EP0091546B1 - Method and device for the optical transmission of electrical signals with positive and negative voltage values - Google Patents

Method and device for the optical transmission of electrical signals with positive and negative voltage values Download PDF

Info

Publication number
EP0091546B1
EP0091546B1 EP19830101590 EP83101590A EP0091546B1 EP 0091546 B1 EP0091546 B1 EP 0091546B1 EP 19830101590 EP19830101590 EP 19830101590 EP 83101590 A EP83101590 A EP 83101590A EP 0091546 B1 EP0091546 B1 EP 0091546B1
Authority
EP
European Patent Office
Prior art keywords
converter
input
output
signal
flop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830101590
Other languages
German (de)
French (fr)
Other versions
EP0091546A3 (en
EP0091546A2 (en
Inventor
Wilhelm Dr.-Ing. Ludolf
Rainer Dipl.-Ing. Schenkyr
Rolf-Dieter Dipl.-Ing. Sommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RICHARD HIRSCHMANN GMBH & CO. TE ESSLINGEN, BONDSR
Original Assignee
Richard Hirschmann Radiotechnisches Werk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Hirschmann Radiotechnisches Werk filed Critical Richard Hirschmann Radiotechnisches Werk
Publication of EP0091546A2 publication Critical patent/EP0091546A2/en
Publication of EP0091546A3 publication Critical patent/EP0091546A3/en
Application granted granted Critical
Publication of EP0091546B1 publication Critical patent/EP0091546B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/06Non-electrical signal transmission systems, e.g. optical systems through light guides, e.g. optical fibres

Definitions

  • the invention relates to a method for the optical transmission of electrical signals with positive and negative voltage values, in which the input voltage changes are converted into frequency changes on the transmitter side by means of a V / f converter and these are changed after the signal transmission via an E / O converter, an optical waveguide and an O / E-converter on the receiver side can be converted back into voltage changes using an f / U converter.
  • Such methods are mainly used in control and regulation technology, as well as in measurement technology, preferably at signal frequencies below 1 kHz, in which high-precision transmission of voltages, in particular in an electromagnetically contaminated environment, is required.
  • the principle of the U / f or f / U conversion is preferably used here because an exact match of the output and input voltage values in direct analog transmission with light power proportional to the voltage is not at all and in other also known devices (A / D- Converter) can only be achieved with higher component expenditure.
  • Such a zero point shift can, for example in the case of a machine control, cause the machine to run even though there is no input voltage.
  • Another disadvantage of this e.g. Known from DE-A-2 845 598 transmission device, as shown in Fig. 1 in its basic structure as a block diagram, is that the modulation frequency range available for transmission is divided into positive and negative voltages, i.e. can only be used for the corresponding part and thus causes a low resolution ⁇ f / ⁇ . A higher resolution would only be possible by increasing the frequency range, which usually requires additional circuitry.
  • the invention has for its object to provide a transmission method of the type mentioned, in which the zero point stability is ensured with little effort and the highest possible resolution is achieved.
  • This object is achieved in that a separation of the respective electrical input voltage according to magnitude and polarity is provided both in the transmitter and in the receiver and the polarity information is added to the output signal of the U / f or f / U converter controlled by the respective magnitude signal.
  • the 0 volt input voltage is the 0 hertz modulation frequency and this is in turn assigned the 0 volt output voltage.
  • the available modulation frequency range can no longer be divided into positive and negative voltages in the method according to the invention, so that either the resolution accuracy is substantially increased with the same effort or this effort is reduced with the same resolution.
  • Subclaims 2 and 4 each describe a low-cost circuit for the transmitter and receiver side to carry out the method according to the invention.
  • An embodiment of the transmitter-side circuit according to claim 3 offers the advantage that the change of the polarization signal is delayed until the onset of the next pulse of the magnitude signal and thus an impulse which otherwise falsifies the message at the point of the polarization change is avoided in the receiver.
  • the circuit is therefore also suitable for use in highly sensitive transmission systems.
  • FIG. 2 a being the transmitter side
  • FIG. 3 a being the receiver side
  • FIG. 2 b shows the structure of the delay element designated V in FIG. 2 a
  • FIG. 3 b shows the structure of the isolating circuit labeled T in FIG. 3 a in detail
  • FIG. 4 shows the course of the essential voltages designated in FIGS. 2 and 3 in a pulse diagram.
  • the analog signal of the voltage U E present at the input E is fed on the one hand to a comparator 1 which supplies a positive or negative control voltage Up s as polarity information in accordance with the positive and negative U E values and on the other hand to a full-wave rectifier 2 which measures the amount of Input voltage U E forms.
  • a comparator 1 which supplies a positive or negative control voltage Up s as polarity information in accordance with the positive and negative U E values and on the other hand to a full-wave rectifier 2 which measures the amount of Input voltage U E forms.
  • This is used to control a U / f converter 3 converting voltages into frequencies, the output signal of which is converted into a corresponding sequence of square-wave pulses by means of a pulse shaper 4.
  • This signal U BS is linked to the polarity signal Up s delayed by a delay element 5 up to the negative edge of the next following U BS voltage pulse in an exclusive-OR element 6.
  • the delay element 5 consists of an edge-triggered JK master-slave flip-flop 7 clocked by the pulse shaper 4, in which one input (for example J) is connected directly and the other (for example K) is connected to the output of the comparator 1 via an inverter 8 . It advantageously prevents the occurrence of an additional pulse falsifying the message when the polarization changes in the receiver.
  • the output signal U s of the exclusive-OR gate 6 is transmitted to the receiver by means of an E / O converter 9 converting the electrical into optical signals, an optical waveguide 10 and an O / E converter 11 converting the optical into electrical signals, initially there again separated into a polarity signal Up E and a magnitude signal U BE in a separating circuit 12 and, after conversion of the digital magnitude signal into an analog signal, combined by means of an f / U converter 13 in an operational amplifier 14 with a controllable gain factor ⁇ 1 and fed to the output A. .
  • the signal U s is sampled after the pulses of constant width t arriving at the distance T (sampling pulses U c p). The logic level at these times is stored in a D flip-flop 15 until the next sampling pulse arrives.
  • the signal at the output Q of the D flip-flop 15 provides the polarity signal Up E.
  • the input signal U s and the properties available at the output Q of the D flip-flop 15 polarity signal Up E form, verknupft in an Exclusive-OR Gate 16, the trigger signal U EE of a monostable multivibrator 17. This generates pulses of the duration t M > tp at a distance T.
  • the output signal U BE of the monostable multivibrator 17 is fed on the one hand to the subsequent f / U converter 13; on the other hand, together with the inverted output signal U BE delayed by the time T in a delay circuit 18, the above-mentioned sampling pulses U c p are obtained via a NOR gate 19 and serve as clock pulses of the duration T of the D flip-flop 15.

