EP0216067A1 - Process and apparatus for removing alkali nitrite from salt baths containing nitrate - Google Patents

Process and apparatus for removing alkali nitrite from salt baths containing nitrate Download PDF

Info

Publication number
EP0216067A1
EP0216067A1 EP86110169A EP86110169A EP0216067A1 EP 0216067 A1 EP0216067 A1 EP 0216067A1 EP 86110169 A EP86110169 A EP 86110169A EP 86110169 A EP86110169 A EP 86110169A EP 0216067 A1 EP0216067 A1 EP 0216067A1
Authority
EP
European Patent Office
Prior art keywords
nitrite
bath
nitrate
salt
salt bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86110169A
Other languages
German (de)
French (fr)
Other versions
EP0216067B1 (en
Inventor
Helmut Dr. Kunst
Christian Scondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Houghton Durferrit degussa-Huels AG GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to AT86110169T priority Critical patent/ATE43647T1/en
Publication of EP0216067A1 publication Critical patent/EP0216067A1/en
Application granted granted Critical
Publication of EP0216067B1 publication Critical patent/EP0216067B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/607Molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions

Definitions

  • the invention relates to a method for removing alkali nitrite from nitrate-containing salt baths used for cooling components after nitriding, and a corresponding device.
  • DE-PS 25 14 398 describes a salt bath for cooling bath-nitrided iron and steel components, which contains sodium and potassium hydroxide with about 10% alkali nitrate.
  • This salt bath is being used to an increasing extent in industry in order to convert the cyanide and cyanate residues adhering to the bath-nitrided components when they are removed from the nitriding bath, thereby rendering them harmless.
  • These salt baths became particularly important when it was found that a significant increase in the corrosion resistance of nitrided components can be achieved under changed treatment conditions.
  • the procedure is usually such that the workpieces remain in the cooling bath operated at a temperature of 330 to 400 ° C. until they have reached its temperature and the detoxification reaction or the anti-corrosion treatment has been completed.
  • the workpieces are then removed from the cooling bath and cooled in cold water. If the cooling bath contains nitrite, this accumulates in the water used for cooling. Accordingly, this water must also be detoxified. This additional operation can be saved if the formation of the nitrite can be prevented or the nitrite can be destroyed immediately after its formation.
  • nitrite formed in the salt bath is oxidized there to nitrate.
  • air is preferably blown through the bath during the breaks.
  • This bath regeneration is most effective when the air flows through the salt bath in a very fine distribution.
  • This can best be achieved with an annular ventilation pipe, which is below the usually in suchi is attached to existing circulation stirrers.
  • the annular ventilation pipe (4) is provided on the surface facing the circulation stirrer (3) with bores (5) so that the air emerging therefrom is passed directly into the circulation stirrer (3) and is distributed by it in the bath (2), which is in a crucible (1).
  • the amount of air required naturally depends primarily on the amount of nitrite formed and thus on the amount of nitriding salt introduced into the cooling bath, ultimately on the size, shape and amount of the components treated. Arithmetically, there is an air requirement of approximately 1,625 liters per kg of sodium nitrite to be oxidized. The device described achieves a degree of utilization of 60 to 80%, which is why in practice 2,000 to 2,700 liters of air per kg of sodium nitrite are required.
  • the percentage of sodium nitrite corresponded to an absolute amount of 0.9 kg. Calculated, the air requirement was 1,465 liters (with 100% utilization). Since the degree of utilization was not known beforehand, double air volume was used. With the available time of 7 hours, 420 liters of air per hour had to be passed through the bath. After just 4.5 hours, ongoing analytical monitoring showed that the sodium nitrite content had dropped to 0 percent. This results in a degree of utilization of the air of 78%. At the same time as the ventilation, the bath was desludged, so that the following bath composition was present in% by weight when work was restarted: NaOH 19.1 KOH 42.5 Na2CO3 27.6 NaNO3 10.8 NaNO2 0.0
  • the absolute amount of NaNO2 formed was 18 kg, the calculated amount of air 29,250 liters.
  • double air volume was used first.
  • this large cooling bath had two circulators, so the ventilation was also carried out via two ventilation pipes. 1,220 liters of air were introduced per hour into each ventilation pipe. In this case too, it was found that the nitrite was completely converted after 15 hours, which corresponds to a degree of utilization of almost 80%.
  • the composition of the bath after aeration corresponded to the specified starting composition except for slight differences.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Beim Behandeln von salzbadnitrierten Bauteilen aus Eisen und Stahl in nitrathaltigen Abkühlbädern entstehen Ni­trite, die aus dem Waschwasser entfernt werden müssen. Diese Nitritbildung kann man vermeiden, wenn man das im Salzbad gebildete Nitrit dort zu Nitrat oxidiert, vor­zugsweise durch Einleiten von Luft in den Betriebspausen. When treating salt bath nitrided components made of iron and steel in cooling baths containing nitrate, nitrites are formed which have to be removed from the wash water. This nitrite formation can be avoided if the nitrite formed in the salt bath is oxidized there to nitrate, preferably by introducing air during the breaks in operation.

