 angelegt. Es ist unmittelbar zu erkennen, daß das mechanische Schwingsystem auf diese Weise in einem selbsterregenden Rückkopplungskreis der Verstärkerschaltung 30 liegt, in welchem es das frequenzbestimmende Glied bildet, so daß es zu Schwingungen mit seiner Eigenresonanzfrequenz angeregt wird.In order to generate the natural resonance vibrations of the mechanical vibration system 10, an electromechanical transducer system 20 is connected to the membrane 16, which has a transmitter transducer 22 and a receiver transducer 24. The transmitter converter 22 is connected to the output of an amplifier circuit 30 and is designed such that it converts an electrical alternating voltage (or an electrical alternating current) supplied by the amplifier circuit 30 into a mechanical oscillation which acts on the membrane 16 and on the oscillating rods 12, 14 is transmitted. The reception converter 24 is connected to the input of the amplifier circuit 30 and is designed such that it converts the mechanical oscillation of the oscillation system 10 into an electrical alternating voltage of the same frequency. This AC input voltage is amplified by the amplifier circuit, and the amplified AC output voltage of the same frequency thus obtained is applied to the transmitter converter 22. It can be seen immediately that the mechanical vibration system is in this way in a self-exciting feedback circuit of the amplifier circuit 30, in which it forms the frequency-determining element, so that it is excited to oscillate at its natural resonance frequency.

Die elektromechanischen Wandler 22, 24 können von beliebiger, an sich bekannter Art sein, beispielsweise elektromagnetische oder elektrodynamische Wandler mit Spulen, magnetostriktive Wandler, piezoelektrische Wandler oder dergleichen. Bei dem beschriebenen Ausführungsbeispiel ist angenommen, daß es sich um piezoelektrische Wandler handelt, die in bekannter Weise einen zwischen zwei Elektroden angeordneten Piezokristall enthalten, der eine Formänderung erfährt, wenn eine elektrische Spannung an die beiden Elektroden angelegt wird, und der umgekehrt bei einer mechanisch erzwungenen Formänderung eine elektrische Spannung zwischen den beiden Elektroden erzeugt. Der Sendewandler 22 und der Empfangswandler 24 können daher von gleicher Bauart sein.The electromechanical transducers 22, 24 can be of any type known per se, for example electromagnetic or electrodynamic transducers with coils, magnetostrictive transducers, piezoelectric transducers or the like. In the described embodiment, it is assumed that it is a piezoelectric transducer which contains, in a known manner, a piezo crystal arranged between two electrodes, which undergoes a change in shape when an electrical voltage is applied to the two electrodes, and vice versa in the case of a mechanically forced one Shape change creates an electrical voltage between the two electrodes. The transmitter converter 22 and the receiver converter 24 can therefore be of the same type.

Die Verstärkerschaltung 30 enthält einen Eingangsverstärker 32, dessen Eingangsklemmen mit den beiden Elektroden des Empfangswandlers 24 verbunden sind, ein an den Ausgang des Eingangsverstärkers 32 angeschlossenes Bandfilter 34 und einen Endverstärker 36, an dessen Ausgangsklemmen die beiden Elektroden des Sendewandlers 22 angeschlossen sind. Das Bandfilter 34 ist auf die zu erregende Eigenresonanzfrequenz des elektromechanischen Schwingsystems 10 abgestimmt, so daß die elektrische Wechselspannung mit dieser Frequenz selektiv verstärkt wird. Hierbei kann es sich um die Frequenz der Grundschwingung oder auch um die Frequenz einer Oberschwingung der Eigenresonanz des mechanischen Schwingsytems 10 handeln.The amplifier circuit 30 contains an input amplifier 32, the input terminals of which are connected to the two electrodes of the receiving transducer 24, a bandpass filter 34 connected to the output of the input amplifier 32, and a power amplifier 36, the output electrodes of which are connected to the two electrodes of the transmitter transducer 22. The bandpass filter 34 is tuned to the natural resonance frequency of the electromechanical oscillation system 10 to be excited, so that the electrical AC voltage is selectively amplified with this frequency. This can be the frequency of the fundamental oscillation or the frequency of a harmonic of the natural resonance of the mechanical oscillation system 10.

