EP0205230B1 - Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten - Google Patents
Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten Download PDFInfo
- Publication number
- EP0205230B1 EP0205230B1 EP86302118A EP86302118A EP0205230B1 EP 0205230 B1 EP0205230 B1 EP 0205230B1 EP 86302118 A EP86302118 A EP 86302118A EP 86302118 A EP86302118 A EP 86302118A EP 0205230 B1 EP0205230 B1 EP 0205230B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aluminium
- metal
- product
- weight
- based metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12486—Laterally noncoextensive components [e.g., embedded, etc.]
Definitions
- This invention relates to high strength aluminum products, and particularly to methods for increasing the toughness of such products without substantial loss of strength.
- High strength aluminum alloys and composites are required in certain applications, notably the aircraft industry where the combination of high strength, high stiffness and low density is particularly important.
- High strength is generally achieved in aluminum alloys by combinations of copper, zinc and magnesium, and high stiffness is generally achieved by metal matrix composites such as those formed by the addition of silicon carbide, boron carbide or aluminum oxide particles to an aluminum matrix.
- metal matrix composites such as those formed by the addition of silicon carbide, boron carbide or aluminum oxide particles to an aluminum matrix.
- aluminum-lithium alloys containing 2.0-2.8% lithium by weight have been developed. These alloys possess a lower density and higher elastic modulus than conventional non-lithium-containing alloys.
- alloys can be made by mixing elemental powders and heating the mixture to a temperature high enough to cause diffusion to take place and form an alloy of uniform composition. See The Physics of Powder Metallurgy , W.E. Scientific, ed., p. 372, McGraw Hill, New York (1951); and C.G. Goetzel, Treatise on Powder Metallurgy , vol. 11, p. 492, Interscience Publishers Inc., New York (1950). Because of the difficulties inherent in obtaining homogeneity, however, the usual practice in aluminium and other alloy systems is to form an alloy powder directly from a pre-alloyed melt.
- GB-A-2107738 describes the preparation by powder metallurgical techniques of a high strength aluminium-based product comprising a matrix of a first aluminium-based metal and a second aluminium-based metal dispersed within the matrix.
- the invention accordingly provides a high strength aluminium-based product comprising a matrix of a first aluminium-based metal and a second aluminium-based metal dispersed within the matrix, characterised in that it also exhibits high impact toughness; in that the first metal is a lithium-containing aluminium-based metal having a yield strength of at least 206 MPa (30 ksi), the metal containing at least 2% by weight lithium and also at least one more primary alloying element selected from magnesium, zinc and copper; and in that the second metal is an aluminium alloy containing at least 99.5% by weight aluminium and possessing an impact toughness of at least 27 Nm (20 foot-pounds); the quantity of the second aluminium-based metal in the product being in the range from 2% to 40% by weight and the particle sizes of the first metal and the second metal dispersed therein being in the range from 10 to 1000 ⁇ m.
- the first metal is a lithium-containing aluminium-based metal having a yield strength of at least 206 MPa (30 ksi), the metal containing at least
- the invention also provides a method for preparing a high strength aluminium-based product from first and second aluminium-based particulate metals, characterized by:
- FIG. 1 is a plot of longitudinal tensile properties as a function of aging temperature for edge samples taken from one embodiment of the present invention.
- FIG. 2 is a plot similar to FIG. 1, relating however to center samples.
- FIG. 3 is a plot of transverse tensile properties as a function of aging temperature for the embodiment of FIG. 1.
- FIG. 4 is a plot of Charpy impact values as a function of aging temperature for the embodiment of FIG. 1.
- FIG. 5 is a plot of fracture toughness as a function of aging temperature for the embodiment of FIG. 1.
- FIG. 6 is a plot of yield strength vs. impact toughness for specimens taken from the center of an extrusion of the embodiment of FIG. 1.
- FIG. 7 is a plot similar to FIG. 6 except that the plotted values relate to edge specimens.
- FIG. 8 is a plot similar to FIG. 1 for a second embodiment of the present invention, the data taken on center specimens.
- FIG. 9 is a plot of longitudinal tensile properties on edge specimens vs. aging temperature for the embodiment of FIG. 8.
- FIG. 10 is a plot of transverse tensile properties vs. aging temperature for the embodiment of FIG. 8.
- FIG. 11 is a plot of Charpy impact values vs. aging temperature for the embodiment of FIG. 8.