Description

Die Erfindung betrifft ein Verfahren zur Entfernung von Alkalinitrit aus nitrathaltigen, zum Abkühlen von Bauteilen nach dem Nitrieren verwendeten Salzbädern und eine ent­sprechende Vorrichtung.The invention relates to a method for removing alkali nitrite from nitrate-containing salt baths used for cooling components after nitriding, and a corresponding device.

In der DE-PS 25 14 398 wird ein Salzbad zum Kühlen badnitrierter Bauteile aus Eisen und Stahl beschrieben, das Natrium- und Kaliumhydroxid mit etwa 10 % Alkalinitrat ent­hält. Dieses Salzbad wird in zunehmendem Umfang in der In­dustrie eingesetzt, um die den badnitrierten Bauteilen bei Entnahme aus dem Nitrierbad anhaftenden Cyanid- und Cyanat­reste zu Carbonat umzusetzen und damit unschädlich zu machen. Besondere Bedeutung erlangten diese Salzbäder, als sich herausstellte, daß unter veränderten Behandlungsbedin­gungen eine deutliche Erhöhung des Korrosionswiderstandes nitrierter Bauteile erreichbar ist.DE-PS 25 14 398 describes a salt bath for cooling bath-nitrided iron and steel components, which contains sodium and potassium hydroxide with about 10% alkali nitrate. This salt bath is being used to an increasing extent in industry in order to convert the cyanide and cyanate residues adhering to the bath-nitrided components when they are removed from the nitriding bath, thereby rendering them harmless. These salt baths became particularly important when it was found that a significant increase in the corrosion resistance of nitrided components can be achieved under changed treatment conditions.

Bei Betrieb dieser Salzbäder wird, besonders bei hohen Durchsätzen, durch die Umsetzung von Cyanid und Cyanat zu Carbonat ein Teil des Nitrates zu Nitrit reduziert. In der Praxis wird üblicherwiese so verfahren, daß die Werkstücke mindestens so lange in dem bei einer Temperatur von 330 bis 400° C betriebenen Abkühlbad verbleiben, bis sie dessen Temperatur angenommen haben und die Entgiftungsreaktion bzw. die Korrosionsschutzbehandlung abgeschlossen ist. Dann werden die Werkstücke dem Abkühlbad entnommen und in kaltem Wasser abgekühlt. Enthält des Abkühlbad Nitrit, reichert sich dieses in dem zum Abkühlen verwendeten Wasser an. Dementsprechend muß dieses Wasser ebenfalls entgiftet werden. Dieser zusätzliche Arbeitsgang kann eingespart werden, wenn die Entstehung des Nitrits unter­bunden oder das Nitrit unmittelbar nach seiner Entstehung vernichtet werden kann.When these salt baths are operated, especially at high throughputs, some of the nitrate is reduced to nitrite by the conversion of cyanide and cyanate to carbonate. In practice, the procedure is usually such that the workpieces remain in the cooling bath operated at a temperature of 330 to 400 ° C. until they have reached its temperature and the detoxification reaction or the anti-corrosion treatment has been completed. The workpieces are then removed from the cooling bath and cooled in cold water. If the cooling bath contains nitrite, this accumulates in the water used for cooling. Accordingly, this water must also be detoxified. This additional operation can be saved if the formation of the nitrite can be prevented or the nitrite can be destroyed immediately after its formation.

