EP0222841A1 - Manivelle de vilebrequin - Google Patents
Manivelle de vilebrequinInfo
- Publication number
- EP0222841A1 EP0222841A1 EP19860903146 EP86903146A EP0222841A1 EP 0222841 A1 EP0222841 A1 EP 0222841A1 EP 19860903146 EP19860903146 EP 19860903146 EP 86903146 A EP86903146 A EP 86903146A EP 0222841 A1 EP0222841 A1 EP 0222841A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gear
- support
- crank
- shaft
- rotational axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
- F16H21/16—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
- F16H21/18—Crank gearings; Eccentric gearings
- F16H21/22—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
- F16H21/30—Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric with members having rolling contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/04—Engines with prolonged expansion in main cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
Definitions
- crankshafts for internal combustion engines and more particularly but not exclusively to crankshafts for four-stroke internal combustio engines.
- crankshaft crank bearings are journal bearings having bearing shells fitted to the connecting rod big end and running on a steel shaft.
- the piston is attached to the cran bearing by means of a piston rod with the distance between th piston and the crankshaft crank being fixed by the piston rod. Accordingly movement of the piston during the compression phase is egual to the movement of the piston during the exhaust phase.
- crankshaft assembly for a four-stroke internal combustion engine having at least one piston and a piston rod extending between the piston and the crankshaft assembly, said assembly comprising a shaft providing a crank extending radially from the axis of rotatio of the shaft, a first bearing surface formed adjacent the extremity of said crank and providing a first rotational axis parallel to the axis of the shaft, an eccentric piston rod support rotatably mounted on said first bearing surface so as to be rotatably supported thereby, said eccentric support providing a second bearing surface to rotatably support said piston rod, said second bearing surface providing a second rotational axis parallel to the axis of said shaft, but spaced radially from said first rotational axis, drive means coupling said crank and support to drive said support about said first rotational axis at half the rotational speed of said shaft, said drive means consisting of a first gear fixed to said crank and having its longitudinal axis coaxial with said first
- Fig. 1 is a schematic part-sectioned perspective view of a portion of a crank shaft with a crank assembly extending therefrom attached to a piston rod of a four-stroke internal combustion engine;
- Fig. 2 is a schematic end elevation of the crank assembly and piston rod of Fig. 1;
- Fig. 3 is a schematic part-sectioned front elevation of the crank assembly and piston rod of Fig. 1;
- Figs. 4 to 6 are schematic part-sectioned side elevations of alternative gear trains which may be employed with the crank assembly and piston rod of Fig. 1.
- a crankshaft 10 of an internal combustion engine having at least one piston coupled to a piston rod 11, which piston rod 11 is attached to the shaft 10 by means of a crank assembly 12.
- the crank assembly 12 comprises a crank 13 extending radially from the longitudinal axis of the shaft 10 and being provided at its outer end with a bearing surface 14.
- the bearing surface 14 engages bearing cups 15 which in turn rotatably support an eccentric piston rod support 16.
- the support 16 has a bearing surface 17 which rotatably supports the piston rod 11.
- the crank assembly 12 is held together by means of a pair of bolts 18.
- the bearing surface 14 provides a first rotational axis parallel to the rotational axis of the shaft 10, while the bearing surface 17 provides a second rotational axis, parallel to the rotational axis of the shaft 10 and the rotational axis of the bearing surface 14, however it is spaced radially from the rotational axis of the bearing surface 14.
- first gear 19 which is meshingly engaged with a second gear 20 rotatably supported by the support 16.
- the gear 20 is coupled to a further gear 21 by means of a shaft 22 so as to rotate therewith.
- the gear 21 meshingly engages with a gear 23 fixed to the piston rod 11.
- the gear ratios in respect of the gear train consisting of the gears 19, 20, 21 and 23 are arranged so that the support 16 has half the average rotational speed, about the axis of the bearing surface 14, of the shaft 10.
- the above described preferred embodiment of the present invention is arranged with the valve timing such that the piston passes through its maximum stroke during the exhaust stroke of the engine.
- This has the advantage that substantially all of the exhaust gases are expelled from the combustion chamber thereby greatly eliminating the need for long valve timing overlap. Still further, this would enable considerable reduction of, and possibly total elimination of, a combustion recess to be formed in the cylinder head of the engine.
- the compression ratio of the engine is dependent on the size of the support 16.
- the compression ratio may be decreased by using an eccentric support which has a higher eccentricity, or increased by using an eccentric support having a lower eccentricity.
- the maximum piston displacement for a given eccentric support occurs when the rotational axes of the shaft 10, bearing surface 14, and bearing surface 17 are in a common plane, and the surface 17 being spaced radially outward from the surface 14 relative to the shaft 10.