- FIG. 12 is a plot of yield strength vs. impact toughness for the embodiment of FIG. 8.
- FIG. 13 is a plot of Charpy impact values vs. percent lithium taken from the values in the preceding figures for both embodiments.
- the present invention is applicable to high strength aluminum-based metallic materials of a wide range of composition, including both alloys and high strength composites having a yield strength of at least about 30ksi (thousand pounds per square inch) (206 MPa), preferably at least about 50ksi (345 MPa), when heat treated to the highest level.
- the term "primary alloying element" is used herein to designate any element which amounts to about 1% or more by weight of the alloy, preferably 2% or more.
- High strength composites to which the present invention is applicable include a wide range of products wherein aluminum matrices are reinforced with particles, whiskers or fibers of various materials having a high strength or modulus.
- the reinforcing phase include boron fibers, B4C-coated boron, SiC-coated boron, B4C whiskers and particles, SiC whiskers and particles, carbon or graphite fibers, fused silica, alumina, steel, beryllium, tungsten and titanium.
- the alloys are generally preferred.
- the high toughness component of the present invention may be an aluminum-based alloy or composite with an impact toughness of at least about 20 foot-pounds (27 Nm), preferably at least about 50 foot-pounds (68 Nm), or aluminum itself.
- impact toughness designates a value determined by conventional impact techniques, notably the Charpy test technique, a standard procedure established by the American Society for Testing and Materials. Straight aluminum having a maximum impurity level of about 0.5% by weight is preferred. Commercially pure aluminum will generally suffice.
- the composite of the present invention may be formed by blending particles of the two components in the desired proportion.
- the particle size is not critical and may vary over a wide range. In most applications, particles ranging in diameter from about 10 to about 1,000 ⁇ m, preferably from about 50 to about 500 ⁇ m, or having a volume of about 0.0001 to about 0.01 cm3 each, will provide the best results. It is preferred that the particles of both components have approximately the same size range.
- the relative amounts of the components may also vary widely, depending upon the composition of each component and upon the desired properties of the ultimate product.
- the particles themselves may be formed according to conventional techniques, including pulverization, ribbon and splat techniques. Once the powders are formed and sized and appropriate amounts selected, blending is achieved by conventional means.
- Consolidation may be achieved by unidirectional compaction (including canister techniques), isostatic compaction (both cold and hot), rolling, forging, sintering, or other known methods. Consolidation preferably includes compaction to at least about 85% full density, more preferably at least about 95%. It is particularly preferred that the consolidation and compaction processing steps include the removal of substantially all bound water from the surface of the particles prior to the achievement of full density. This is generally achieved by purging the particle mixture with an inert gas and/or degassing the particles either prior to consolidation or after partial compaction, involving the use of reduced pressure and elevated temperature, preferably not exceeding about 1100°F (593°C).
- the increase in toughness will be accompanied by a loss in strength.
- the former will more than compensate for the latter, resulting in a product which is improved in overall properties.
- a composite product was prepared as follows.
- a powdered aluminum-lithium alloy containing 2.41% Li, 1.21% Cu, 0.73% Mg and 0.11% Zr (designated herein as 1611) was prepared by a conventional powder metallurgy technique, involving melting and combining the component metals at 1700°F (927°C) and atomizing the melt in an inert gas. The resulting particles were sized to -100 mesh (U.S. Sieve Series).
- the particles were then blended for 2 hours at room temperature in a rotating V-shaped blender with similarly sized particles of commercially pure aluminum (minimum purity 99.5%), the latter comprising 10% of the total mixture.
- the mixture was then heated to 900°F (482°C), degassed and consolidated by compaction to full density in a canister.
- the billet was then removed from the canister and extruded at 850°F (454°C) at a 29-to-1 ratio, followed by solution heat treatment, stretching in the direction of extrusion to a 5% length increase and aging for 16-100 hours. Different samples were aged at different temperatures.
- Table 1.1 below lists yield strengths and elongations measured in the longitudinal direction for the various aging temperatures, most entries indicating several trials. An average value for each aging temperature is shown graphically in FIG. 1 (edge results) and FIG. 2 (center results), where the 300°F (149°C) values are for 16h aging time. TABLE 1.1 LONGITUDINAL TENSILE PROPERTIES Aging Temp.