Es war daher Aufgabe der vorliegenden Erfindung, ein Ver­fahren zur Entfernung von Alkalinitrit aus nitrathaltigen, zum Abkühlen von Bauteilen nach dem Nitrieren verwendeten Salzbädern zu entwickeln, um einen zusätzlichen Entgif­tungsarbeitsgang zu vermeiden.It was therefore an object of the present invention to develop a method for removing alkali nitrite from nitrate-containing salt baths used for cooling components after nitriding in order to avoid an additional detoxification operation.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das im Salzbad gebildete Nitrit dort zu Nitrat oxidiert wird. Vorzugsweise wird hierzu in den Betriebspausen Luft durch das Bad geblasen.This object is achieved in that the nitrite formed in the salt bath is oxidized there to nitrate. For this purpose, air is preferably blown through the bath during the breaks.

Mit dieser einfachen und einfach durchzuführenden Maßnahme gelingt es überraschenderweise, in der Salzschmelze das gebildete Nitrit zu Nitrat zu oxidieren. Die Behandlung des Abkühlbades erfolgt in Betriebspausen, z.B. nachts, an Wochenenden oder, wenn im vorgeschalteten Nitriersalzbad über längere Zeit keine Bauteilnitrierung erfolgt. Es ist von Vorteil, die Oxidationsbehandlungen in möglichst kurzen Zeiträumen durchzuführen, um das sich bildende Nitrit mög­lichst schon bei geringen Konzentrationen zu oxidieren.With this simple and simple measure, it is surprisingly possible to oxidize the nitrite formed to nitrate in the molten salt. The cooling bath is treated during breaks, e.g. at night, on weekends or when there is no component nitriding for a long time in the upstream nitriding salt bath. It is advantageous to carry out the oxidation treatments in as short a time as possible in order to oxidize the nitrite that is formed, if possible even at low concentrations.

Diese Badregenerierung ist am wirkungsvollsten, wenn die Luft in sehr feiner Verteilung durch das Salzbad strömt. Das läßt sich am besten erreichen mit einem ringförmigen Belüftungsrohr, das unterhalb des üblicherweise in derarti­ gen Bädern vorhandenen Umwälzrührers angebracht ist. Die Abbildung zeigt schematisch eine beispielhafte Ausführungs­form. Das ringförmige Belüftungsrohr (4) ist an der zum Umwälzrührer (3) gerichteten Oberfläche mit Bohrungen (5) versehen, so daß die daraus austretende Luft direkt in den Umwälzrührer (3) geleitet und von diesem im Bad (2) ver­teilt wird, das sich in einem Tiegel (1) befindet.This bath regeneration is most effective when the air flows through the salt bath in a very fine distribution. This can best be achieved with an annular ventilation pipe, which is below the usually in suchi is attached to existing circulation stirrers. The figure schematically shows an exemplary embodiment. The annular ventilation pipe (4) is provided on the surface facing the circulation stirrer (3) with bores (5) so that the air emerging therefrom is passed directly into the circulation stirrer (3) and is distributed by it in the bath (2), which is in a crucible (1).

Die notwendige Luftmenge hängt naturgemäß primär von der Menge des entstehenden Nitrits ab und damit von der Menge des in das Abkühlbad eingebrachten Nitriersalzes, letzten Endes also von Größe, Form und Menge der behandelten Bau­teile.
Rechnerisch ergibt sich ein Luftbedarf von ca. 1.625 Liter pro kg zu oxidierenden Natriumnitrits. Mit der be­schriebenen Vorrichtung erreicht man einen Ausnutzungsgrad von 60 bis 80 %, weshalb man in der Praxis 2.000 bis 2.700 Liter Luft pro kg Natriumnitrit benötigt.
The amount of air required naturally depends primarily on the amount of nitrite formed and thus on the amount of nitriding salt introduced into the cooling bath, ultimately on the size, shape and amount of the components treated.
Arithmetically, there is an air requirement of approximately 1,625 liters per kg of sodium nitrite to be oxidized. The device described achieves a degree of utilization of 60 to 80%, which is why in practice 2,000 to 2,700 liters of air per kg of sodium nitrite are required.

Folgende Beispiele sollen das erfindungsgemäße Verfahren näher erläutern.The following examples are intended to explain the process according to the invention in more detail.