- the rotational axes of the surfaces 14 and 17 may have a phase difference of approximately 45$ and still be effective. Such a phase difference might be useful in making slight alterations to compression ratio and to diminish stress on the gear train consisting of the gears 19, 20, 21 and 23.
- gears 19, 20 and 21 have external teeth, while gear 23 has an internal ring gear.
- the gears 20 and 21 are located on opposite sides of the support 16 and are joined by shaft 22.
- the gears are substantially the same as that of Fig. 4, however the gears 20 and 21 are located adjacent each other on the same side of the support 16 and are mounted on the shaft 22, which is a "stub axle".
- the gear chain is substantially the same as that depicted in Fig. 5, however the gears 20 and 21, and the shaft 22 (stub axle) are located in a shaped recess 24 formed in the support 16.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Ensemble d'éléments de vilebrequin destiné à un moteur à combustin interne à quatre temps et comprenant un vilebrequin (10) muni d'une manivelle (13) s'étendant dudit vilebrequin selon un axe radial et un support excentrique (16) destiné a monter une bielle (11) sur la manivelle (13), ledit support (16) étant entraîné par un train d'engrenage (19, 20, 21, 23) de manière à obtenir la moitié de la vitesse de rotation du vilebrequin (10), permettant ainsi à un piston fixé à la bielle (11) d'effectuer une course durant la phase d'échapppement supérieure à la course effectuée durant la phase de compression du moteur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU716/85 | 1985-05-24 | ||
AU71685 | 1985-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0222841A1 true EP0222841A1 (fr) | 1987-05-27 |
Family
ID=3691421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19860903146 Withdrawn EP0222841A1 (fr) | 1985-05-24 | 1986-05-23 | Manivelle de vilebrequin |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0222841A1 (fr) |
WO (1) | WO1986007115A1 (fr) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2633331B1 (fr) * | 1988-06-23 | 1991-05-31 | Gary Serge | Dispositif pour faire varier la chambre de combustion d'un moteur a quatre temps |
JPH0678783B2 (ja) * | 1989-03-08 | 1994-10-05 | 理 西山 | クランク装置 |
WO1991010051A1 (fr) * | 1989-12-12 | 1991-07-11 | Serge Gary | Dispositif pour faire varier la chambre de combustion d'un moteur a quatre temps |
US5170757A (en) * | 1991-12-24 | 1992-12-15 | Damien Gamache | Variable horsepower output gearing for piston engine |
ES2065791B1 (es) * | 1992-01-03 | 1997-01-16 | Garcia Simon Navarro | Mejoras introducidas en los medios de transmision de energia en motores de explosion. |
GB2266753A (en) * | 1992-05-08 | 1993-11-10 | Trevor George Sanders | Variable crank mechanism |
US5555777A (en) * | 1995-07-10 | 1996-09-17 | Bell; John | Crank apparatus for a crankshaft of a diesel engine |
DE10051271B4 (de) * | 2000-10-16 | 2015-07-16 | Fev Gmbh | In ihrem Verdichtungsverhältnis einstellbare Kolbenbrennkraftmaschine mit integriertem Verstellaktuator |
US6857412B2 (en) * | 2001-01-24 | 2005-02-22 | Hasan Basri Ozdamar | Motor with rotary connecting rod bolt |
GB0426228D0 (en) * | 2004-11-30 | 2004-12-29 | Mason David J | Improvements to reciprocating machines |
WO2009100759A1 (fr) * | 2008-02-13 | 2009-08-20 | Gomecsys B.V. | Mécanisme de piston à mouvement alternatif et procédé permettant d'augmenter la recirculation des gaz d'échappement (rge) interne dans un moteur à combustion interne |
JP4602436B2 (ja) * | 2008-04-22 | 2010-12-22 | 泰之 田辺 | 行程可変型ミラーサイクルエンジン |
JP2012533021A (ja) | 2009-07-15 | 2012-12-20 | ヨハネス・ヤーコブス・ヨセフス・スレパー | 往復動ピストン機構 |
EP2620614B1 (fr) | 2012-01-24 | 2016-11-09 | Gomecsys B.V. | Mécanisme réciproque de piston |
EP2873834A1 (fr) | 2013-11-13 | 2015-05-20 | Gomecsys B.V. | Procédé d'assemblage, ensemble d'un vilebrequin et élément de manivelle |
