EP0212093B1 - Verfahren zum Kühlen eines Objektes mit Hilfe von suprafluidem Helium (HeII) und Einrichtung zur Durchführung des Verfahrens - Google Patents

Verfahren zum Kühlen eines Objektes mit Hilfe von suprafluidem Helium (HeII) und Einrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0212093B1
EP0212093B1 EP86107337A EP86107337A EP0212093B1 EP 0212093 B1 EP0212093 B1 EP 0212093B1 EP 86107337 A EP86107337 A EP 86107337A EP 86107337 A EP86107337 A EP 86107337A EP 0212093 B1 EP0212093 B1 EP 0212093B1
Authority
EP
European Patent Office
Prior art keywords
bath
cooling
heat
heating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86107337A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0212093A3 (en
EP0212093A2 (de
Inventor
Albert Dr. Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0212093A2 publication Critical patent/EP0212093A2/de
Publication of EP0212093A3 publication Critical patent/EP0212093A3/de
Application granted granted Critical
Publication of EP0212093B1 publication Critical patent/EP0212093B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution

Definitions

  • the present invention relates to a method for cooling an object with the aid of superfluid helium (He 11) and a device for carrying out the method according to the first part of claims 1 and 6 respectively.
  • thermomechanical efficiency of such pumps is inherently very low (less than 10% of the heat supplied can be converted into work), this process leads to an uneconomically high load on the refrigeration system, especially when the helium rate is to be circulated.
  • the invention has for its object the cooling of objects, such as superconducting large magnets, with liquid helium, to make them more effective and economical.
  • the particular advantage of the invention is that the heat loss of the object to be cooled is used to generate the forced flow in its own cooling circuit, the heat loss being coupled into a fountain pump with a super filter and heat being supplied to the warm end of the super filter that no additional Drive power is required and the throughput corresponding to the respective load is set automatically.
  • these pumps have no mechanically moving parts.
  • the invention creates the possibility of internally cooled conductor concepts at extremely low temperatures below the 1-line of liquid helium, i.e. with superfluid helium (He 11), whereby the undisputed advantages of cooling by forced flow are combined with the advantages of the extremely good cooling properties of He II in the construction of large superconductor windings.
  • FIG. 1 shows the diagram of the cooling circuit according to the invention.
  • the figure also contains a cooling system according to the prior art, with which the 1.8 K operating temperature is achieved.
  • Liquid helium which boils in a storage container 1 under a pressure of, for example, 1 bar, is guided through a tube 2 designed as a heat exchanger to the expansion valve 3.
  • a pressure of about 15 mbar By relaxing to a pressure of about 15 mbar, an operating temperature of about 1.8 K is reached in a recooling bath 4.
  • the steam is drawn off via line 5 and returned to the condenser.
  • the recooling bath 4 is in good thermal contact with the supply bath 7 via the wall 6 designed as a heat exchanger, which takes on the same pressure as in the storage container 1 via a pressure equalization line 1a.
  • the pressure compensation line 1a is to be designed as a so-called thermal barrier, in order to prevent the heat reduce the flow from the storage container 1 to the supply bath 7 to a permissible level.
  • the superfluid helium (He 11) from the supply bath 7 is brought to the temperature of the recooling bath 4 by means of a thermomechanical pump (fountain pump), which consists of a fine porous filter 8 (super filter) with a downstream heating bath 9, after recooling in a first heat exchanger 10, into a cooling channel 11 of the object 16 to be cooled, for example a superconducting winding.
  • a thermomechanical pump fine porous filter 8 (super filter) with a downstream heating bath 9, after recooling in a first heat exchanger 10, into a cooling channel 11 of the object 16 to be cooled, for example a superconducting winding.
  • the He II absorbs the heat to be dissipated from there.
  • the emerging, heated He then flows through a second heat exchanger 12, wherein it gives off part of the heat absorbed to the heating bath 9.
  • thermomechanical effect Due to the thermomechanical effect, a specific effect that occurs in the He II, superfluid He flows largely dissipation-free from the supply bath 7 into the heating bath 9 when the heating bath 9 has a higher temperature than in the supply bath 7. This is achieved by coupling the heat absorbed in the cooling section 11 into the heating bath 9 of the fountain pump.