Description

Die Erfindung betrifft ein Verfahren zur optischen Übertragung elektrischer Signale mit positiven und negativen Spannungswerten, bei dem senderseitig mittels eines U/f-Wandlers die Eingangsspannungsänderungen in Frequenzänderungen umgesetzt und diese nach der Signalübertragung über einen E/O-Wandler, einen Lichtwellenleiter und einen O/E-Wandier empfängerseitig mittels eines f/U-Wandlers in Spannungsänderungen rückumgesetzt werden. Derartige Verfahren werden hauptsächlich in Bereichen der Steuerungs- und Regelungstechnik, sowie in der Meßtechnik, vorzugsweise bei Signalfrequenzen unter 1 kHz benutzt, in denen eine hochgenaue Übertragung von Spannungen, insbesondere in elektromagnetisch verseuchter Umgebung gefordert ist. Dabei wird das Prinzip der U/f- bzw. f/U-Umwandlung bevorzugt angewendet, weil eine genaue Übereinstimmung der Ausgangs-und Eingangsspannungswerte bei direkter analoger Übertragung mit zur Spannung proportionaler Lichtleistung überhaupt nicht und bei anderen ebenfalls bekannten Einrichtungen (A/D-Wandler) nur mit höherem Bauteileaufwand erreichbar ist.The invention relates to a method for the optical transmission of electrical signals with positive and negative voltage values, in which the input voltage changes are converted into frequency changes on the transmitter side by means of a V / f converter and these are changed after the signal transmission via an E / O converter, an optical waveguide and an O / E-converter on the receiver side can be converted back into voltage changes using an f / U converter. Such methods are mainly used in control and regulation technology, as well as in measurement technology, preferably at signal frequencies below 1 kHz, in which high-precision transmission of voltages, in particular in an electromagnetically contaminated environment, is required. The principle of the U / f or f / U conversion is preferably used here because an exact match of the output and input voltage values in direct analog transmission with light power proportional to the voltage is not at all and in other also known devices (A / D- Converter) can only be achieved with higher component expenditure.