1. In einer Salzbadnitrieranlage wurden in zwei Schichten stabförmige Bauteile salzbadnitriert und in einem Salz­bad, das eine Temperatur von 370° C hatte, abgekühlt. Die Wanne, die das Abkühlsalzbad enthielt, hatte eine Größe von 800 x 600 x 900 mm und einen Salzinhalt von 900 kg mit folgender Ausgangszusammensetzung (in Gew.-%):
NaOH 18,4
KOH 42,5
Na₂CO₃ 28,3
NaNO₃ 10,8
NaNO₂ 0,0
1. In a salt bath nitriding plant, rod-shaped components were salt bath nitrided in two layers and cooled in a salt bath which had a temperature of 370 ° C. The tub, which contained the cooling salt bath, had a size of 800 x 600 x 900 mm and a salt content of 900 kg with the following starting composition (in% by weight):
NaOH 18.4
KOH 42.5
Na₂CO₃ 28.3
NaNO₃ 10.8
NaNO₂ 0.0

Nach einer Betriebsdauer von 16 Stunden (= 2 Schichten) hatte sich die Zusammensetzung des Bades in Gew.-% wie folgt geändert:
NaOH 18,2
KOH 41,8
Na₂CO₃ 29,2
NaNO₃ 10,7
NaNO₂ 0,1
After an operating time of 16 hours (= 2 layers), the composition of the bath in% by weight had changed as follows:
NaOH 18.2
KOH 41.8
Na₂CO₃ 29.2
NaNO₃ 10.7
NaNO₂ 0.1

Der prozentuale Gehalt an Natriumnitrit entsprach einer absoluten Menge von 0,9 kg. Rechnerisch ergab sich ein Luftbedarf von 1.465 Liter (bei 100 % Ausnutzung). Da der Ausnutzungsgrad vorher nicht bekannt war, wurde mit der doppelten Luftmenge gearbeitet. Bei der zur Verfügung ste­henden Zeit von 7 Stunden waren demnach 420 Liter Luft pro Stunde durch das Bad zu leiten. Bereits nach 4,5 Stunden zeigte die laufende analytische Überwachung, daß der Gehalt an Natriumnitrit auf 0 Prozent gesunken war. Es errechnet sich daraus ein Ausnutzungsgrad der Luft von 78 %. Gleich­zeitig mit der Belüftung wurde das Bad entschlammt, so daß bei Wiederbeginn der Arbeit folgende Badzusammensetzung in Gew.-% vorlag:
NaOH 19,1
KOH 42,5
Na₂CO₃ 27,6
NaNO₃ 10,8
NaNO₂ 0,0
The percentage of sodium nitrite corresponded to an absolute amount of 0.9 kg. Calculated, the air requirement was 1,465 liters (with 100% utilization). Since the degree of utilization was not known beforehand, double air volume was used. With the available time of 7 hours, 420 liters of air per hour had to be passed through the bath. After just 4.5 hours, ongoing analytical monitoring showed that the sodium nitrite content had dropped to 0 percent. This results in a degree of utilization of the air of 78%. At the same time as the ventilation, the bath was desludged, so that the following bath composition was present in% by weight when work was restarted:
NaOH 19.1
KOH 42.5
Na₂CO₃ 27.6
NaNO₃ 10.8
NaNO₂ 0.0

2. Wellenförmige Bauteile wurden salzbadnitriert und in einem Abkühlbad abgekühlt. Die Wannengröße betrug 1200 x 1700 x 1500 mm, der Salzinhalt 6000 kg, die Temperatur 370° C. Gearbeitet wurde in drei Schichten. Nachstehend wird die Ausgangszusammensetzung des Bades und dessen Zusammensetzung nach 112 Stunden Arbeitszeit angegeben:

Figure imgb0001
2. Wavy components were nitrided in a salt bath and cooled in a cooling bath. The tub size was 1200 x 1700 x 1500 mm, the salt content 6000 kg, the temperature 370 ° C. The work was done in three shifts. The basic composition of the bath and its composition after 112 hours of work are given below:
Figure imgb0001