  • the super filter 8 acts as an entropy filter. Figuratively speaking, the heat is stripped off the He II when it flows through this filter. The result of this is that when there is a flow in the supply bath 7, heat is generated which is released by the heat exchanger 6 to the recooling bath 4. On the other hand, a cooling effect occurs at the outlet of the super filter 8. Part of the heat supplied via the heat exchanger 12 to the heating bath 9 is hereby removed. The helium emerging from the second heat exchanger 12 is then recooled to the initial temperature in a downstream third heat exchanger 13 and returned to the supply bath 7.
  • FIG. 1a shows an expanded version of the device according to FIG. 1, the heat exchangers 10 and 13 being preceded by a fourth heat exchanger 14 and a fifth heat exchanger 15 which are precooled within the exhaust gas line 5 in order to reduce the heat load on the recooling bath 4.
  • the calculated cooling characteristic of the cooling system according to the invention is shown in FIG.
  • the fluid temperature T 2 on leaving the cooling duct 11 heated with the output Q is plotted with the length L, the flow cross section F and the hydraulic diameter D over the "standardized" heating output.
  • FIG. 3 shows an exemplary embodiment of a typical fountain pump for a maximum delivery rate of about 10 g / sec with a small pressure drop and for about 0.3 bar maximum delivery pressure with a low throughput.
  • a typical fountain pump for a maximum delivery rate of about 10 g / sec with a small pressure drop and for about 0.3 bar maximum delivery pressure with a low throughput.
  • the super filter 8 consists here, for example, of A1 2 0 3 powder with an average particle size of 1.5 ⁇ m, which is pressed with a fill factor of about 50% into a tube of about 100 mm in length and 35 mm in diameter.
  • the cross section and length of the filter units must be adapted to the special requirements with regard to mass throughput and delivery pressure.
  • cooling channels 11 or several pump units can be combined with one another in a suitable manner.
  • FIG. 4 shows a cooling diagram with cooling ducts 11 connected in parallel, as is possible with a large heat load or narrow cooling duct cross sections.
  • This cooling system differs from that shown in FIG. 1 only in that in the object to be cooled (for example a superconducting winding) the He II current is split into several partial flows.
  • the cross section of the cooling channels 11 of the super filter 8 and the heat exchangers 10, 12, 13, 14 and 15 must be adapted to the increased throughput. Such a system appears expedient if all parallel branches have the same flow resistances and the same thermal loads.
  • FIG. 5 shows a cooling device in the event that parallel cooling channels 11 and 11 a are unequally loaded and have unequal flow resistances.
  • Each of the cooling channels 11 and 11 a has its own pump, which ensures that a throughput corresponding to the respective load is set in each cooling channel 11 and 11 a.
  • the heated He discharged from the center of the winding 16 (or also from any intermediate point is first passed through the second heat exchanger 12 and thus stimulates a first mass flow 17 which, after recooling in the heat exchangers 15 and 10, the cooling channel 11 of the winding 16 After exiting the heat exchanger 12, the He is passed into a sixth heat exchanger 12a of a second fountain pump because of the already partially lowered temperature of the refrigerant when it enters this second pump, only a comparatively lower second mass flow 17a can be excited there than in that After recooling in the heat exchangers 15a and 10a, this helium flow is led through the second cooling channel 11a of the winding 16.
  • a self-excited cooling system is thus obtained, with which different coolant flows 17 and 17a are generated in the two winding parts same principle n more than two parallel cooling circuits can also be set up.
  • Such cooling circuits with graded cooling capacities can be of particular interest for windings with inhomogeneous thermal loads.
  • a case is e.g. with a toroidal field coil of a TOKAMAK fusion reactor.
  • a considerably higher load occurs than further out.
  • the larger mass flow 17 would be led through the inner windings in this case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
EP86107337A 1985-08-16 1986-05-30 Verfahren zum Kühlen eines Objektes mit Hilfe von suprafluidem Helium (HeII) und Einrichtung zur Durchführung des Verfahrens Expired - Lifetime EP0212093B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853529391 DE3529391A1 (de) 1985-08-16 1985-08-16 Verfahren zum kuehlen eines objektes mit hilfe von suprafluidem helium (he ii) und einrichtung zur durchfuehrung des verfahrens
DE3529391 1985-08-16