Dafür ist allerdings in Kauf zu nehmen, daß bei der Übertragung von positiven und negativen Spannungen sowohl im Sender, als auch im Empfanger eine Potentialverschiebung durchzuführen ist, die den Spannungspegel um wenigstens den maximalen negativen Wert in den positiven Bereich anhebt bzw. wieder zurücksetzt, weil negative Frequenzen physikalisch nicht möglich sind und die Schaltung somit in diesen Bereichen nicht arbeiten würde. Die hierzu erforderlichen beiden Referenzspannungsquellen müssen sehr genaue, untereinander exakt gleiche Spannungen liefern und sind daher teuer. Selbst bei den aufwendigsten Geräten lassen sich jedoch Toleranzen und temperaturabhangige Wertänderungen nicht ganz vermeiden, sodaß die im Hinblick auf die Funktionssicherheit bei Spannungsübertragungssystemen besonders wichtige Forderung nach Nullpunktstabilität nicht gewährleistet ist. Dies bedeutet, daß bei einer Sendereingangsspannung von 0 Volt eine endliche Ausgangsspannung am Empfanger entsteht.However, it must be accepted that when transmitting positive and negative voltages, both in the transmitter and in the receiver, a potential shift has to be carried out, which raises or lowers the voltage level by at least the maximum negative value in the positive range because negative frequencies are not physically possible and the circuit would not work in these areas. The two reference voltage sources required for this must deliver very precise voltages that are exactly the same as each other and are therefore expensive. Even with the most complex devices, however, tolerances and temperature-dependent changes in value cannot be completely avoided, so that the requirement for zero point stability, which is particularly important with regard to the functional reliability in voltage transmission systems, cannot be guaranteed. This means that with a transmitter input voltage of 0 volts, a finite output voltage is generated at the receiver.

Eine solche Nullpunkt-Verschiebung kann beispielsweise im Falle einer Maschinensteuerung einen Lauf der Maschine bewirken, obwohl keine Eingangsspannung anliegt. Ein weiterer Nachteil dieser z.B. aus DE-A-2 845 598 bekannten Übertragungseinrichtung, wie sie in Fig. 1 in ihrem Prinzipaufbau als Blockschaltbild dargestellt ist, besteht darin, daß der zur Übertragung verfugbare Modulationsfrequenzbereich sich auf positive und negative Spannungen aufteilt, d.h. jeweils nur zum entsprechenden Teil nutzbar ist und somit eine geringe Auflösung Δ f/ Δ bewirkt. Eine hohere Auflösung wäre nur durch Vergrössern des Frequenzbereiches möglich, was in der Regel einen zusätzlichen Schaltungsaufwand erfordert.Such a zero point shift can, for example in the case of a machine control, cause the machine to run even though there is no input voltage. Another disadvantage of this e.g. Known from DE-A-2 845 598 transmission device, as shown in Fig. 1 in its basic structure as a block diagram, is that the modulation frequency range available for transmission is divided into positive and negative voltages, i.e. can only be used for the corresponding part and thus causes a low resolution Δ f / Δ. A higher resolution would only be possible by increasing the frequency range, which usually requires additional circuitry.

Der Erfindung liegt die Aufgabe zugrunde, ein Übertragungsverfahren der eingangs genannten Art zu schaffen, bei dem mit geringem Aufwand die Nullpunktstabilität gewährleistet und eine möglichst hohe Auflösung erreicht ist.The invention has for its object to provide a transmission method of the type mentioned, in which the zero point stability is ensured with little effort and the highest possible resolution is achieved.