EP2930329B1 (fr) | 2014-04-08 | 2016-12-28 | Gomecsys B.V. | Moteur à combustion interne comprenant un rapport de compression variable |
NL1040935B1 (nl) * | 2014-09-02 | 2016-09-26 | Jan Dijk Gerrit | Excentrische vulschijf voor een variabele zuigerslag bij 4-takt motoren. |
DE102014015173B4 (de) * | 2014-10-15 | 2017-05-18 | Meta Motoren- Und Energie-Technik Gmbh | Pleuelbaugruppe, Kolben-/Zylindereinheit sowie Hubkolbenbrennkraftmaschine |
WO2016110742A1 (fr) * | 2015-01-05 | 2016-07-14 | Gomes Marco Valverde | Tige de commande |
EP3103986B1 (fr) * | 2015-06-08 | 2018-01-31 | Gomecsys B.V. | Moteur à combustion interne à quatre temps présentant un rapport de compression variable et véhicule |
FR3042816B1 (fr) | 2015-10-22 | 2017-12-08 | Peugeot Citroen Automobiles Sa | Moteur thermique muni d'un systeme de variation du taux de compression |
CN110259577B (zh) * | 2019-06-19 | 2021-06-11 | 南京龙普动力科技有限公司 | 一种偏心轮式活塞发动机 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US441582A (en) * | 1890-11-25 | quack | ||
US1162710A (en) * | 1911-05-19 | 1915-11-30 | Walter E B Powell | Hydrocarbon-engine. |
US1863667A (en) * | 1930-04-09 | 1932-06-21 | Miranda Juan Da Costa | Crankshaft and connecting rod for internal combustion engines |
US1964096A (en) * | 1931-11-21 | 1934-06-26 | Emmitt M Tucker | Connecting rod mounting |
FR804164A (fr) * | 1935-07-10 | 1936-10-17 | Moteur à courses périodiquement variables | |
US2090841A (en) * | 1936-01-21 | 1937-08-24 | Jones Sidney | Method of exhausting the cylinders of internal combustion engines |
US3686972A (en) * | 1970-05-28 | 1972-08-29 | Edward M Mcwhorter | Internal combustion engine variable throw crankshaft |
US3861239A (en) * | 1972-06-05 | 1975-01-21 | Edward M Mcwhorter | Internal combustion engine combustion control crankshaft |
US4152955A (en) * | 1975-01-02 | 1979-05-08 | Mcwhorter Edward M | Engine compound crankshaft |
-
1986
- 1986-05-23 EP EP19860903146 patent/EP0222841A1/fr not_active Withdrawn
- 1986-05-23 WO PCT/AU1986/000148 patent/WO1986007115A1/fr unknown
Non-Patent Citations (1)
Title |
---|
See references of WO8607115A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1986007115A1 (fr) | 1986-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0222841A1 (fr) | Manivelle de vilebrequin | |
EP2257700B1 (fr) | Mécanisme de piston à mouvement alternatif et procédé permettant d'augmenter la recirculation des gaz d'échappement (rge) interne dans un moteur à combustion interne | |
US6526935B2 (en) | Cardioid cycle internal combustion engine | |
EP2281107B1 (fr) | Moteur pourvu d'une chambre a volume variable | |
GB2173547A (en) | Valve gear for four-cycle engine | |
JP4605907B2 (ja) | 前後で同軸にかつ互いに横方向間隔をおいて配置された軸線平行な2本の軸を連結する連結要素 | |
US5809864A (en) | Opposed piston engines | |
JP5014225B2 (ja) | 内燃機関 | |
EP0340213A4 (en) | Internal combustion engine variable stroke mechanism | |
US4694785A (en) | Piston apparatus | |
US4419057A (en) | Rotary piston motor | |
US6006619A (en) | Internal combustion engine with improved orbital crankshaft motion converter | |
CA2073457A1 (fr) | Mecanisme a bielle | |
US5450823A (en) | Axial-piston machine | |
US6435145B1 (en) | Internal combustion engine with drive shaft propelled by sliding motion | |
US10590768B2 (en) | Engine crank and connecting rod mechanism | |
US10947847B2 (en) | Engine crank and connecting rod mechanism | |
JP4845989B2 (ja) | エンジン | |
Beachley et al. | A critical evaluation of the geared hypocycloid mechanism for internal combustion engine application | |
RU2157899C2 (ru) | Двигатель внутреннего сгорания | |
CA2289223A1 (fr) | Moteur a piston de sakharnov | |
WO2012155216A2 (fr) | Ensemble manivelle dentée en angle | |
CA2326705C (fr) | Systeme de manivelles adapte a un mouvement sinusoidal des pistons | |
CA2255007A1 (fr) | Plier de vilebrequin et de bielles | |
RU2230207C2 (ru) | Аксиальный кривошипно-шатунный механизм поршневого двигателя внутреннего сгорания |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19870225 |