Publications (3)

Publication Number Publication Date
EP0212093A2 EP0212093A2 (de) 1987-03-04
EP0212093A3 EP0212093A3 (en) 1989-01-18
EP0212093B1 true EP0212093B1 (de) 1990-11-28

Family

ID=6278665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86107337A Expired - Lifetime EP0212093B1 (de) 1985-08-16 1986-05-30 Verfahren zum Kühlen eines Objektes mit Hilfe von suprafluidem Helium (HeII) und Einrichtung zur Durchführung des Verfahrens

Country Status (4)

Country Link
US (1) US4713942A (enrdf_load_stackoverflow)
EP (1) EP0212093B1 (enrdf_load_stackoverflow)
JP (1) JPS6241567A (enrdf_load_stackoverflow)
DE (2) DE3529391A1 (enrdf_load_stackoverflow)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172554A (en) * 1991-04-02 1992-12-22 The United States Of America As Represented By The United States Department Of Energy Superfluid thermodynamic cycle refrigerator
US5347819A (en) * 1992-11-05 1994-09-20 Ishikawajima-Harima Heavy Industries, Co., Ltd. Method and apparatus for manufacturing superfluidity helium
US5402648A (en) * 1993-07-01 1995-04-04 Apd Cryogenics Inc. Sealed dewar with separate circulation loop for external cooling at constant pressure
GB9609311D0 (en) * 1996-05-03 1996-07-10 Oxford Instr Uk Ltd Improvements in cryogenics
DE19722822A1 (de) * 1997-04-30 1998-11-05 Rydzewski Sieghardt Einrichtung zur Bereitstellung von Energie für eine Zentralheizung und für die Warmwasseraufbereitung
US6327968B1 (en) 2000-03-17 2001-12-11 Pizza Hut, Inc. System and method for producing par-baked pizza crusts
DE10130171B4 (de) * 2001-06-22 2008-01-31 Raccanelli, Andrea, Dr. Verfahren und Vorrichtung zur Tieftemperaturkühlung
CN1618595B (zh) * 2003-11-20 2011-08-24 鸿富锦精密工业(深圳)有限公司 注射成型装置
GB0408312D0 (en) * 2004-04-14 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
TW200607976A (en) * 2004-08-27 2006-03-01 Hon Hai Prec Ind Co Ltd Thermally conductive material
US8991150B2 (en) 2012-07-27 2015-03-31 Board Of Trustees Of Northern Illinois University High specific impulse superfluid and nanotube propulsion device, system and propulsion method
DE102014225481A1 (de) * 2014-12-10 2016-06-16 Bruker Biospin Gmbh Kryostat mit einem ersten und einem zweiten Heliumtank, die zumindest in einem unteren Bereich flüssigkeitsdicht voneinander abgetrennt sind
CN109870342A (zh) 2017-12-04 2019-06-11 蒙大纳仪器公司 分析仪器、方法和部件
US12181202B2 (en) 2019-06-04 2024-12-31 Montana Instruments Corporation Thermal connection assemblies and methods
FR3107586B1 (fr) * 2020-02-21 2022-11-18 Air Liquide Dispositif et procédé de réfrigération à dilution
US11956924B1 (en) 2020-08-10 2024-04-09 Montana Instruments Corporation Quantum processing circuitry cooling systems and methods
CN114739032B (zh) * 2022-05-07 2022-11-22 中国科学院理化技术研究所 一种超流氦制冷机
JP2025086631A (ja) * 2023-11-28 2025-06-09 三菱重工業株式会社 吸着冷却装置、冷却システムおよび吸着冷却方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758030A (fr) * 1969-10-28 1971-04-26 Philips Nv Installation pour produire du froid aux temperatures inferieures a celles du point lambda de l'helium
NL160381C (nl) * 1972-03-18 1979-10-15 Philips Nv Inrichting voor het transporteren van warmte van een lager naar een hoger temperatuurniveau, welke inrichting is voor- zien van een mengkamer, welke via een verbindingskanaal is verbonden met een verdampingsreservoir voor een 4he-3he-mengsel, terwijl het verdampingsreservoir is voorzien van een van een superlek voorzien afvoerkanaal.
FR2349111A1 (fr) * 1976-04-22 1977-11-18 Anvar Cryostat portatif e helium 3
NL7605645A (nl) * 1976-05-26 1977-11-29 Philips Nv 3he-4he verdunningskoelmachine.
DE2806829C3 (de) * 1978-02-17 1984-09-20 Deutsche Forschungs- Und Versuchsanstalt Fuer Luft- Und Raumfahrt E.V., 5000 Koeln Vorrichtung zur Tiefstkühlung von Objekten
FR2449856A1 (fr) * 1979-02-23 1980-09-19 Anvar Etage hermetique de refrigeration a helium 3 de faible dimension
NL7902014A (nl) * 1979-03-14 1980-09-16 Philips Nv 3he-4he verdunningskoelmachine.
NL7902438A (nl) * 1979-03-29 1980-10-01 Philips Nv 3he-4he koelmachine.
IL63517A (en) * 1981-08-06 1984-05-31 Rosenbaum Ralph Multiple-chamber cooling device particularly useful in a dilution refrigerator
DE3271522D1 (en) * 1982-03-23 1986-07-10 Ibm Method and dilution refrigerator for cooling at temperatures below 1k