Diese Aufgabe ist dadurch gelöst, daß sowohl im Sender als auch im Empfanger eine Auftrennung der jeweiligen elektrischen Eingangsspannung nach Betrag und Polarität vorgesehen und die Polaritätsinformation dem Ausgangssignal des vom jeweiligen Betragssignal angesteuerten U/f - bzw. f/U - Wandlers zugesetzt ist.This object is achieved in that a separation of the respective electrical input voltage according to magnitude and polarity is provided both in the transmitter and in the receiver and the polarity information is added to the output signal of the U / f or f / U converter controlled by the respective magnitude signal.

Damit ist auf einfache und elegante Weise der Vorteil erreicht, daß keine Potentialverschiebung und folglich auch keine aufwendigen Referenzspannungsquellen und Addiernetzwerke notig sind. Der Eingangsspannung 0 Volt ist die Modulationsfrequenz 0 Hertz und dieser wiederum die Ausgangsspannung 0 Volt fest zugeordnet. Im Empfänger ist nunmehr eine exakte und driftfreie Erkennung des Nullpunktes und damit eine hohe Nullpunktstabilität gewährleistet.In this way, the advantage is achieved in a simple and elegant manner that no potential shift and consequently no complex reference voltage sources and adding networks are necessary. The 0 volt input voltage is the 0 hertz modulation frequency and this is in turn assigned the 0 volt output voltage. An exact and drift-free detection of the zero point and thus a high zero point stability is now guaranteed in the receiver.

Außerdem ist beim erfindungsgemäßen Verfahren der verfügbare Modulationsfrequenzbereich nicht mehr auf positive und negative Spannungen aufzuteilen, sodaß entweder die Auflösungsgenauigkeit bei gleichem Aufwand wesentlich vergrößert oder dieser Aufwand bei gleicher Auflösung verringert ist.In addition, the available modulation frequency range can no longer be divided into positive and negative voltages in the method according to the invention, so that either the resolution accuracy is substantially increased with the same effort or this effort is reduced with the same resolution.

In den Unteransprüchen 2 und 4 ist jeweils eine durch geringen Bauteileaufwand kostengünstige Schaltung zur sender- und empfangerseitigen Durchführung des erfindungsgemäßen Verfahrens beschrieben.Subclaims 2 and 4 each describe a low-cost circuit for the transmitter and receiver side to carry out the method according to the invention.

Eine Ausgestaltung der senderseitigen Schaltung gemäß Anspruch 3 bietet den Vorteil, daß der Wechsel des Polarisationssignales bis zum Einsetzen des nächsten Impulses des Betragssignals verzögert ist und damit im Empfänger ein sonst an der Stelle des Polarisationswechsels auftretender die Nachricht verfalschender Impuls vermieden wird. Die Schaltung ist damit auch für den Einsatz in hochempfindlichen Übertragungssystemen geeignet.An embodiment of the transmitter-side circuit according to claim 3 offers the advantage that the change of the polarization signal is delayed until the onset of the next pulse of the magnitude signal and thus an impulse which otherwise falsifies the message at the point of the polarization change is avoided in the receiver. The circuit is therefore also suitable for use in highly sensitive transmission systems.

In den Fig. 2 und 3 ist ein Ausführungsbeispiel einer nach dem erfindungsgemäßen Verfahren arbeitenden Übertragungseinrichtung im Blockschaltbild dargestellt, wobei Fig. 2 a die Senderseite und Fig. 3 a die Empfangerseite ist. Fig. 2 b zeigt den Aufbau des in Fig. 2 a mit V bezeichneten Verzögerungsgliedes und Fig. 3 b den Aufbau der in Fig. 3 a mit T bezeichneten Trennschaltung im einzelnen. Fig. 4 gibt den Verlauf der wesentlichen, in den Fig. 2 und 3 bezeichneten Spannungen in einem Impulsdiagramm wieder.2 and 3, an embodiment of a transmission device operating according to the method according to the invention is shown in the block diagram, FIG. 2 a being the transmitter side and FIG. 3 a being the receiver side. FIG. 2 b shows the structure of the delay element designated V in FIG. 2 a and FIG. 3 b shows the structure of the isolating circuit labeled T in FIG. 3 a in detail. FIG. 4 shows the course of the essential voltages designated in FIGS. 2 and 3 in a pulse diagram.