Die Besonderheit der Verstärkerschaltung 30 besteht darin, daß ihre Verstärkungskennlinie in Abhängigkeit von der Größe des Eingangssignals derart nichtlinear ist, daß die Verstärkung bei kleinen Amplituden des Eingangssignals größer als bei großen Amplituden ist. Bei dem dargestellten Ausführungsbeispiel wird diese nichtlineare Verstärkungskennlinie der Verstärkerschaltung 30 dadurch erreicht, daß der Eingangsverstärker 32 mit nichtlinearer Verstärkung ausgebildet ist.The peculiarity of the amplifier circuit 30 is that its gain characteristic, depending on the size of the input signal, is so non-linear that the amplification is greater for small amplitudes of the input signal than for large amplitudes. In the illustrated embodiment, this non-linear gain characteristic of the amplifier circuit 30 is achieved in that the input amplifier 32 is designed with a non-linear gain.

Fig. 2 zeigt eine Ausführungsform des Eingangsverstärkers 32, die mit besonders einfachen Mitteln die gewünschte nichtlineare Verstärkungskennlinie ergibt. Der Eingangsverstärker 32 ist als Differenzverstärker mit einem Operationsverstärker 40 ausgebildet. Die beiden Eingänge des Operationsverstärkers 40 sind über gleiche Widerstände 41, 42 des Widerstandswerts R₁ mit den beiden Elektroden des Empfangswandlers 24 verbunden, so daß die Spannung zwischen diesen Elektroden die Eingangsspannung Ue des Differenzverstärkers bildet. In dem vom Ausgang zum invertierenden Eingang führenden Rückkopplungszweig des Operationsverstärkers 40 liegen zwei Widerstände 43, 44 mit den Widerstandswerten R₂ bzw. R₃ in Serie, und zwei weitere Widerstände 45, 46 mit den gleichen Widerstandswerten R₂ bzw. R₃ sind in Serie zwischen dem nichtinvertierenden Eingang des Operationsverstärkers 40 und Masse angeschlossen. Dem Widerstand 44 sind zwei Halbleiterdioden 47, 48 gegensinnig parallelgeschaltet, und in entsprechender Weise sind zwei weitere Halbleiterdioden 49, 50 dem Widerstand 46 gegensinnig parallelgeschaltet.Fig. 2 shows an embodiment of the input amplifier 32, which gives the desired non-linear gain characteristic with particularly simple means. The input amplifier 32 is designed as a differential amplifier with an operational amplifier 40. The two inputs of the operational amplifier 40 are connected via identical resistors 41, 42 of the resistance value R 1 to the two electrodes of the receiving transducer 24, so that the voltage between these electrodes forms the input voltage U e of the differential amplifier. In the leading from the output to the inverting input feedback branch of the operational amplifier 40 are two resistors 43, 44 with the resistance values R₂ and R₃ in series, and two further resistors 45, 46 with the same resistance values R₂ and R₃ are in series between the non-inverting input of the operational amplifier 40 and ground connected. Two semiconductor diodes 47, 48 are connected in parallel in opposite directions to resistor 44, and in a corresponding manner two further semiconductor diodes 49, 50 are connected in parallel in opposite directions to resistor 46.

Der in Fig. 2 dargestellte Differenzverstärker ergibt die folgende Wirkungsweise:
Wenn das mechanische Schwingsystem 10 beim Einschalten des Geräts in Ruhe ist, gibt der Empfangswandler 24 zunächst nur sehr kleine Spannungen ab, die durch leichte Fremdvibrationen, thermisches Rauschen und ähnliche Störeffekte verursacht werden. Diese kleinen Spannungen werden vom Differenz-Eingangsverstärker 32 verstärkt. Solange wie die dadurch erzeugte Ausgangsspannung Ua des Differenz-Eingangsverstärkers so klein ist, daß die Spannungsabfälle an den Widerständen 44 und 46 kleiner sind als die Durchlaßspannung der Halbleiterdioden 47, 48, 49, 50 (die bei Silicium-Dioden etwa 0,6 V beträgt), sperren die Halbleiterdioden in beiden Richtungen, und die Widerstände 44 und 46 sind voll wirksam. Für so kleine Eingangssignale beträgt der Verstärkungsfaktor V des Differenz-Eingangsverstärkers 32