Also Published As

Publication number Publication date
US4713942A (en) 1987-12-22
DE3675844D1 (de) 1991-01-10
EP0212093A3 (en) 1989-01-18
EP0212093A2 (de) 1987-03-04
JPS6241567A (ja) 1987-02-23
DE3529391A1 (de) 1987-03-05
JPH0550674B2 (enrdf_load_stackoverflow) 1993-07-29
DE3529391C2 (enrdf_load_stackoverflow) 1987-06-04

Similar Documents

Publication Publication Date Title
EP0212093B1 (de) Verfahren zum Kühlen eines Objektes mit Hilfe von suprafluidem Helium (HeII) und Einrichtung zur Durchführung des Verfahrens
DE19914778B4 (de) Supraleitende Magnetvorrichtung
DE19720677C1 (de) NMR-Meßvorrichtung mit gekühltem Meßkopf
DE69430577T2 (de) Vorrichtung und verfahren zur konvektiven kühlung eines supraleitenden magnets
DE69501099T2 (de) Supraleitender Rotor für eine elektrische Maschine
DE3427601C2 (enrdf_load_stackoverflow)
DE1601061C3 (de) Vorrichtung zum kontinuierlichen Erzeugen von flüssigem Helium
DE112011100875T5 (de) Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas
WO2008040609A1 (de) Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr
DE102014009568A1 (de) Supraleitende Magnetvorrichtung
DE69211237T2 (de) Vakuumbehälter mit einem gekühlten Element
DE69314390T2 (de) Kryogenes-Kühlsystem und Kühlungsverfahren dazu
EP0398156B1 (de) Verfahren und Vorrichtung zum Vorkühlen des Heliumtanks eines Kryostaten
DE2730155C3 (de) Verfahren zum Erzeugen von Kälte im Bereich kryogener Temperaturen
DE19704485C2 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
DE2453182C3 (de) Anordnung zur Kühlung von Rotorteilen eines Turbogenerators
DE10339048A1 (de) Tieftemperaturkühlsystem für Supraleiter
DE102010028750A1 (de) Verlustarme Kryostatenanordnung
EP1010954A1 (de) Verfahren und Vorrichtung zum Abkühlen eines Gasstromes
CH697042A5 (de) Verfahren zur Aufrechterhaltung eines Vakuums und Supraleitungsvorrichtung.
DE2451949A1 (de) Stromzufuehrungsvorrichtung fuer supraleitende einrichtungen
EP0242734A2 (de) Verfahren und Vorrichtung zum Kühlen eines resistiven Magnetsystems für Kernspintomographen
DE3435229C2 (enrdf_load_stackoverflow)
DE29622811U1 (de) Kühlsystem für eine Traktionseinrichtung
DE2920742C2 (de) Anordnung zur Kühlung einerzuküh|ende" insbesondere supraleitenden Erregerwicklung im Läufer einer elektrischen Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19870326

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19890823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901128

Ref country code: FR

Effective date: 19901128

REF Corresponds to:

Ref document number: 3675844

Country of ref document: DE

Date of ref document: 19910110

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930510

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201