EP0219591B1 - Method of manufacturing an injection nozzle housing - Google Patents
Method of manufacturing an injection nozzle housing Download PDFInfo
- Publication number
- EP0219591B1 EP0219591B1 EP85890262A EP85890262A EP0219591B1 EP 0219591 B1 EP0219591 B1 EP 0219591B1 EP 85890262 A EP85890262 A EP 85890262A EP 85890262 A EP85890262 A EP 85890262A EP 0219591 B1 EP0219591 B1 EP 0219591B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- needle
- arbor
- seating face
- process according
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002347 injection Methods 0.000 title claims abstract description 11
- 239000007924 injection Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000007921 spray Substances 0.000 claims description 24
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 10
- 239000000446 fuel Substances 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000036316 preload Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 241000237942 Conidae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/168—Assembling; Disassembling; Manufacturing; Adjusting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/166—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49428—Gas and water specific plumbing component making
- Y10T29/49432—Nozzle making
Definitions
- the invention relates to a method for producing an injection nozzle body for injection nozzles for internal combustion engines, in particular for high-speed diesel engines, with spray holes emanating from the seat surface of a nozzle needle.
- Injection nozzles the duration of which is controlled as a function of nozzle needles moved in the axial direction, are part of the prior art.
- the stress on the material of the nozzle needle body in the region of the nozzle needle seat, which can subsequently lead to the nozzle needle body breaking, is composed of a series of individual stresses, which are listed below, for example.
- a pulsating hydrostatic pressure with an average supply pressure of approximately 200 bar in particular causes high circumferential tensions, whereby this pulsating hydrostatic pressure naturally also results in high dynamic pressure peaks.
- the nozzle needle has to hit the nozzle needle seat at a relatively high speed, as a result of which longitudinal stresses are introduced into the nozzle needle body. These longitudinal stresses overlap with the high circumferential stresses caused by the hydrostatic pressure.
- the spray holes themselves have a pronounced notch effect, so that in the event of a break, the root of the break usually originates from the spray holes themselves.
- a cavitation can often be observed on the inlet side of the spray holes due to the fuel, which leads to intercrystalline notches and thereby further reinforces the notch effect per se by the arrangement of the spray holes.
- the outside of injection nozzle bodies for internal combustion engines is subjected to temperatures in the order of magnitude of 350 ° C., a relatively clear temperature gradient developing over the wall thickness of the nozzle needle body, which decreases steeply towards the inside.
- hot gas corrosion occurs inside the nozzle body through the penetration of combustion gases through the spray holes. Overall, the interaction of a pulsating three-axis tensile stress condition with notch and corrosion effects is particularly disadvantageous.
- DE-A-1 583 992 has already disclosed a method for strengthening thick-walled pipes, in which, among other things, a ball is driven through a tube, which has a larger outer diameter than the nominal inner diameter of the tube. Furthermore, it is already known to convert the pressure and stress zones within a pipe into a defined basic state by means of appropriate combined temperature and pressure treatment over the pipe thickness, in which a tensile stress is observed outside and a compressive stress is observed inside.
- the valve In order to prevent hot gas corrosion in the interior of the nozzle body, the valve must close before the pressure in the combustion chamber, that is to say outside the nozzle body, is greater than the pressure in the interior of the nozzle body. On the one hand, the valve must start to close as early as possible and on the other hand, it must close as quickly as possible.
- the closing begins as soon as the hydraulic force on the valve needle has dropped below the force of the closing spring. Since the contact area for the hydraulic pressure when the needle is open is larger than when the needle is closed - the ratio of these areas is expressed by the closing ratio - the closing pressure is always less than the opening pressure. In order to start closing as early as possible, the seat diameter must be as small as possible, but the surface pressure on the valve seat increases.
- the invention now aims to provide a method for the production of injection hole bodies drilled in the seat hole, in which the strength is increased to such an extent that the valve needle can still be closed suddenly even at high injection pressure and has a favorable seating relationship.
- the method according to the invention is essentially characterized in that residual compressive stresses of between 50 and 300 N / mrn2 are applied to the seat surface of the nozzle needle, which go to 0 at a depth of 30 to 70% of the wall thickness of the injection nozzle body, starting from the seat surface .
- the method according to the invention is preferably carried out in such a way that the nozzle body in the region of the nozzle needle seat surface is deformed over the distance limit by means of a mandrel acting on the sealing surface of the nozzle body, the plastic deformation only over extends part of the wall thickness of the nozzle body in the region of the nozzle needle seat. Due to the fact that the nozzle body is deformed beyond the yield point in the area of the nozzle needle seat surface, residual residual stresses, namely compressive stresses, remain on the inside of the nozzle body in the area of the seat surface, since the plastically deformed regions are put under pressure by the elastically deformed zones located further out.
- these residual residual stresses mean that stress peaks can be safely absorbed, while the residual stresses in the area of the spray holes significantly reduce the notch effects.
- This local consolidation also makes it possible to reduce the needle diameter because the surface pressure can be increased by the valve needle. This leads to a more favorable seating ratio and, within certain limits, to a lower mass of the nozzle needle, which in turn enables faster closing.
- forces between 3000 N and 7000 N preferably, can be used with nozzles of the size used for high-speed diesel engines 5000 N, are applied so that they increase from 0 to the nominal value in 0.5 to 3 seconds, preferably 1 second.
- the nozzle body usually consists of high-temperature, tough, high-temperature corrosion-resistant special steel with high strength and can be case-hardened or nitrided before treatment.
- the deformation which is to be restricted essentially to the region of the nozzle needle seat, can be carried out in a simple manner by means of a dome with a shape that is matched to the seat surface.
- the configuration with a spherical or stepped conical shape is particularly preferred, in which the extent of the plastic deformation can also be geometrically concentrated on preferred areas of the seat surface. In this way, the zones of greatest prestress can be shifted into the area of the mouth of the spray holes, for which purpose the method is preferably carried out in such a way that a spherical shape of the dome is formed such that the dome touches the seat surface prior to the deformation along a circle takes place, which is adjacent to the spray holes.
- the greatest residual compressive stress can be shifted into the area of the spray holes (itself), the crowning of the work surfaces of the dome being greatest at the point that, when the tool is in contact, touches the seat along a circle in which the upper edges meet of the spray holes.
- the greatest pressure preload occurs at the point of the highest circumferential stress peak and somewhat above - at the point at which the needle stroke, which is strengthened by the desired favorable seating ratio, has the greatest effect.