Figure imgb0001

Diejenigen Komponenten der Ausgangsspannung Ua, deren Frequenzen im Durchlaßbereich des Bandfilters 34 liegen, gelangen zum Endverstärker 36, von dem sie mit linearer Verstärkung weiter verstärkt werden. Die so verstärkten Signalkomponenten werden vom Sendewandler 22 in mechanische Schwingungen umgewandelt, die das mechanische Schwingsystem 10 zu einer Eigenresonanzschwingung anregen. Diese Eigenresonanzschwingung wird vom Empfangswandler 24 in eine elektrische Wechselspannung umgesetzt, die dem Eingang des Differenz-Eingangsverstärkers 32 zugeführt und von diesem in der zuvor beschriebenen Weise verstärkt wird. Auf diese Weise schaukeln sich die Schwingungen des mechanischen Schwingsystems 10 auf.The differential amplifier shown in FIG. 2 has the following mode of operation:
If the mechanical oscillation system 10 is at rest when the device is switched on, the receiving transducer 24 initially only emits very small voltages which are caused by slight external vibrations, thermal noise and similar interference effects. These small voltages are amplified by the differential input amplifier 32. As long as the resulting output voltage U a of the differential input amplifier is so small that the voltage drops across the resistors 44 and 46 are smaller than the forward voltage of the semiconductor diodes 47, 48, 49, 50 (which is about 0.6 V for silicon diodes ), the semiconductor diodes block in both directions and the resistors 44 and 46 are fully effective. For such small input signals, the gain factor V of the differential input amplifier is 32
Figure imgb0001

Those components of the output voltage U a whose frequencies are in the pass band of the bandpass filter 34 reach the final amplifier 36, from which they are further amplified with linear amplification. The signal components amplified in this way are converted by the transducer 22 into mechanical vibrations, which excite the mechanical vibration system 10 to produce a natural resonance vibration. This natural resonance oscillation is converted by the receiving converter 24 into an electrical AC voltage, which is fed to the input of the differential input amplifier 32 and is amplified by it in the manner described above. In this way, the vibrations of the mechanical vibration system 10 rock up.

Wenn bei diesem Einschwingvorgang die Spannung Ua am Ausgang des Differenz-Eingangsverstärkers 32 so groß wird, daß die Spannungsabfälle an den Widerständen 44 und 46 größer als die Durchlaßspannung der Halbleiterdioden 47, 48 bzw. 49, 50 wird, werden die Halbleiterdioden durchlässig, so daß sie die Widerstände 44 und 46 kurzschließen. Der Verstärkungsfaktor V des Differenz-Eingangsverstärkers 32 beträgt dann

Figure imgb0002

Das Diagramm A von Fig. 3 zeigt diese Abhängigkeit des Verstärkungsfaktors V von der Spannung, und das Diagramm B von Fig. 3 zeigt den dadurch erzielten Zusammenhang zwischen der Eingangsspannung Ue und der Ausgangsspannung Ua des Eingangs-Differenzverstärkers 32. Bei Werten der Eingangsspannung Ue, die kleiner als ein Wert Ue1 sind, ist die Ausgangsspannung Ua durch den konstanten Verstärkungsfaktor V₁ bestimmt, so daß sie mit verhältnismäßig großer Steilheit der Eingangsspannung Ue proportional ist. In diesem Bereich besitzt die Verstärkerschaltung 30 eine große Eingangsempfindlichkeit, so daß selbst bei schwachen Störeffekten sowie bei temperaturbedingten Änderungen des Übertragungsfaktors und bei Ansatzbildungen an den Schwingstäben 12, 14 ein sicheres Anschwingen gewährleistet ist.If in this transient process the voltage U a at the output of the differential input amplifier 32 becomes so great that the voltage drops across the resistors 44 and 46 become greater than the forward voltage of the semiconductor diodes 47, 48 and 49, 50, respectively, the semiconductor diodes become transparent that they short out resistors 44 and 46. The gain factor V of the differential input amplifier 32 is then
Figure imgb0002

The diagram A in FIG. 3 shows this dependence of the gain factor V on the voltage, and the diagram B in FIG. 3 shows the relationship between the input voltage U e and the output voltage U a of the input differential amplifier 32 that is achieved. For values of the input voltage U e , which are smaller than a value U e1 , the output voltage U a is determined by the constant gain factor V 1, so that it is proportional to the input voltage U e with a relatively high steepness is. In this area, the amplifier circuit 30 has a high input sensitivity, so that a reliable start-up is ensured even with weak interference effects and with temperature-related changes in the transmission factor and with build-ups on the oscillating rods 12, 14.