Die absolute Menge an gebildetem NaNO₂ betrug 18 kg, die rechnerische Luftmenge 29.250 Liter. Auch hier wurde zunächst mit der doppelten Luftmenge gearbeitet. Allerdings verfügte dieses große Abkühlbad über zwei Umwälzer, daher wurde die Belüftung auch über zwei Be­lüftungsrohre durchgeführt. Je Belüftungsrohr wurden 1.220 Liter Luft pro Stunde eingeleitet. Auch in diesem Falle wurde festgestellt, daß bereits nach 15 Stunden das Nitrit völlig umgesetzt war, was einem Ausnutzungs­grad von nahezu 80 % entspricht. Die Zusammensetzung des Bades nach der Belüftung entsprach bis auf geringe Unterschiede der angegebenen Ausgangszusammensetzung.The absolute amount of NaNO₂ formed was 18 kg, the calculated amount of air 29,250 liters. Here too, double air volume was used first. However, this large cooling bath had two circulators, so the ventilation was also carried out via two ventilation pipes. 1,220 liters of air were introduced per hour into each ventilation pipe. In this case too, it was found that the nitrite was completely converted after 15 hours, which corresponds to a degree of utilization of almost 80%. The composition of the bath after aeration corresponded to the specified starting composition except for slight differences.

Claims (3)

1. Verfahren zur Entfernung von Alkalinitrit aus nitrat­haltigem, zum Abkühlen von Bauteilen nach dem Nitrie­ren verwendeten Salzbädern, dadurch gekennzeichnet, daß das im Salzbad gebildete Nitrit dort zu Nitrat oxi­diert wird.1. A process for removing alkali nitrite from nitrate-containing salt baths used for cooling components after nitriding, characterized in that the nitrite formed in the salt bath is oxidized there to nitrate. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Oxidation von Nitrit zu Nitrat in Betriebs­pausen Luft durch das Salzbad geblasen wird.2. The method according to claim 1, characterized in that for the oxidation of nitrite to nitrate air is blown through the salt bath during breaks. 3. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 und 2, bestehend aus einem Tiegel mit Um­wälzrührer, dadurch gekennzeichnet, daß ein ringförmi­ges, mit Bohrungen (5) versehenes Belüftungsrohr (4) unterhalb des Umwälzrührers (3) im Salzbad (2) angebracht ist.3. Device for performing the method according to claims 1 and 2, consisting of a crucible with a circulation stirrer, characterized in that an annular, with bores (5) provided ventilation tube (4) below the circulation stirrer (3) in the salt bath (2) attached is.
EP86110169A 1985-09-24 1986-07-24 Process and apparatus for removing alkali nitrite from salt baths containing nitrate Expired EP0216067B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110169T ATE43647T1 (en) 1985-09-24 1986-07-24 METHOD AND APPARATUS FOR REMOVING ALKALINITRITE FROM NITRATE CONTAINING SALT BATHS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3533935 1985-09-24
DE3533935A DE3533935C1 (en) 1985-09-24 1985-09-24 Method and device for removing alkali nitrite from nitrate salt baths

Publications (2)

Publication Number Publication Date
EP0216067A1 true EP0216067A1 (en) 1987-04-01
EP0216067B1 EP0216067B1 (en) 1989-05-31

Family

ID=6281734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110169A Expired EP0216067B1 (en) 1985-09-24 1986-07-24 Process and apparatus for removing alkali nitrite from salt baths containing nitrate

Country Status (5)

Country Link
US (1) US4717429A (en)
EP (1) EP0216067B1 (en)
JP (1) JPH076055B2 (en)
AT (1) ATE43647T1 (en)
DE (2) DE3533935C1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117249A (en) * 1998-02-13 2000-09-12 Kerk Motion Products, Inc. Treating metallic machine parts
US6746546B2 (en) 2001-11-02 2004-06-08 Kolene Corporation Low temperature nitriding salt and method of use
SE530783C2 (en) * 2007-01-16 2008-09-09 Westinghouse Electric Sweden Scatter grid for positioning fuel rods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268397A (en) * 1978-07-29 1981-05-19 The Furukawa Electric Co., Ltd. Method of treating waste water
US4280914A (en) * 1978-12-05 1981-07-28 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for automatically controlling the detoxification of waste waters containing nitrite ions
US4294706A (en) * 1979-05-16 1981-10-13 Osaka Gas Company, Limited Process for treating waste water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793208A (en) * 1973-01-04 1974-02-19 Park Chem Co Method of rectifying commercial salt baths
DE2340405C3 (en) * 1973-08-09 1978-05-03 Ekkehard 7050 Waiblingen Mohr Process for the treatment of flush and waste water from salt bath hardening shops
US4149702A (en) * 1976-03-25 1979-04-17 Park Chemical Company Method and apparatus for recycling heat treating salts
US4396439A (en) * 1981-08-21 1983-08-02 Park Chemical Company Recovery and recycle of nitrate and nitrite salts from chloride containing quench bath solids
US4568352A (en) * 1984-05-24 1986-02-04 Olin Corporation Alkali metal nitrate purification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268397A (en) * 1978-07-29 1981-05-19 The Furukawa Electric Co., Ltd. Method of treating waste water
US4280914A (en) * 1978-12-05 1981-07-28 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process for automatically controlling the detoxification of waste waters containing nitrite ions
US4294706A (en) * 1979-05-16 1981-10-13 Osaka Gas Company, Limited Process for treating waste water