- the spherical contour can be approximated by a polygon, in which case a stepped conical formation of the mandrel arises.
- a stepped conical design offers a significant simplification and cheaper manufacture of the mandrel, whereby due to the small angle differences between individual truncated cone shells there is no adverse influence on the stress pattern.
- the deformation itself can be carried out in a particularly simple manner by means of the nozzle needle.
- This nozzle needle can have a conical, offset conical or spherical seat surface, no special tool being required and the precise guidance of the needle in the upper part of the nozzle body being ensured.
- the sealing surfaces that is the part of the seat above the spray hole mouth, are embossed so that they seal particularly well later in operation. The sealing gap can therefore be shorter, which again benefits the seating position.
- the method according to the invention can be carried out in a simple manner in such a way that the compressive residual stresses are introduced through a mandrel with an outside diameter adapted to the inside width of the nozzle body and a conical, offset conical or crowned pressing surface at the end to be inserted into the nozzle body supported by an abutment, wherein an axial drive, in particular a hydraulic cylinder-piston unit or a spindle drive is specified for the free end of the mandrel.
- the guide seat of a nozzle needle in the upper part of the nozzle body means that separate guidance of the tool can be dispensed with, the nozzle needle itself naturally being particularly suitable as a tool in a particularly simple manner.
- FIG. 1 shows an axial section through a nozzle body with an inserted nozzle needle according to the prior art
- 2 and 3 special needle or tool shapes in the area of the needle seat
- 4 shows a schematic illustration of a device for carrying out the method according to the invention, partly in section
- 5 shows a graphical representation of the stress state in the area of the seat after the action of a deformation force with a conical tool
- FIG. 6 shows a graphical representation of the stress state in the region of the Seat after a deformation force with a crowned tool.
- nozzle body 1 shows a nozzle body 1, in which a nozzle needle 2 is displaceably guided in the axial direction.
- the nozzle needle 2 has a frustoconical end region 3, which cooperates with a seat 4 in the interior of the nozzle body 1. Starting from this seat 4, spray holes 5 are shown.
- the spray holes 5 are opened and closed by axial movement of the nozzle needle 2. 1, they are located on a relatively small diameter.
- the seat 4 ends in a blind hole 6.
- FIG. 2 shows the spherical shape of a tool or a nozzle needle 2, in which the design is such that when the force is applied it first touches the seat surface of the nozzle body along a circle 7, which is in the region 8 of the upper edges of the spray hole openings runs.
- a tool or a nozzle needle shaped in this way is acted upon in the direction of arrow 9, pressing forces are exerted in the area of the needle seat 4, the action being to take place such that the forces in the direction of arrow 9 for plastic deformation at least in area 8 of the needle seat 4 are sufficient.
- the plastic deformation should not extend over the entire cross-sectional area or wall thickness of the nozzle needle body 1 in the region of the seat surface.
- a stepped conical shape can also be selected, as suggested in FIG. 3.
- the design here is such that the nozzle needle 2 initially has a conical lateral surface with a first angle a for the conicity in the area of the needle seat. Subsequently, in the axial direction, starting from the tip, a second offset jacket surface is arranged at an angle ⁇ and subsequently a third offset jacket surface at an angle y.
- the design here is such that the angle a is chosen to be smaller than the angle ⁇ and the angle ⁇ to be smaller than the angle y, as a result of which an approximation of the crowning can be achieved by means of a polygonal train.
- FIG. 1 A simple device for carrying out the method according to the invention is illustrated in FIG.
- the nozzle body 1 is supported against an abutment 10 and a hydraulic press 11 is provided, by means of which a force in the direction of the arrow 9 can be exerted on a tool or a nozzle needle 2.
- the tool 2 is guided in the clear width of the nozzle body, which can be assumed in particular if the tool is formed by the nozzle needle 2 itself.
- the forces introduced are effective in the area of the seat surface 4, the forces having a particular effect on the lower edge or the upper edge of the taper when the tool or the nozzle needle is conical. In the case of a more or less crowned configuration, the point of attack can be shifted to certain cross-sectional planes in the vertical direction in order to achieve the desired effect.
- the schematic representation in FIG. 5 shows how the introduction of pressure into a tool 2 takes effect, or which residual residual stresses remain after the pressure has been reduced.
- the seat 4 is shown enlarged in FIG. 5.
- the individual lines define areas with the same residual residual stresses in the circumferential direction.
- the stresses are defined in descending order from 3 to 8 as compressive stresses, with 9 a neutral zone is defined, whereas the areas 10 already characterize tensile stresses.
- a qualitative picture of this type results after the application of a force in the direction of arrow 9 as residual stress after the relief.
- Stress patterns, as shown in FIG. 5, can be calculated in advance using the finite element method, whereby for the sake of order it is again stated that the simplified representation in FIG. 5 only illustrates the residual stresses in the circumferential direction after the action of a conical tool.
- FIG. 6 shows a representation of the peripheral stresses analogous to FIG. 5 after the action of a tool with a spherical contour.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Fuel-Injection Apparatus (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines Einspritzdüsenkörpers für Einspritzdüsen für Brennkraftmaschinen, insbesondere für schnellaufende Dieselmotoren, mit von der Sitzfiäche einer Düsennadel ausgehenden Spritzlöchern.The invention relates to a method for producing an injection nozzle body for injection nozzles for internal combustion engines, in particular for high-speed diesel engines, with spray holes emanating from the seat surface of a nozzle needle.
Einspritzdüsen, deren Spritzdauer in Abhängigkeit von in axialen Richtung bewegten Düsennadeln gesteuert wird, zählen zum Stand der Technik. Bei diesen bekannten Konstruktionen wird zwischen Ausbildungen, bei welchen die Spritzlöcher von einer Sackbohrung unterhalb des Ventilsitzes ausgehen, und einer Ausbildung, bei welcher die Spritzlöcher aus dem Bereich des Ventilsitzes selbst ausgehen, unterschieden. Es ist bekannt, dass bei Ausbildungen, bei welchen die Spritzlöcher von den Sackbohrungen ausgehen, ein Nachtropfen beobachtet wird. Der nachtropfende Brennstoff kann mangels ausreichender Zerstäubung nicht mehr verbrannt werden, wodurch sich die Treibstoffökonomie verringert und das Emissionsverhalten, insbesondere die Emission unverbrannter Kohlenwasserstoffe, verschlechtert wird.Injection nozzles, the duration of which is controlled as a function of nozzle needles moved in the axial direction, are part of the prior art. In these known constructions, a distinction is made between designs in which the spray holes originate from a blind hole below the valve seat and a design in which the spray holes originate from the area of the valve seat itself. It is known that drips are observed in designs in which the spray holes originate from the blind bores. The dripping fuel can no longer be burned due to a lack of sufficient atomization, which reduces the fuel economy and the emission behavior, in particular the emission of unburned hydrocarbons, deteriorates.