Bei dem Wert Ue1 der Eingangsspannung Ue erreicht die Ausgangsspannung Ua infolge der Verstärkung mit dem Verstärkungsfaktor V₁ einen Wert Ua1, der gleich der Durchlaßspannung der Halbleiterdioden 47, 48, 49, 50 ist. Bei Werten der Eingangsspannung Ue, die größer als der Wert Ue1 sind, hat daher der Verstärkungsfaktor V den kleineren Wert V₂, so daß die Ausgangsspannung Ua in Abhängigkeit von der Eingangsspannung Ue weniger steil ansteigt. In diesem Bereich, in welchem keine Anschwingprobleme bestehen, ist daher die Eingangsempfindlichkeit der Verstärkerschaltung herabgesetzt, so daß Spannungen, die durch Störvibrationen erzeugt werden, nicht Werte erreichen können, die eine Resonanzschwingung des mechanischen Schwingsystems 10 vortäuschen.At the value U e1 of the input voltage U e , the output voltage U a reaches a value U a1 due to the amplification with the amplification factor V₁, which is equal to the forward voltage of the semiconductor diodes 47, 48, 49, 50. At values of the input voltage U e that are greater than the value U e1 , the gain factor V therefore has the smaller value V₂, so that the output voltage U a rises less steeply as a function of the input voltage U e . In this area, in which there are no start-up problems, the input sensitivity of the amplifier circuit is therefore reduced, so that voltages which are generated by interference vibrations cannot reach values which simulate a resonant vibration of the mechanical vibration system 10.

Wenn schließlich die Eingangsspannung Ue einen Wert Ue2 erreicht, bei welchem die Ausgangsspannung Ua den durch die Stromversorgungsspannung bedingten Höchstwert UB hat, geht der Eingangsverstärker 32 in die Sättigung, so daß ein weiterer Anstieg der Eingangsspannung Ue keine Erhöhung der Ausgangsspannung Ua mehr zur Folge hat.When the input voltage U e finally reaches a value U e2 at which the output voltage U a has the maximum value U B caused by the power supply voltage, the input amplifier 32 goes into saturation, so that a further increase in the input voltage U e does not increase the output voltage U a results in more.

Die geschilderten Wirkungen werden mit einem sehr geringen zusätzlichen Schaltungsaufwand erreicht. Gegenüber einem Differenz-Eingangsverstärker mit linearer Verstärkung beschränkt sich der Mehraufwand auf die beiden Widerstände 44, 46 und die vier Halbleiterdioden 47, 48, 49, 50.The effects described are achieved with very little additional circuitry. Compared to a differential input amplifier with linear amplification, the additional effort is limited to the two resistors 44, 46 and the four semiconductor diodes 47, 48, 49, 50.

Fig. 4 zeigt eine andere Ausführungsform des Eingangsverstärkers 32, die ebenfalls die gewünschte nichtlineare Verstärkungskennlinie ergibt. Bei dieser Ausführungsform besteht der Eingangsverstärker 32 aus zwei Verstärkerstufen. Die erste Verstärkerstufe entspricht dem Eingangsverstärker von Fig. 2 mit dem einzigen Unterschied, daß die Widerstände 44 und 46 mit den dazu gegensinnig parallelgeschalteten Halbleiterdioden 47, 48 bzw. 49, 50 fortgelassen sind. Die übrigen Bestandteile dieser Verstärkerstufe, die denjenigen des Eingangsverstärkers von Fig. 2 entsprechen, sind mit den gleichen Bezugszeichen wie in Fig. 2 bezeichnet. Wie in Fig. 2 sind die beiden Elektroden des Empfangswandlers 24 über gleiche Widerstände 41, 42 des Widerstandswerts R₁ mit den beiden Eingängen des Operationsverstärkers 40 verbunden, so daß die Spannung zwischen diesen Elektroden die Eingangsspannung Ue des Differenzverstärkers bildet. Da nunmehr im Rückkopplungskreis des Operationsverstärkers 40 sowie in dem vom nichtinvertierenden Eingang nach Masse führenden Schaltungszweig nur noch die unveränderlichen Widerstände 43 bzw. 45 des Widerstandswert R₂ liegen, hat diese Verstärkerstufe den konstanten Verstärkungsfaktor