Im Senderteil der Übertragungseinrichtung wird das am Eingang E anliegende analoge Signal der Spannung UE einerseits einem Komparator 1 zugeführt, der entsprechend den positiven und negativen UE - Werten eine positive bzw. negative Steuerspannung Ups als Polaritätsinformation liefert und zum anderen einem Vollweggleichrichter 2, der den Betrag der Eingangsspannung UE bildet. Mit diesem wird ein Spannungen in Frequenzen umsetzender U/f - Wandler 3 angesteuert, dessen Ausgangssignal mittels eines Impulsformers 4 in eine entsprechende Folge von Rechteckimpulsen umgeformt wird. Dieses Signal UBS ist mit dem durch ein Verzögerungsglied 5 bis zur negativen Flanke des nächstfolgenden UBS -Spannungsimpulses verzögerten Polaritätssignal Ups in einem Exclusiv-Oder-Glied 6 verknüpft.In the transmitter part of the transmission device the analog signal of the voltage U E present at the input E is fed on the one hand to a comparator 1 which supplies a positive or negative control voltage Up s as polarity information in accordance with the positive and negative U E values and on the other hand to a full-wave rectifier 2 which measures the amount of Input voltage U E forms. This is used to control a U / f converter 3 converting voltages into frequencies, the output signal of which is converted into a corresponding sequence of square-wave pulses by means of a pulse shaper 4. This signal U BS is linked to the polarity signal Up s delayed by a delay element 5 up to the negative edge of the next following U BS voltage pulse in an exclusive-OR element 6.

Das Verzögerungsglied 5 besteht aus einem vom Impulsformer 4 getakteten flankengetriggerten JK-Master-Slave-Flip-Flop 7, bei dem der eine Eingang (z.B. J) direkt und der andere (z.B.K) über einen Inverter 8 mit dem Ausgang des Komparators 1 verbunden ist. Es verhindert in vorteilhafter Weise das Entstehen eines zusätzlichen die Nachricht verfälschenden Impulses beim Polarisationswechsel im Empfänger.The delay element 5 consists of an edge-triggered JK master-slave flip-flop 7 clocked by the pulse shaper 4, in which one input (for example J) is connected directly and the other (for example K) is connected to the output of the comparator 1 via an inverter 8 . It advantageously prevents the occurrence of an additional pulse falsifying the message when the polarization changes in the receiver.

Das Ausgangssignal Us des Exclusiv-Oder-Gatters 6 wird mittels eines die elektrischen in optische Signale umsetzenden E/O-Wandlers 9, eines Lichtwellenleiters 10 und eines die optischen in elektrische Signale umsetzenden O/E-Wandlers 11 zum Empfänger übertragen, dort zunächst in einer Trennschaltung 12 wieder in ein Polaritätssignal UpE und ein Betragssignal UBE aufgetrennt und nach Umformung des digitalen Betragssignals in ein analoges Signal mittels eines f/U - Wandlers 13 in einem Operationsverstärker 14 mit steuerbarem Verstärkungsfaktor ± 1 zusammengefügt und auf den Ausgang A geführt.The output signal U s of the exclusive-OR gate 6 is transmitted to the receiver by means of an E / O converter 9 converting the electrical into optical signals, an optical waveguide 10 and an O / E converter 11 converting the optical into electrical signals, initially there again separated into a polarity signal Up E and a magnitude signal U BE in a separating circuit 12 and, after conversion of the digital magnitude signal into an analog signal, combined by means of an f / U converter 13 in an operational amplifier 14 with a controllable gain factor ± 1 and fed to the output A. .