Um einem derartigen Nachtropfen entgegenzuwirken wurde bereits vorgeschlagen, die Spritzlöcher im Sitzbereich der Düsennadel anzuordnen. Die Anordnung von Spritzlöchern in der Sitzfläche selbst stellt aber eine Reihe von nur schwer lösbaren Festigkeitsproblemen und derartige in der Sitzfläche angeordnete Spritzlöcher haben in der Vergangenheit bei Versuchen immer zu einem grossen Bruchrisiko geführt. Aus diesem Grunde sind sitzlochgebohrte Düsen gegenwärtig bei schnellaufenden Dieselmotoren immer noch nicht serienmässig im Einsatz.In order to counteract such dripping, it has already been proposed to arrange the spray holes in the seat area of the nozzle needle. The arrangement of spray holes in the seat itself poses a number of hard-to-solve strength problems, and such spray holes arranged in the seat have always led to a great risk of breakage in tests in the past. For this reason, seat-drilled nozzles are still not used in series production in high-speed diesel engines.
Die Beanspruchung des Werkstoffes des Düsennadelkörpers im Bereich des Düsennadelsitzes, welche in der Folge zum Bruch des Düsennadelkörpers führen kann, setzt sich aus einer Reihe von Einzelbeanspruchungen zusammen, welche nachfolgend beispielsweise aufgezählt werden. Ein pulsierender hydrostatischer Druck mit einem durchschnittlichen Zuführungsdruck von etwa 200 bar verursacht im besonderen hohe Umfangsspannungen, wobei dieser pulsierende hydrostatische Druck naturgemäss auch hohe dynamische Druckspitzen zur Folge hat. Um ein sicheres Abschliessen der Spritzlöcher nach der vorgegebenen Einspritzzeit zu gewährleisten, muss die Düsennadel mit relativ hoher Geschwindigkeit auf den Düsennadelsitz aufschlagen, wodurch Längsspannungen in den Düsennadelkörper eingebracht werden. Diese Längsspannungen überlagern sich mit den durch den hydrostatischen Druck bedingten hohen Umfangsspannungen. Die Spritzlöcher selbst zeigen eine ausgeprägte Kerbwirkung, so dass bei einem Bruch in der Regel die Wurzel des Bruches von den Spritzlöchern selbst ausgeht. Darüberhinaus ist an der Eintrittsseite der Spritzlöcher durch den Brennstoff häufig eine Kavitation zu beobachten, die zu interkristallinen Kerben führt und dadurch die an sich gegebene Kerbwirkung durch die Anordnung der Spritzlöcher weiter verstärkt. Im Einsatz ist die Aussenseite von Einspritzdüsenkörpern für Brennkraftmaschinen mit Temperaturen in der Grössenordnung von 350°C beaufschlagt, wobei sich über die Wandstärke des Düsennadelkörpers ein relativ deutlicher Temperaturgradient, welcher nach innen steil abnimmt, ausbildet. Zusätzlich kommt es zu Heissgaskorrosion im Inneren des Düsenkörpres durch das Eindringen von Verbrennungsgasen durch die Spritzlöcher. Insgesamt ist das Zusammenwirken eines pulsierenden dreiachsigen Zugsspannungszustandes mit Kerb- und Korrosionswirkungen besonders nachteilig.The stress on the material of the nozzle needle body in the region of the nozzle needle seat, which can subsequently lead to the nozzle needle body breaking, is composed of a series of individual stresses, which are listed below, for example. A pulsating hydrostatic pressure with an average supply pressure of approximately 200 bar in particular causes high circumferential tensions, whereby this pulsating hydrostatic pressure naturally also results in high dynamic pressure peaks. In order to ensure that the spray holes are closed securely after the specified injection time, the nozzle needle has to hit the nozzle needle seat at a relatively high speed, as a result of which longitudinal stresses are introduced into the nozzle needle body. These longitudinal stresses overlap with the high circumferential stresses caused by the hydrostatic pressure. The spray holes themselves have a pronounced notch effect, so that in the event of a break, the root of the break usually originates from the spray holes themselves. In addition, a cavitation can often be observed on the inlet side of the spray holes due to the fuel, which leads to intercrystalline notches and thereby further reinforces the notch effect per se by the arrangement of the spray holes. In use, the outside of injection nozzle bodies for internal combustion engines is subjected to temperatures in the order of magnitude of 350 ° C., a relatively clear temperature gradient developing over the wall thickness of the nozzle needle body, which decreases steeply towards the inside. In addition, hot gas corrosion occurs inside the nozzle body through the penetration of combustion gases through the spray holes. Overall, the interaction of a pulsating three-axis tensile stress condition with notch and corrosion effects is particularly disadvantageous.
Es sind eine Reihe von Druck- und Temperaturbehandlungen für Rohre bekanntgeworden, mit welchen die Festigkeitseigenschaften der Wände von Rohren verbessert werden. Im besonderen ist mit der DE-A-1 583 992 bereits ein Verfahren zur Verfestigung dickwandiger Rohre bekanntgeworden, bei welchem in mehreren aufeinanderfolgenden Arbeitsgängen u.A. eine Kugel durch ein Rohr hindurchgetrieben wird, welche einen grösseren Aussendurchmesser als den Nenninnendurchmesser des Rohres aufweist. Es ist weiters bereits bekannt, die Druck-und Spannungsbelastungszonen innerhalb eines Rohres durch entsprechende kombinierte Temperatur- und Druckbehandlung über die Rohrdicke in einen definierten Grundzustand, bei welchem aussen eine Zugspannung und innen eine Druckspannung beobachtet wird, überzuführen.A number of pressure and temperature treatments for pipes have become known which improve the strength properties of the walls of pipes. In particular, DE-A-1 583 992 has already disclosed a method for strengthening thick-walled pipes, in which, among other things, a ball is driven through a tube, which has a larger outer diameter than the nominal inner diameter of the tube. Furthermore, it is already known to convert the pressure and stress zones within a pipe into a defined basic state by means of appropriate combined temperature and pressure treatment over the pipe thickness, in which a tensile stress is observed outside and a compressive stress is observed inside.