Figure imgb0003

Somit wird am Ausgang des Operationsverstärkers 40 die Spannung

U a ′ = U e ·V I    (4)
Figure imgb0004


abgegeben.Fig. 4 shows another embodiment of the input amplifier 32, which also gives the desired non-linear gain characteristic. In this embodiment, the Input amplifier 32 from two amplifier stages. The first amplifier stage corresponds to the input amplifier of FIG. 2 with the only difference that the resistors 44 and 46 with the semiconductor diodes 47, 48 and 49, 50 connected in parallel in opposite directions are omitted. The remaining components of this amplifier stage, which correspond to those of the input amplifier of FIG. 2, are designated by the same reference numerals as in FIG. 2. As in Fig. 2, the two electrodes of the receiving transducer 24 are connected via the same resistors 41, 42 of the resistance value R 1 to the two inputs of the operational amplifier 40, so that the voltage between these electrodes forms the input voltage U e of the differential amplifier. Now that only the unchangeable resistors 43 and 45 of the resistance value R₂ are in the feedback circuit of the operational amplifier 40 and in the circuit branch leading from the non-inverting input to ground, this amplifier stage has the constant gain factor
Figure imgb0003

Thus, the voltage at the output of operational amplifier 40

U a ′ = U e · V I. (4)
Figure imgb0004


submitted.

Die zweite Verstärkerstufe enthält einen Operationsverstärker 60, dessen nichtinvertierender Eingang an den Ausgang der ersten Verstärkerstufe angeschlossen ist, so daß die Ausgangsspannung Ua′ der ersten Verstärkerstufe die Eingangsspannung der zweiten Verstärkerstufe bildet, deren Ausgangsspannung Ua zugleich die Ausgangsspannung des Eingangsverstärkers 32 darstellt. In dem zum invertierenden Eingang führenden Rückkopplungskreis des Operationsverstärkers 60 liegt ein Widerstand 61 mit dem Widerstandswert R₄. Ferner liegt zwischen dem invertierenden Eingang des Operationsverstärkers 60 und Masse ein Schaltungszweig, der einen Widerstand 62 mit dem Widerstandswert R₅ in Serie mit dem Strompfad eines Feldeffekttransistors 63 enthält. Der Widerstand RFET des Feldeffekttransistors 63 hängt von der an dessen Gate-Elektrode angelegten Steuerspannung ab. Diese Steuerspannung wird aus der Ausgangsspannung Ua durch Gleichrichtung mittels einer Gleichrichterschaltung gewonnen, die zwei Halbleiterdioden 64, 65 und eine Glättungsschaltung mit einem Kondensator 66 parallel zu einem Widerstand 67 enthält. Somit ist der Strompfad-Widerstand RFET des Feldeffekttransistors 63 von der Amplitude der Ausgangsspannung Ua abhängig. Dadurch ergibt sich für die zweite Verstärkerstufe der Verstärkungsfaktor

Figure imgb0005

der in Abhängigkeit von dem Widerstand RFET und somit in Abhängigkeit von der Ausgangsspannung Ua veränderlich ist.The second amplifier stage contains an operational amplifier 60, the non-inverting input of which is connected to the output of the first amplifier stage, so that the output voltage U a 'of the first amplifier stage forms the input voltage of the second amplifier stage, the output voltage U a of which also represents the output voltage of the input amplifier 32. In the feedback circuit of the operational amplifier 60 leading to the inverting input there is a resistor 61 with the resistance value R₄. Furthermore lies between the inverting Input of the operational amplifier 60 and ground, a circuit branch which contains a resistor 62 with the resistance value R₅ in series with the current path of a field effect transistor 63. The resistance R FET of the field effect transistor 63 depends on the control voltage applied to its gate electrode. This control voltage is obtained from the output voltage U a by rectification by means of a rectifier circuit which contains two semiconductor diodes 64, 65 and a smoothing circuit with a capacitor 66 in parallel with a resistor 67. Thus, the current path resistance R FET of the field effect transistor 63 is dependent on the amplitude of the output voltage U a . This results in the gain factor for the second amplifier stage
Figure imgb0005

which is variable as a function of the resistor R FET and thus as a function of the output voltage U a .