Also Published As

Publication number Publication date
JPS6286152A (en) 1987-04-20
DE3533935C1 (en) 1986-06-05
JPH076055B2 (en) 1995-01-25
US4717429A (en) 1988-01-05
ATE43647T1 (en) 1989-06-15
EP0216067B1 (en) 1989-05-31
DE3663688D1 (en) 1989-07-06

Similar Documents

Publication Publication Date Title
DE60014653T2 (en) METHOD AND APPARATUS FOR CONTINUOUS HYDROLYSIS OF ORGANIC MATERIALS
DE19835592A1 (en) Waste liquor treatment with Fenton reagent, useful for highly concentrated waste liquor purification
DE1264351B (en) Process for removing copper-containing iron oxide scale
DE2636349A1 (en) CONTINUOUS PROCESS FOR PRODUCING AN AQUEOUS IRON(III) CHLORIDE SOLUTION
DE3501778C2 (en)
DE69117927T2 (en) Process for treating a molten salt bath
DE3120167C2 (en)
EP0216067B1 (en) Process and apparatus for removing alkali nitrite from salt baths containing nitrate
DE3222532C2 (en)
DE2710459C2 (en) Process for electrolytic descaling of a metallic body and its application to alloy steel
AT392459B (en) METHOD AND DEVICE FOR BATCH DETOXIFICATION OF NITRITE CONTAINERS, IN PARTICULAR NITRITE CONTAINS
DE3853064T2 (en) Treatment method for a liquid waste containing cyanide.
AT392264B (en) PLANT FOR TREATING CYANIDE-CONTAINING WATERWATER PRODUCED IN A METALLURGICAL PROCESS
DE3412329C2 (en)
DE10141318A1 (en) Treatment of cyanide-containing waste water comprises at least two oxidation steps performed at acidic pH separated by a decomposition step performed at alkaline pH
EP0599182B1 (en) Process for oxidation of ammonium ions and organic carbon in waste water
DE2030986C3 (en) Method and device for gas nitriding
DE2458411C3 (en) Process for the treatment of gases or vapors
AT406168B (en) METHOD FOR RECOVERY OR Recovery of hydrofluoric acid and nitric acid
DE3527589C2 (en)
DE888110C (en) Process for the neutralization of acidic phosphate ions and calcium nitrate solutions or melts containing small amounts of fluorine
DE2127801A1 (en) Process for the heat treatment of workpieces made of alloyed chromium steel
DE2248241C3 (en) Method of cementing copper to iron
DE1806499A1 (en) Process for wastewater treatment
EP0655416B1 (en) Process and device for degrading persistent sequestering agents in aqueous solutions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19880914

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 43647

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3663688

Country of ref document: DE

Date of ref document: 19890706

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86110169.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980624

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT TRANSFER- HOUGHTO

Ref country code: CH

Ref legal event code: PFA

Free format text: DEGUSSA AKTIENGESELLSCHAFT TRANSFER- DEGUSSA-HUELS AKTIENGESELLSCHAFT

NLS Nl: assignments of ep-patents

Owner name: HOUGHTON DURFERRIT GMBH;DEGUSSA-HUELS AKTIENGESELL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

EUG Se: european patent has lapsed

Ref document number: 86110169.9

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000616

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010614

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010704

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010717

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020724

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020724

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020724

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050712

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050714

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050724