Um Heissgaskorrosion im Inneren des Düsenkörpers zu verhindern, muss das Ventil schliessen, bevor der Druck im Verbrennungsraum, also ausserhalb des Düsenkörpers, grösser als der Druck im Inneren des Düsenkörpers ist. Das Ventil muss also zum Einen möglichst frühzeitig zu schliessen beginnen und zum Anderen möglichst schnell schliessen.In order to prevent hot gas corrosion in the interior of the nozzle body, the valve must close before the pressure in the combustion chamber, that is to say outside the nozzle body, is greater than the pressure in the interior of the nozzle body. On the one hand, the valve must start to close as early as possible and on the other hand, it must close as quickly as possible.
Das Schliessen beginnt, sobald die hydraulische Kraft auf die Ventilnadel unter die Kraft der Schliessfeder abgesunken ist. Da die Angriffsfläche für den hydraulischen Druck bei geöffneter Nadel grösser als bei geschlossener Nadel ist - das Verhältnis dieser Flächen wird durch das Schliessverhältnis ausgedrückt -, ist der Schliessdruck immer kleiner als der Öffnungsdruck. Um möglichst frühen Schliessbeginn zu erzielen, muss der Sitzdurchmesser möglichst klein sein, wobei sich aber die Flächenpressung am Ventilsitz erhöht.The closing begins as soon as the hydraulic force on the valve needle has dropped below the force of the closing spring. Since the contact area for the hydraulic pressure when the needle is open is larger than when the needle is closed - the ratio of these areas is expressed by the closing ratio - the closing pressure is always less than the opening pressure. In order to start closing as early as possible, the seat diameter must be as small as possible, but the surface pressure on the valve seat increases.
Schnelles Schliessen der Nadel erfordert eine harte Schliessfeder, wodurch der Nadelschlag auf den Ventilsitz stärker wird.Fast closing of the needle requires a hard closing spring, which increases the needle impact on the valve seat.
Frühzeitiges Schliessen und schnelles Schliessen war nach dem Stand der Technik aus Festigkeitsgründen nicht realisierbar.According to the state of the art, early closing and quick closing were not feasible for reasons of strength.
Die Erfindung zielt nun darauf ab, ein Verfahren zur Herstellung sitzlochgebohrter Einspritzdüsenkörper zu schaffen, bei welchen die Festigkeit so weit gesteigert ist, dass die Ventilnadel auch bei hohem Einspritzdruck noch schlagartig geschlossen werden kann und ein günstiges Sitzverhältnis aufweist. Zur Lösung dieser Aufgabe ist das erfindungsgemässe Verfahren im wesentlichen dadurch gekennzeichnet, dass auf die Sitzfläche der Düsennadel Druckeigenspannungen zwischen 50 und 300 N/mrn2 eingebracht werden, welche in einer Tiefe von 30 bis 70% der Wandstärke des Einspritzdüsenkörpers ausgehend von der Sitzfläche gegen 0 gehen.The invention now aims to provide a method for the production of injection hole bodies drilled in the seat hole, in which the strength is increased to such an extent that the valve needle can still be closed suddenly even at high injection pressure and has a favorable seating relationship. To achieve this object, the method according to the invention is essentially characterized in that residual compressive stresses of between 50 and 300 N / mrn2 are applied to the seat surface of the nozzle needle, which go to 0 at a depth of 30 to 70% of the wall thickness of the injection nozzle body, starting from the seat surface .
Zur Herstellung von Düsenkörpern, welche allen Beanspruchungen, also auch der Beanspruchung durch korrosive Gase, gewachsen sind, wird das erfindungsgemässe Verfahren vorzugsweise derart durchgeführt, dass der Düsenkörper im Bereich der Düsennadelsitzfläche mittels eines auf die Dichtfläche des Düsenkörpers wirkenden Dornes über die Streckengrenze verformt wird, wobei die plastische Verformung sich nur über einen Teil der Wandstärke des Düsenkörpers im Bereich der Düsennadelsitzfläche erstreckt. Dadurch dass der Düsenkörper im Bereich der Düsennadelsitzfläche über die Streckgrenze verformt wird, verbleiben nach der Entlastung an der Innenseite des Düsenkörpers im Bereich der Sitzfläche Resteigenspannungen und zwar Druckspannungen, da die plastisch verformten Bereiche durch die weiter aussen liegenden elastisch verformten Zonen unter Druck gesetzt werden. Diese Resteigenspannungen führen in der Folge dazu, dass Spannungsspitzen sicher aufgenommen werden können, wobei sich gleichzeitig durch die Druckeigenspannungen im Bereich der Spritzlöcher die Kerbwirkungen stark vermindern. Durch diese örtliche Verfestigung ist es auch möglich, den Nadeldurchmesser zu verringern, weil die Flächenpressung durch die Ventilnadel erhöht werden kann. Das führt zu einem günstigeren Sitzverhältnis und in gewissen Grenzen zu einer geringeren Masse der Düsennadel, wodurch wieder ein schnelleres Schliessen ermöglicht wird. Um eine derartige plastische Verformung, welche sich nur über einen Teil der Wandstärke des Düsenkörpers im Bereich des Düsennadelsitzes erstrecken soll, sicherzustellen, können bei Düsen in der Grösse, wie sie für schnellaufende Dieselmotoren verwendet werden, bevorzugt Kräfte zwischen 3000 N und 7000 N, vorzugsweise 5000 N, so aufgebracht werden, dass sie in 0,5 bis 3 sec., vorzugsweise 1 sec, von 0 auf den Nominalwert ansteigen. Der Düsenkörper besteht üblicherweise aus hochwarmfestem, zähem, hochtemperaturkorrosionsbeständigem Spezialstahl mit hoher Festigkeit und kann vor der Behandlung einsatzgehärtet oder nitriert werden.For the production of nozzle bodies, which all Stresses, i.e. also the stress caused by corrosive gases, the method according to the invention is preferably carried out in such a way that the nozzle body in the region of the nozzle needle seat surface is deformed over the distance limit by means of a mandrel acting on the sealing surface of the nozzle body, the plastic deformation only over extends part of the wall thickness of the nozzle body in the region of the nozzle needle seat. Due to the fact that the nozzle body is deformed beyond the yield point in the area of the nozzle needle seat surface, residual residual stresses, namely compressive stresses, remain on the inside of the nozzle body in the area of the seat surface, since the plastically deformed regions are put under pressure by the elastically deformed zones located further out. As a result, these residual residual stresses mean that stress peaks can be safely absorbed, while the residual stresses in the area of the spray holes significantly reduce the notch effects. This local consolidation also makes it possible to reduce the needle diameter because the surface pressure can be increased by the valve needle. This leads to a more favorable seating ratio and, within certain limits, to a lower mass of the nozzle needle, which in turn enables faster closing. In order to ensure such plastic deformation, which should only extend over part of the wall thickness of the nozzle body in the region of the nozzle needle seat, forces between 3000 N and 7000 N, preferably, can be used with nozzles of the size used for high-speed diesel engines 5000 N, are applied so that they increase from 0 to the nominal value in 0.5 to 3 seconds, preferably 1 second. The nozzle body usually consists of high-temperature, tough, high-temperature corrosion-resistant special steel with high strength and can be case-hardened or nitrided before treatment.