In dem Trennglied 12 wird das Signal Us nach den im Abstand T eintreffenden Impulsen der konstanten Breite t abgetastet (Abtastimpulse Ucp). Der logische Pegel zu diesen Zeitpunkten wird in einem D-Flip-Flop 15 jeweils bis zum Eintreffen des nächsten Abtastimpulses gespeichert. Das Signal am Ausgang Q des D-Flip-Flops 15 stellt das Polaritätssignal UpE dar. Das Eingangssignal Us und das am Ausgang Q des D-Flip-Flops 15 zur Verfügung stehende Polaritätssignal UpE bilden, verknupft in einem Exclusiv-Oder-Gatter 16, das Triggersignal UEE eines monostabilen Multivibrators 17. Dieser erzeugt Impulse der Dauer tM > tp im Abstand T. Das Ausgangssignal UBE des monostabilen Multivibrators 17 wird einerseits dem nachfolgenden f/U-Wandler 13 zugeführt; zum anderen werden daraus zusammen mit dem in einer Verzögerungsschaltung 18 um die Zeit T verzögerten invertierten Ausgangssignal UBE über ein NOR-Glied 19 die genannten Abtastimpulse Ucp gewonnen, die als Taktimpulse der Dauer T des D-Flip-Flops 15 dienen.In the isolating element 12, the signal U s is sampled after the pulses of constant width t arriving at the distance T (sampling pulses U c p). The logic level at these times is stored in a D flip-flop 15 until the next sampling pulse arrives. The signal at the output Q of the D flip-flop 15 provides the polarity signal Up E. The input signal U s and the properties available at the output Q of the D flip-flop 15 polarity signal Up E form, verknupft in an Exclusive-OR Gate 16, the trigger signal U EE of a monostable multivibrator 17. This generates pulses of the duration t M > tp at a distance T. The output signal U BE of the monostable multivibrator 17 is fed on the one hand to the subsequent f / U converter 13; on the other hand, together with the inverted output signal U BE delayed by the time T in a delay circuit 18, the above-mentioned sampling pulses U c p are obtained via a NOR gate 19 and serve as clock pulses of the duration T of the D flip-flop 15.

Claims (4)

1. Method for the optical transmission of electrical signals with positive and negative voltage values, in which, on the transmitter end, by means of a U/f converter (3), the input-voltage changes are converted into frequency changes and the latter, after the signal transmission via an E/O converter (9), an optical fibre (10) and an O/E converter (11), are reconverted on the receiver end into voltage changes by means of an f/U converter (13), wherein, both in the transmitter and in the receiver, the splitting of the respective electrical input voltage by magnitude and polarity is provided and the polarity information is added to the output signal of the U/f or f/U converter (3 or 13) energized by the respective magnitude signal.
2. Circuit for the transmitter-end implementation of the method as defined in claim 1, wherein connected to the input (E) are a comparator (1) for producing the polarity signal as well as a full-wave rectifier (2), said full-wave rectifier (2) forming the magnitude of the input voltage and supplying said magnitude via the U/f converter (3) and a pulse shaper (4) to an exclusive OR element (6), the second input of which is energized by the comparator (1) and the output of which is connected to the input of the E/0 converter.
3. Circuit as defined in claim 2, wherein connected between the comparator (1) and the exclusive OR element (6) is an edge-triggered JK master-slave flip-flop (7), one input of which is connected directly, and the other input of which via an inverter (8), to the output of the comparator (1), said JK master-slave flip-flop (7) being clocked by the output signal of the pulse shaper (4).
4. Circuit for the receiver-end implementation of the method as defined in claim 1, wherein the output signal of the O/E converter (11) is supplied, firstly, via an exclusive OR element (16), a monostable multivibrator (17) as well as the f/U converter (13) and, secondly, via a D-flip-flop (15) producing the polarity signal to an output amplifier (14) with the controllable gain factor ± 1, one output of the monostable multivibrator (17) being connected directly and the inverted output being connected via a time-delay element (16) each to an input of a NOR element (19), said NOR element (19) clocking the D-flip-flop (15), the output (Q) of which is connected to the second input of the exclusive OR element (16).
EP19830101590 1982-04-10 1983-02-19 Method and device for the optical transmission of electrical signals with positive and negative voltage values Expired EP0091546B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823213365 DE3213365A1 (en) 1982-04-10 1982-04-10 METHOD AND DEVICE FOR THE OPTICAL TRANSMISSION OF ELECTRICAL SIGNALS WITH POSITIVE AND NEGATIVE VOLTAGE VALUES
DE3213365 1982-04-10

Publications (3)

Publication Number Publication Date
EP0091546A2 EP0091546A2 (en) 1983-10-19
EP0091546A3 EP0091546A3 (en) 1985-05-15
EP0091546B1 true EP0091546B1 (en) 1987-05-20

Family

ID=6160677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830101590 Expired EP0091546B1 (en) 1982-04-10 1983-02-19 Method and device for the optical transmission of electrical signals with positive and negative voltage values

Country Status (2)