Der Verstärkungsfaktor VII bestimmt den Zusammenhang zwischen der Eingangsspannung Ua′ und der Ausgangsspannung Ua der zweiten Verstärkerstufe

U a = U a ′·V II    (6)

Figure imgb0006


Der aus den beiden Verstärkerstufen bestehende Eingangsverstärker 32 hat den Gesamtverstärkungsfaktor VG

V G = V I ·V II ,   (7)
Figure imgb0007


so daß zwischen der Eingangsspannung Ue und der Ausgangsspannung Ua des Eingangsverstärkers 32 die folgende Beziehung besteht:

U a = U e ·V G    (8)
Figure imgb0008


Die Zusammenhänge zwischen den Verstärkungsfaktoren VI, VII, VG und den Spannungen Ue, Ua′, Ua sind in den Diagrammen von Fig. 5 dargestellt.The gain factor V II determines the relationship between the input voltage U a 'and the output voltage U a of the second amplifier stage

U a = U a '· V II (6)
Figure imgb0006


The input amplifier 32 consisting of the two amplifier stages has the total amplification factor V G

V G = V I. · V II , (7)
Figure imgb0007


so that the following relationship exists between the input voltage U e and the output voltage U a of the input amplifier 32:

U a = U e · V G (8th)
Figure imgb0008


The relationships between the amplification factors V I , V II , V G and the voltages U e , U a ', U a are shown in the diagrams in FIG. 5.

In Fig. 5 zeigt das Diagramm A den spannungsabhängigen Verlauf des Verstärkungsfaktors VI und das Diagramm B den dadurch erzielten Zusammenhang zwischen der Eingangsspannung Ue und der Ausgangsspannung Ua′ der ersten Verstärkerstufe. Bis zu einem Wert Ue2 der Eingangsspannung, bei welchem die Ausgangsspannung Ua′ den Sättigungswert UB erreicht, ist der Verstärkungsfaktor V₁ konstant, so daß die Spannung Ua′ der Eingangsspannung Ue proportional ist.In Fig. 5, the diagram A shows the voltage-dependent course of the gain factor V I and the diagram B shows the relationship between the input voltage U e and the output voltage U a 'of the first amplifier stage. Up to a value U e2 of the input voltage at which the output voltage U a 'reaches the saturation value U B , the gain factor V 1 is constant, so that the voltage U a ' is proportional to the input voltage U e .

Die Diagramme C und D zeigen in entsprechender Weise die Verhältnisse für die zweite Verstärkerstufe. Bis zu einem Wert Ua1′ der Spannung Ua′ hat der Verstärkungsfaktor VII einen verhältnismäßig großen konstanten Wert VII1, so daß die Ausgangsspannung Ua der Spannung Ua′ mit verhältnismäßig großer Steilheit proportional ist. Zwischen den Werten Ua1 und Ua2′ der Eingangsspannung Ua′ bzw. den entsprechenden Werten Ua1 und Ua2 der Ausgangsspannung Ua liegt der Änderungsbereich des Widerstands RFET; demzufolge fällt der Verstärkungsfaktor VII in diesem Bereich vom Wert VII1 auf einen niedrigeren Wert VII2 ab, wodurch sich in diesem Bereich der im Diagramm D dargestellte nichtlineare Zusammenhang zwischen den Spannungen Ua′ und Ua ergibt. Zwischen dem Spannungswert Ua2′ und einem Spannungswert Ua3′, bei welchem die Ausgangsspannung Ua den Sättigungswert UB erreicht, ändert sich der Widerstand RFET nicht mehr, so daß in diesem Bereich der Verstärkungsfaktor VII den konstanten niedrigeren Wert VII2 beibehält und die Spannung Ua wieder der Spannung Ua′ proportional ist, jedoch mit wesentlich geringerer Steilheit.The diagrams C and D show the conditions for the second amplifier stage in a corresponding manner. Up to a value U a1 'of the voltage U a' has the amplification factor V II a relatively large constant value V II1, so that the output voltage U a of the voltage U a 'with a relatively large slope is proportional. Between the values U a1 and U a2 'of the input voltage U a ' and the corresponding values U a1 and U a2 of the output voltage U a is the range of change of the resistance R FET ; consequently, the amplification factor V II in this area drops from the value V II1 to a lower value V II2 , which results in the nonlinear relationship shown in the diagram D between the voltages U a 'and U a in this area. Between the voltage value U a2 'and a voltage value U a3 ', at which the output voltage U a reaches the saturation value U B , the resistance R FET no longer changes, so that in this area the gain factor V II maintains the constant lower value V II2 and the voltage U a is again proportional to the voltage U a ', but with a significantly lower slope.