Die Verformung, welche sich im wesentlichen auf den Bereich des Düsennadelsitzes beschränken soll, kann in einfacher Weise mittels eines Domes mit auf die Sitzfläche abgestimmter Form vorgenommen werden. Neben einer konischen Form ist als besonders bevorzugt die Ausbildung mit balliger oder abgesetzt konischer Form zu bezeichnen, bei welcher das Ausmass der plastischen Verformung auch geometrisch auf bevorzugte Bereiche der Sitzfläche konzentriert werden kann. Auf diese Weise können die Zonen grösster Druckvorspannung in den Bereich der Mündung der Spritzlöcher verschoben werden, wofür vorzugsweise das Verfahren so durchgeführt wird, dass eine ballige Form des Domes so ausgebildet wird, dass die Berührung des Domes mit der Sitzfläche vor der Verformung längs eines Kreises erfolgt, welcher den Spritzlöchern benachbart ist. Mit einer derartigen Verfahrensführung lässt sich die grösste Druckeigenspannung in den Bereich der Spritzlöcher (selbst) verlagern, wobei die Balligkeit der Arbeitsflächen des Domes an der Stelle am grössten ist, die bei anliegendem Werkzeug die Sitzfläche längs eines Kreises berührt, in dem sich die oberen Kanten der Spritzlöcher befinden. Auf diese Weise wird erreicht, dass die grösste Druckvorspannung an der Stelle der höchsten Umfangsspannungsspitze und etwas darüber - an der Stelle, an der der Nadelschlag, verstärkt durch das erwünschte günstige Sitzverhältnis, am stärksten wirkt - auftritt. Durch die Wahl der Balligkeit lässt sich die optimale Lage der maximalen Druckvorspannung genau einstellen.The deformation, which is to be restricted essentially to the region of the nozzle needle seat, can be carried out in a simple manner by means of a dome with a shape that is matched to the seat surface. In addition to a conical shape, the configuration with a spherical or stepped conical shape is particularly preferred, in which the extent of the plastic deformation can also be geometrically concentrated on preferred areas of the seat surface. In this way, the zones of greatest prestress can be shifted into the area of the mouth of the spray holes, for which purpose the method is preferably carried out in such a way that a spherical shape of the dome is formed such that the dome touches the seat surface prior to the deformation along a circle takes place, which is adjacent to the spray holes. With such a procedure, the greatest residual compressive stress can be shifted into the area of the spray holes (itself), the crowning of the work surfaces of the dome being greatest at the point that, when the tool is in contact, touches the seat along a circle in which the upper edges meet of the spray holes. In this way it is achieved that the greatest pressure preload occurs at the point of the highest circumferential stress peak and somewhat above - at the point at which the needle stroke, which is strengthened by the desired favorable seating ratio, has the greatest effect. By choosing the crown, the optimal position of the maximum pressure preload can be set precisely.
Die ballige Kontur kann durch einen Polygonzug angenähert werden, wobei in diesem Falle eine abgesetzt konische Ausbildung des Dornes entsteht. Eine derartig abgesetzt konische Ausbildung bietet eine wesentliche Vereinfachung und Verbilligung der Fertigung des Dornes, wobei wegen der geringen Winkelunterschiede zwischen einzelnen Kegelstumpfmänteln keine ungünstige Beeinflussung des Spannungsbildes entsteht.The spherical contour can be approximated by a polygon, in which case a stepped conical formation of the mandrel arises. Such a stepped conical design offers a significant simplification and cheaper manufacture of the mandrel, whereby due to the small angle differences between individual truncated cone shells there is no adverse influence on the stress pattern.
In besonders einfacher Weise kann im Rahmen des erfindungsgemässen Verfahrens die Verformung mittels der Düsennadel selbst vorgenommen werden. Diese Düsennadel kann eine konische, abgesetzt konische oder ballige Sitzfläche aufweisen, wobei kein gesondertes Werkzeug erforderlich ist und die genaue Führung der Nadel im Oberteil des Düsenkörpers sichergestellt ist. Es erübrigt sich eine gesonderte Werkzeugführung und es kann eine einfache hydraulische Presse verwendet werden. Der genaue Sitz der Ventilnadel kann bei einer derartigen Verfahrensführung auch bei geringerer Fertigungsgenauigkeit der Nadel selbst erreicht werden. Durch den innigen Kontakt zwischen Nadel und Sitzfläche werden die Dichtflächen, das ist der Teil der Sitzfläche über der Spritzlochmündung, aneinander geprägt, so dass sie später im Betrieb besonders gut abdichten. Der Dichtspalt kann dadurch kürzer sein, was wieder dem Sitzverhältnis zugute kommt.In the context of the method according to the invention, the deformation itself can be carried out in a particularly simple manner by means of the nozzle needle. This nozzle needle can have a conical, offset conical or spherical seat surface, no special tool being required and the precise guidance of the needle in the upper part of the nozzle body being ensured. There is no need for a separate tool guide and a simple hydraulic press can be used. With such a procedure, the exact fit of the valve needle can also be achieved with less manufacturing accuracy of the needle itself. Due to the intimate contact between the needle and the seat, the sealing surfaces, that is the part of the seat above the spray hole mouth, are embossed so that they seal particularly well later in operation. The sealing gap can therefore be shorter, which again benefits the seating position.