Country Link
EP (1) EP0091546B1 (en)
DE (1) DE3213365A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8415747D0 (en) * 1984-06-20 1984-07-25 Secr Defence Alternating current potential drops
DE3937572A1 (en) * 1989-11-11 1991-05-16 Hartmann & Laemmle Elektronisc CNC measurement signal transmitter - uses fibre=optic link to distant processing unit, where signal contains information about value and direction changes
JP4214665B2 (en) * 2000-07-25 2009-01-28 ソニー株式会社 Playback device
KR100865859B1 (en) * 2000-08-28 2008-10-29 코닌클리케 필립스 일렉트로닉스 엔.브이. Reproducing arrangement and method having an overview reproducing mode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916618A (en) * 1957-05-16 1959-12-08 Itt Pulse detector responsive to both pulse amplitude and duty cycle
US3278898A (en) * 1962-12-31 1966-10-11 Ibm Data transmission system for distinctively modulating given datum bits for parity checking
DE2351481C3 (en) * 1973-10-13 1980-07-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Remote control procedure
DE2745770A1 (en) * 1977-10-12 1979-04-26 Bbc Brown Boveri & Cie Opto-electronic non-contact signal transmission - allows transmission between stator and rotor of rotating electrical machines by use of frequency converter
JPS5460509A (en) * 1977-10-22 1979-05-16 Fuji Electric Co Ltd Digtal transmission device for analog quantity
US4176248A (en) * 1977-12-23 1979-11-27 Bell Telephone Laboratories, Incorporated System for identifying and correcting the polarity of a data signal

Also Published As

Publication number Publication date
EP0091546A3 (en) 1985-05-15
EP0091546A2 (en) 1983-10-19
DE3213365A1 (en) 1983-10-20

Similar Documents

Publication Publication Date Title
DE4040170A1 (en) TRANSMISSION SIGNAL
DE3424052C2 (en)
DE3419117A1 (en) OPTOELECTRICAL DISTANCE MEASURING DEVICE WITH A TIME DISCRIMINATOR FOR ACCURATE DETERMINATION OF THE TIMING OF ELECTRICAL IMPULSES
EP0323871A2 (en) Voltage to frequency converter and its application in a fibre optic transmission system
EP0091546B1 (en) Method and device for the optical transmission of electrical signals with positive and negative voltage values
DE1205133B (en) Device for encrypting an impulse message
DE3224425A1 (en) BUS SYSTEM WITH LIGHTWAVE GUIDES
DE2855517C2 (en)
DE2328682B2 (en) CIRCUIT ARRANGEMENT FOR CALL SIGNAL GENERATION
EP0231980B1 (en) Method for transmitting measuring signals of at least two sensors via an opticaltransmission link
DE3718001C2 (en)
CH647112A5 (en) CIRCUIT ARRANGEMENT FOR OBTAINING A CONTROL VOLTAGE PROPORTIONAL TO THE PULSE DENSITY OF A PULSE SEQUENCE.
DE2624636B2 (en) Delta modulation coding arrangement
DE2643949C3 (en) Circuit arrangement for the pulsed transmission of analog voltage values of both polarities
EP0210395A2 (en) Coding method
DE2231216B2 (en) Digital-to-analog converter
DE1951146A1 (en) Phase comparator
DE1283364B (en) Arrangement for transferring a voltage derived from a current flowing on the high-voltage side from the high-voltage side to the low-voltage side
DE2157558C3 (en) Multi-frequency code signal receivers in telecommunications, in particular telephone systems
DE3045018C2 (en)
DE2604925C2 (en) Circuit arrangement with a precision modulator
DE2029622C3 (en) Pulse shaping circuit
DE1960532A1 (en) Delta modulation system
DE2432279A1 (en) Testing of HV power line - involves deriving test value, modulating it, transmitting it to low voltage side and demodulating
DE2223842C3 (en) Arrangement for transmitting a signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850627

17Q First examination report despatched

Effective date: 19860616

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI NL SE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: RICHARD HIRSCHMANN GMBH & CO.

ITTA It: last paid annual fee
NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: RICHARD HIRSCHMANN GMBH & CO. TE ESSLINGEN, BONDSR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920125

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921117

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921230

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930228

Ref country code: LI

Effective date: 19930228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83101590.4

Effective date: 19940910