Schließlich zeigt das Diagramm E den Gesamtverstärkungsfaktor VG des Eingangsverstärkers 32, der sich aus dem Produkt der beiden Verstärkungsfaktoren VI und VII ergibt, und das Diagramm F zeigt den entsprechenden Zusammenhang zwischen der Eingangsspannung Ue und der Ausgangsspannung Ua. Es ist unmittelbar zu erkennen, daß das Diagramm F von Fig. 5 dem Diagramm B von Fig. 3 sehr ähnlich ist. Insbesondere hat auch bei der Ausführungsform von Fig. 4 der Eingangsverstärker bei kleinen Werten der Eingangsspannung Ue einen großen Verstärkungsfaktor und demzufolge eine große Eingangsempfindlichkeit, während bei höheren Werten der Eingangsspannung der Verstärkungsfaktor kleiner und demzufolge die Eingangsempfindlichkeit herabgesetzt ist. Die Ausführungsform von Fig. 4 ergibt daher die gleichen vorteilhaften Wirkungen, wie sie zuvor für die Ausführungsform von Fig. 2 erläutert worden sind.Finally, diagram E shows the total amplification factor V G of the input amplifier 32, which results from the product of the two amplification factors V I and V II , and diagram F shows the corresponding relationship between the Input voltage U e and the output voltage U a . It can be seen immediately that diagram F of FIG. 5 is very similar to diagram B of FIG. 3. In particular, also in the embodiment of FIG. 4, the input amplifier has a large amplification factor and therefore a high input sensitivity for small values of the input voltage U e , while the amplification factor is smaller for higher values of the input voltage and consequently the input sensitivity is reduced. The embodiment of FIG. 4 therefore gives the same advantageous effects as were previously explained for the embodiment of FIG. 2.

Claims (4)

  1. Circuit arrangement for self-excitation of natural resonant oscillations of the mechanical oscillation system (10) of a filling level sensor comprising an electromechanical transducer system (20-24) which is arranged in the feedback circuit of an electronic amplifier circuit (30) so that said system is stimulated by the output AC voltage (Ua) of the amplifier circuit to mechanical oscillations and furnishes an AC voltage (Ue) with the frequency of the mechanical oscillations to the input of the amplifier circuit, the amplifier circuit (30) comprising an operational amplifier (40) having a non-linear gain characteristic which at small values of the input signal (Ue) gives a greater gain that at larger values of the input signal, characterized in that the feedback circuit (43, 44, 47, 48) of the operational amplifier (40) contains two resistors (43, 44) connected in series and that with one (44) of the two resistors two semiconductor diodes (47, 48) are connected in parallel in opposite senses.
  2. Circuit arangement according to claim 1, characterized in that the operational amplifier (40) is formed as differential amplifier with two additional resistors (45, 46) connected in series between the non-inverting input and ground and that two semiconductor diodes (49, 50) are connected in parallel in opposite senses with one of the additional resistors (46).
  3. Circuit arrangement for self-excitation of natural resonant oscillations of the mechanical oscillation system (10) of a filling level sensor comprising an electromechanical transducer system (20-24) which is arranged in the feedback circuit of an electronic amplifier circuit (30) so that said system is stimulated by the output AC voltage (Ua) of the amplifier circuit to mechanical oscillations and furnishes an AC voltage (Ue) with the frequency of the mechanical oscillations to the input of the amplifier circuit, the amplifier circuit (30) comprising an operational amplifier (60) having a non-linear gain characteristic which at small values of the input signal gives a greater gain than at larger values of the input signal, characterized in that the inverting input of the operational amplifier (60) is connected to ground via a circuit branch containing a field-effect transistor (63) and that the current flowpath resistance of the field-effect transistor (63) is variable by a control voltage which is applied to the gate electrode thereof and which depends on the output voltage (Ua) of the operational amplifier (60).
  4. Circuit arrangement according to claim 3, characterized in that the control voltage is formed from the output voltage by rectification.
EP89107994A 1988-05-03 1989-05-03 Circuit for the self-excitation of a mechanical oscillation system to its characteristic resonant frequency Expired - Lifetime EP0343403B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3815007 1988-05-03
DE3815007 1988-05-03

Publications (2)

Publication Number Publication Date
EP0343403A1 EP0343403A1 (en) 1989-11-29
EP0343403B1 true EP0343403B1 (en) 1993-09-08