Das erfindungsgemässe Verfahren kann hiebei in einfacher Weise derart durchgeführt werden, dass die Druckeigenspannungen durch einen Dorn mit einem der lichten Weite des Düsenkörpers angepassten Aussendurchmesser und einer konischen, abgesetzt konischen oder balligen Pressfläche am in den von einem Widerlager abgestützten Düsenkörper einzuführenden Ende eingebracht werden, wobei ein axialer Antrieb, insbesondere ein hydraulisches Zylinderkolbenaggregat oder ein Spindeltrieb für das freie Ende des Dornes vorgegeben ist. Durch den Führungssitz einer Düsennadel im oberen Teil des Düsenkörpers kann eine gesonderte Führung des Werkzeuges entfallen, wobei sich naturgemäss in besonders einfacher Weise die Düsennadel selbst als Werkzeug eignet.The method according to the invention can be carried out in a simple manner in such a way that the compressive residual stresses are introduced through a mandrel with an outside diameter adapted to the inside width of the nozzle body and a conical, offset conical or crowned pressing surface at the end to be inserted into the nozzle body supported by an abutment, wherein an axial drive, in particular a hydraulic cylinder-piston unit or a spindle drive is specified for the free end of the mandrel. The guide seat of a nozzle needle in the upper part of the nozzle body means that separate guidance of the tool can be dispensed with, the nozzle needle itself naturally being particularly suitable as a tool in a particularly simple manner.
Die Erfindung wird nachfolgend an Hand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. In dieser zeigen Fig. 1 einen Achsschnitt durch einen Düsenkörper mit eingesetzter Düsennadel nach dem Stand der Technik; Fig. 2 und 3 spezielle Nadel- bzw. Werkzeugformen im Bereich des Nadelsitzes; Fig. 4 eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens teilweise im Schnitt; Fig. 5 eine schaubildliche Darstellung des Spannungszustandes im Bereich der Sitzfläche nach Einwirkung einer Verformungskraft mit einem konischen Werkzeug und Fig. 6 eine schaubildliche Darstellung des Spannungszustandes im Bereich der Sitzfläche nach Einwirkung einer Verformungskraft mit einem balligen Werkzeug.The invention is explained in more detail below with reference to exemplary embodiments shown in the drawing. 1 shows an axial section through a nozzle body with an inserted nozzle needle according to the prior art; 2 and 3 special needle or tool shapes in the area of the needle seat; 4 shows a schematic illustration of a device for carrying out the method according to the invention, partly in section; 5 shows a graphical representation of the stress state in the area of the seat after the action of a deformation force with a conical tool, and FIG. 6 shows a graphical representation of the stress state in the region of the Seat after a deformation force with a crowned tool.
In Fig. 1 ist ein Düsenkörper 1 dargestellt, in welchem eine Düsennadel 2 in axialer Richtung verschieblich geführt ist. Die Düsennadel 2 weist einen kegelstumpfförmigen Endbereich 3 auf, welcher mit einer Sitzfläche 4 im Inneren des Düsenkörpers 1 zusammenwirkt. Ausgehend von dieser Sitzfläche 4 sind Spritzlöcher 5 dargestellt. Die Spritzlöcher 5 werden durch axiale Bewegung der Düsennadel 2 geöffnet und geschlossen. Bei der Darstellung nach Fig. 1 befinden sie sich auf relativ kleinem Durchmesser. Die Sitzfläche 4 endet in einem Sackloch 6.1 shows a
In Fig. 2 ist die ballige Form eines Werkzeuges bzw. einer Düsennadel 2 dargestellt, bei weicher die Ausbildung so getroffen ist, dass sie beim Aufbringen der Kraft die Sitzfläche des Düsenkörpers zuerst längs eines Kreises 7 berührt, der im Bereich 8 der Oberkanten der Spritzlochmündungen verläuft. Beim Beaufschlagen eines derartigen Werkzeuges bzw. einer derart geformten Düsennadel in Richtung des Pfeiles 9 werden Presskräfte im Bereich des Nadelsitzes 4 ausgeübt, wobei die Beaufschlagung so erfolgen soll, dass die Kräfte in Richtung des Pfeiles 9 für eine plastische Verformung zumindest im Bereich 8 des Nadelsitzes 4 ausreichen. Die plastische Verformung soll sich nicht über die gesamte Querschnittsfläche bzw. Wandstärke des Düsennadelkörpers 1 im Bereich der Sitzfläche erstrecken. Statt der Nadelform bzw. Werkzeugform entsprechend Fig. 2 kann auch, wie in Fig. 3 vorgeschlagen, eine abgesetzt konische Form gewählt werden. Die Ausbildung ist hier so getroffen, dass die Düsennadel 2 im Bereich des Nadelsitzes zunächst eine konische Mantelfläche mit einem ersten Winkel a für die Konizität aufweist. In axialer Richtung anschliessend ausgehend von der Spitze wird eine zweite abgesetzte Mantelfläche unter einem Winkel ß und in der Folge eine dritte abgesetzte Mantelfiäche unter einem Winkel y angeordnet. Die Ausbildung ist hier so getroffen, dass der Winkel a kleiner als der Winkel ß und der Winkel ß kleiner als der Winkel y gewählt wird, wodurch sich eine Annäherung der Balligkeit durch einen polygonalen Zug verwirklichen lässt.2 shows the spherical shape of a tool or a
In Fig. 4isteine einfache Einrichtung zur Durchführung des erfindungsgemässen Verfahrens veranschaulicht. Der Düsenkörper 1 ist gegen ein Widerlager 10 abgestützt und es ist eine hydraulische Presse 11 vorgesehen, mittels welcher auf ein Werkzeug bzw. eine Düsennadel 2 eine Kraft in Richtung des Pfeiles 9 ausgeübt werden kann. Das Werkzeug 2 ist in der lichten Weite des Düsenkörpers geführt, was insbesondere dann anzunehmen ist, wenn das Werkzeug von der Düsennadel 2 selbst gebildet ist. Die eingebrachten Kräfte werden im Bereich der Sitzfläche 4 wirksam wobei sich die Kräfte bei exakt konischer Ausbildung des Werkzeuges bzw. der Düsennadel an der Unterkante bzw. der Oberkante der Konizität besonders auswirken. Im Falle einer mehr oder minder balligen Ausgestaltung lässt sich der Angriffspunkt auf bestimmte Querschnittsebenen in Höhenrichtung verlagern, um den gewünschten Effekt zu erzielen.A simple device for carrying out the method according to the invention is illustrated in FIG. The
An Hand der schematischen Darstellung in Fig. 5 ist ersichtlich, wie die Druckeinleitung in ein Werkzeug 2 zur Wirkung gelangt, bzw. welche Resteigenspannungen nach dem Druckabbau verbleiben. Zu diesem Zweck ist in Fig. 5 die Sitzfläche 4 vergrössert dargestellt. Die einzelnen Linienzüge definieren Bereiche mit gleichen Resteigenspannungen in Umfangsrichtung. Die Spannungen werden hiebei von 3 bis 8 absteigend als Druckspannungen definiert, mit 9 ist eine neutrale Zone definiert, wohingegen die Bereiche 10 bereits Zugspannungen charakterisieren. Ein qualitatives Bild dieser Art ergibt sich nach Anwendung einer Kraft in Richtung des Pfeiles 9 als Restspannung nach der Entlastung. Spannungsbilder, wie sie in Fig. 5 dargestellt sind, lassen sich nach der Methode der finiten Elemente vorausberechnen, wobei der Ordnung halber nochmals festgehalten wird, dass die vereinfachte Darstellung in Fig. 5 lediglich die Restspannungen in Umfangsrichtung nach Einwirken eines konischen Werkzeuges veranschaulicht.The schematic representation in FIG. 5 shows how the introduction of pressure into a
In Fig. 6 ist eine der Fig. 5 analoge Darstellung der Umfangsspannungen nach Einwirken eines Werkzeuges mit balliger Kontur ersichtlich.FIG. 6 shows a representation of the peripheral stresses analogous to FIG. 5 after the action of a tool with a spherical contour.
Der Einfachheit halber war nur von Umfangsspannungen die Rede. Naturgemäss lassen sich auch Spannungen in anderen Raumrichtungen bzw. Vergleichsspannungen mit denselben Methoden errechnen und in ähnlicher Weise grafisch darstellen.For the sake of simplicity, only circumferential tensions were mentioned. Naturally, tensions in other spatial directions or comparative tensions can also be calculated and graphically represented in a similar way.
Claims (8)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85890262T ATE39546T1 (en) | 1985-10-22 | 1985-10-22 | METHOD OF MAKING AN INJECTOR BODY. |
EP85890262A EP0219591B1 (en) | 1985-10-22 | 1985-10-22 | Method of manufacturing an injection nozzle housing |
DE8585890262T DE3567062D1 (en) | 1985-10-22 | 1985-10-22 | Method of manufacturing an injection nozzle housing |
JP61250620A JPS62101881A (en) | 1985-10-22 | 1986-10-21 | Fuel injection nozzle body and method and device for manufacturing said nozzle body |
US06/921,195 US4819871A (en) | 1985-10-22 | 1986-10-21 | Process of manufacturing a fuel injection nozzle body and apparatus for carrying out the process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP85890262A EP0219591B1 (en) | 1985-10-22 | 1985-10-22 | Method of manufacturing an injection nozzle housing |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0219591A1 EP0219591A1 (en) | 1987-04-29 |
EP0219591B1 true EP0219591B1 (en) | 1988-12-28 |
Family
ID=8194757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85890262A Expired EP0219591B1 (en) | 1985-10-22 | 1985-10-22 | Method of manufacturing an injection nozzle housing |
Country Status (5)
Country | Link |
---|---|
US (1) | US4819871A (en) |
EP (1) | EP0219591B1 (en) |
JP (1) | JPS62101881A (en) |
AT (1) | ATE39546T1 (en) |
DE (1) | DE3567062D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004035292B4 (en) * | 2004-07-21 | 2016-12-01 | Robert Bosch Gmbh | pretreatment process |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4897907A (en) * | 1989-03-31 | 1990-02-06 | Stanadyne Automotive Corp. | Process for manufacturing nozzle tip |
US4967959A (en) * | 1989-06-22 | 1990-11-06 | Siemens-Bendix Automotive Electronics L.P. | Fuel injector having flat seat and needle fuel seal |
US5242118A (en) * | 1989-08-17 | 1993-09-07 | Steyr-Daimler-Punch Ag | Fuel injector for internal combustion engines |
US5081766A (en) * | 1990-10-11 | 1992-01-21 | Siemens Automotive L.P. | Method of making an electrically-operated fluid valve having improved sealing of the valve needle to the valve seat when the valve is closed |
GB9203658D0 (en) * | 1992-02-19 | 1992-04-08 | Lucas Ind Plc | Fuel injection nozzles |
DE4411554A1 (en) * | 1994-04-02 | 1995-10-05 | Bosch Gmbh Robert | Injector |
DE19507188C1 (en) * | 1995-03-02 | 1996-08-14 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE19507171C1 (en) * | 1995-03-02 | 1996-08-14 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE19609218B4 (en) * | 1996-03-09 | 2007-08-23 | Robert Bosch Gmbh | Fuel injection valve for internal combustion engines |
DE19618650B4 (en) * | 1996-05-09 | 2006-04-27 | Robert Bosch Gmbh | Method for producing a fuel injection valve for internal combustion engines |
EP0809017A1 (en) * | 1996-05-22 | 1997-11-26 | Steyr-Daimler-Puch Aktiengesellschaft | Two-stage fuel injection nozzel for internal combustion engine |
US6000638A (en) * | 1997-11-03 | 1999-12-14 | Caterpillar Inc. | Apparatus for strengthening a fuel injector tip member |
ITMI20021807A1 (en) * | 2001-08-11 | 2003-02-12 | Bosch Gmbh Robert | INJECTION VALVE |
DE10163908A1 (en) * | 2001-12-22 | 2003-07-03 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
US20060107526A1 (en) * | 2004-11-22 | 2006-05-25 | Von Bacho Paul S Iii | Process for inserting flow passages in a work piece |
DE102004063166A1 (en) * | 2004-12-29 | 2006-07-13 | Robert Bosch Gmbh | Dosing device for liquids has at least part of boring in form of widening produced by stamping or pressing |
DE102005025135A1 (en) * | 2005-06-01 | 2006-12-07 | Robert Bosch Gmbh | Fuel injection valve for internal combustion engines |
US7360722B2 (en) * | 2005-08-25 | 2008-04-22 | Caterpillar Inc. | Fuel injector with grooved check member |
US7578450B2 (en) * | 2005-08-25 | 2009-08-25 | Caterpillar Inc. | Fuel injector with grooved check member |
US20070200011A1 (en) * | 2006-02-28 | 2007-08-30 | Caterpillar Inc. | Fuel injector having nozzle member with annular groove |
DE102009001933A1 (en) * | 2009-03-27 | 2010-09-30 | Robert Bosch Gmbh | Method for processing a nozzle body |
EP2392816B1 (en) | 2010-06-03 | 2013-10-09 | Delphi Technologies Holding S.à.r.l. | Stress Relief in Pressurized Fluid Flow System |
US8590815B2 (en) * | 2010-06-24 | 2013-11-26 | Caterpillar Inc. | Fuel injector tip with compressive residual stress |
US9611824B2 (en) * | 2015-02-18 | 2017-04-04 | Caterpillar Inc. | Process for manufacturing an injector body |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2241735A (en) * | 1939-05-22 | 1941-05-13 | Penn Electric Switch Co | Process and apparatus for finishing valve seats and the like |
US3270410A (en) * | 1963-05-20 | 1966-09-06 | Briles Mfg | Method of prestressed fastening of materials |