Family

ID=6353496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89107994A Expired - Lifetime EP0343403B1 (en) 1988-05-03 1989-05-03 Circuit for the self-excitation of a mechanical oscillation system to its characteristic resonant frequency

Country Status (6)

Country Link
US (1) US5029268A (en)
EP (1) EP0343403B1 (en)
JP (1) JPH0775700B2 (en)
DE (1) DE58905505D1 (en)
ES (1) ES2042865T3 (en)
WO (1) WO1989010802A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327167C2 (en) * 1993-08-13 1996-07-04 Grieshaber Vega Kg Method and device for determining a predetermined fill level in a container
US5446420A (en) * 1993-08-25 1995-08-29 Motorola, Inc. Method and apparatus for reducing jitter and improving testability of an oscillator
DE4429236C2 (en) * 1994-08-18 1998-06-18 Grieshaber Vega Kg Level measurement in a container
WO2013102499A1 (en) * 2012-01-05 2013-07-11 Epcos Ag Differential microphone and method for driving a differential microphone
US9934902B2 (en) * 2012-12-05 2018-04-03 Samsung Electronics Co., Ltd. Apparatus and method for transceiving wireless power

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB845267A (en) * 1955-10-20 1960-08-17 Vickers Electrical Co Ltd Improvements relating to electronic circuits
US3469211A (en) * 1967-10-16 1969-09-23 Branson Instr Oscillatory circuit for electro-acoustic converter with starting means
US4393373A (en) * 1981-03-16 1983-07-12 Fuji Electrochemical Co., Ltd. Piezoelectric audible sound generator
JPS57158687A (en) * 1981-03-27 1982-09-30 Oki Electric Ind Co Ltd Hangul character display unit
JPH0763676B2 (en) * 1986-04-03 1995-07-12 超音波工業株式会社 Ultrasonic oscillator

Also Published As

Publication number Publication date
US5029268A (en) 1991-07-02
WO1989010802A1 (en) 1989-11-16
EP0343403A1 (en) 1989-11-29
ES2042865T3 (en) 1993-12-16
JPH02502267A (en) 1990-07-26
JPH0775700B2 (en) 1995-08-16
DE58905505D1 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
DE1572996C3 (en) Monolithic, electromechanical oscillator
DE3835090C2 (en)
DE3035315C2 (en) Piezoelectric light deflection device
DE2903489A1 (en) FORCE
DE102005036872A1 (en) Vibration-level level detection device and method for vibration-level level detection
DE1276834B (en) Electromechanical device for changing the amplitude of an acoustic signal
EP0875741B1 (en) Device for determining/monitoring of a predefined liquid level in a container
DE3145245C2 (en) Thermometer with a quartz crystal oscillator
DE2353840A1 (en) SURFACE WAVE OSCILLATOR
CH615505A5 (en)
DE3111109C2 (en)
DE2745915C2 (en) Transmitter device for use in an instrumentation system for industrial process control
DE2916540A1 (en) ELECTRICAL CIRCUIT ARRANGEMENT FOR CONTROLLING A PIEZOELECTRIC CONVERTER
DE10023306C2 (en) Process for controlling piezoelectric drives in level measuring devices
DE2010196A1 (en) Vibration converter for flexural vibrators
EP0343403B1 (en) Circuit for the self-excitation of a mechanical oscillation system to its characteristic resonant frequency
DE4203967C2 (en) Device for determining and / or monitoring a predetermined fill level in a container
DE2201156A1 (en) Electrical signal generator, in particular measuring transmitter
EP1693663A2 (en) Method and device for determining two parameters of a fluid
DE2650777A1 (en) BROADBAND OSCILLATOR WITH ELECTRIC FREQUENCY CONTROL
DE10328113B4 (en) Device for operating a vibratory unit of a vibration resonator
EP0875740B1 (en) Device for determining and/or monitoring of a predefined liquid level in a container
DE4042600C3 (en) Piezoelectric accelerometer
DE10047379A1 (en) Component with acoustically active material
DE2061735C3 (en) Discriminator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19891123

17Q First examination report despatched

Effective date: 19920226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILA

REF Corresponds to:

Ref document number: 58905505

Country of ref document: DE

Date of ref document: 19931014

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042865

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931203

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000412

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000417

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000519

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010602

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070522

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070522

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070525

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070516

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080503