DE1583992B1 (en) * | 1968-01-03 | 1971-06-09 | Mannesmann Ag | PROCESS FOR INCREASING THE STRENGTH PROPERTIES OF THICK-WALLED METALLIC HIGH PRESSURE PIPES |
FR2161155A6 (en) * | 1970-11-23 | 1973-07-06 | Stephanois Rech | |
US4098235A (en) * | 1974-08-28 | 1978-07-04 | Repco Research Proprietary Limited | Fuel feed control apparatus and system |
GB1565210A (en) * | 1975-10-21 | 1980-04-16 | Lucas Industries Ltd | Fuel injection nozzles for direct injection internal combustion engine |
DE2710217A1 (en) * | 1977-03-09 | 1978-09-14 | Bosch Gmbh Robert | FUEL INJECTOR |
JPS55133824A (en) * | 1979-04-04 | 1980-10-18 | Toyota Motor Corp | Boring method for machinery parts |
AT378244B (en) * | 1982-12-14 | 1985-07-10 | Steyr Daimler Puch Ag | INJECTION NOZZLE FOR AIR COMPRESSING, SELF-IGNITIONING PISTON PISTON COMBUSTION ENGINES |
JPS60150473A (en) * | 1984-01-18 | 1985-08-08 | Mitsubishi Heavy Ind Ltd | Fuel injection valve |
US4639568A (en) * | 1984-07-13 | 1987-01-27 | Ex-Cell-O Corporation | Apparatus and method for finishing fuel injector spray tips using EDM |
-
1985
- 1985-10-22 EP EP85890262A patent/EP0219591B1/en not_active Expired
- 1985-10-22 DE DE8585890262T patent/DE3567062D1/en not_active Expired
- 1985-10-22 AT AT85890262T patent/ATE39546T1/en not_active IP Right Cessation
-
1986
- 1986-10-21 US US06/921,195 patent/US4819871A/en not_active Expired - Fee Related
- 1986-10-21 JP JP61250620A patent/JPS62101881A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004035292B4 (en) * | 2004-07-21 | 2016-12-01 | Robert Bosch Gmbh | pretreatment process |
Also Published As
Publication number | Publication date |
---|---|
US4819871A (en) | 1989-04-11 |
DE3567062D1 (en) | 1989-02-02 |
JPS62101881A (en) | 1987-05-12 |
EP0219591A1 (en) | 1987-04-29 |
ATE39546T1 (en) | 1989-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0219591B1 (en) | Method of manufacturing an injection nozzle housing | |
EP0233190B1 (en) | Fuel injection nozzle for internal combustion engines | |
EP0982493B1 (en) | Method of making a fuel injection nozzle and fuel injection nozzle | |
DE3242137C2 (en) | Damped, guided pick | |
DE102006037069B4 (en) | Method for modifying a hole surface | |
DE3719459A1 (en) | FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES | |
EP1891324B1 (en) | Fuel injection valve for internal combustion engines | |
DE10210976A1 (en) | Fuel injection valve for internal combustion engine has injection jets converging from at least one outer and one inner injection channel | |
DE4214646A1 (en) | FUEL INJECTION NOZZLE FOR PRIME AND MAIN INJECTION | |
DE2803619C2 (en) | Method and device for the heat treatment of synthetic yarn | |
DE19809367A1 (en) | Precision machining method for i.c. engine piston sleeve | |
DE19843344A1 (en) | Fuel injection valve for internal combustion engine has valve member axially movably positioned in bore of valve body, which has valve sealing surface at combustion chamber-side end | |
CH659106A5 (en) | AIR-COMPRESSING, DIRECT-INJECTING INTERNAL COMBUSTION ENGINE. | |
WO2013033737A1 (en) | Wear-optimised production of conical injection holes | |
EP0116864A2 (en) | Fuel injection nozzle for internal-combustion engines | |
DE10232050A1 (en) | Fuel injection valve, for an IC motor, has micro-recesses in the valve needle sealing surface and/or the valve seat to improve the drift behavior of the injected fuel volume and increase the working life | |
DE19843616B4 (en) | fuel Injector | |
DE10006559A1 (en) | Grinding process and grinding machine | |
DE19618650B4 (en) | Method for producing a fuel injection valve for internal combustion engines | |
DE10106673A1 (en) | A method for producing an opening roller of an open-end spinning device and an opening roller produced using such a method | |
DE102004035292B4 (en) | pretreatment process | |
DE3902764A1 (en) | FUEL INJECTION PUMP | |
DE19843912B4 (en) | fuel Injector | |
DE9301992U1 (en) | Fuel injection nozzle for internal combustion engines | |
EP1802863B1 (en) | Fuel injection valve for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19870430 |
|
17Q | First examination report despatched |
Effective date: 19870930 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VOEST-ALPINE AUTOMOTIVE GESELLSCHAFT M.B.H. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 39546 Country of ref document: AT Date of ref document: 19890115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3567062 Country of ref document: DE Date of ref document: 19890202 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 85890262.0 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970915 Year of fee payment: 13 Ref country code: FR Payment date: 19970915 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970922 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970925 Year of fee payment: 13 Ref country code: CH Payment date: 19970925 Year of fee payment: 13 Ref country code: AT Payment date: 19970925 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981022 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981022 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 85890262.0 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990803 |