- Table 1.2 lists yield strengths and elongations measured in the transverse direction for the same aging temperatures. Samples from two different locations were taken for each aging temperature, as shown in the table. Averages for each pair are shown graphically in FIG. 3. TABLE 1.2 TRANSVERSE TENSILE PROPERTIES Aging Temp.
- Impact values were determined in the longitudinal direction by Charpy impact tests, using 10mm square, V-notched specimens at ambient temperature, the notches running transverse to the direction of extrusion. Multiple specimens from both the center and edge of the extruded samples at the extrusion edge were tested. The results are shown in Table 1.3. Averaged values are shown graphically in FIG. 4, where the 300°F values are for 16h aging time. TABLE 1.3 IMPACT VALUES Aging Temp.
- Fracture toughness values (K 1A ) in the short transverse direction were provided by the stress intensity factor measured by applying tension in the short transverse direction at right angles to a machined notch extending into the sample in the extrusion direction.
- the extrusions used were 0.5 inch (1.3cm) thick and 1.5 inch (3.8cm) wide.
- the stress intensity results at the various aging temperatures (three trials each) are show in Table 1.4, and the averages depicted graphically in FIG. 5.
- Threshold (ksi-in 1 ⁇ 2 )/(MPa.m 1 ⁇ 2 ) 1611 1611+10%Al 250/121 16 7.2/7.9 10.4/11.4 7.6/8.4 11.8/13.0 7.6/8.4 300/149 16 8.0/8.8 9.6/10.6 5.6/6.2 12.1/13.3 6.3/6.9 12.2/13.4 Again, the results for the samples containing the added unalloyed aluminum are consistently higher.
- FIGS. 6 and 7 demonstrate that the overall result, i.e., the combination of strength and toughness at both center and edge of the extrusion, measured longitudinally, is superior for the product containing the added unalloyed aluminum.
- the values for the points in these graphs are given in Tables 1.6 and 1.7, each of which cover a range of aging conditions in terms of both temperature and time. The ranges extend from mild conditions through optimum conditions (resulting in peak properties) and beyond into overaging with detrimental effects. Since overaging is both detrimental and wasteful of both energy and processing time, the results plotted for comparison in the figures are those corresponding to aging conditions increasing to and including the optimum but not beyond.
- a composite product was prepared according to the procedure of Example 1, using, however, an aluminum-lithium alloy containing 3.49% Li, 1.25% Cu, 0.74% Mg and 0.12% Zr (designated herein as 1614).
- Example 1 The test procedures of Example 1 were applied. Tensile properties measured in the longitudinal direction at the center of the extrusion for different aging temperatures are listed in Table 2.1 below and shown graphically in FIG. 8. TABLE 2.1 LONGITUDINAL CENTER TENSILE PROPERTIES Aging Temp. (°F/°C) Aging Time (h) 0.2 Yield Strength(ksi/MPa) Elongation(%) 1614 1614+10%Al 1614 1614+10%Al 200/93 16 45.9/316 42.1/290 9 8 250/121 16 54.5/376 52.3/361 6 6 300/149 16 67.5/465 64.9/447 5 3 340/171 100 72.1/497 73.5/507 4 3
- FIG. 12 is a plot of data taken from Tables 2.1, 2.2 and 2.4.
- the Charpy impact values are plotted as a function of lithium content in FIG. 13 for the four alloys covered by Examples 1 and 2. These values all represent the data from aging at 250°F for 16 hours. While toughness does decrease with increased lithium content, the plot demonstrates that at the same lithium level, the products containing the added unalloyed aluminum are tougher than those composed of the straight alloys. This is evidenced by the vertical distance between the dashed and solid lines.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Claims (13)
- Hochfester Aluminiumwerkstoff, mit einem ersten, eine Matrix bildenden aluminiumhaltigen Metall und einem zweiten, in der Matrix dispergierten aluminiumhaltigen Metall, dadurch gekennzeichnet,
- daß er eine hohe Schlagzähigkeit aufweist,- daß das erste Metall ein lithiumhaltiges Aluminium mit einer Streckfestigkeit von wenigstens 206 MPa (30 ksi) ist, welches wenigstens 2 Gew.-% Lithium und wenigstens ein weiteres primäres Legierungselement aus der Gruppe Magnesium, Zink und Kupfer aufweist,- daß das zweite Metall eine Aluminiumlegierung mit wenigstens 99,5 Gew.-% Aluminium ist und eine Schlagzähigkeit von 27 Nm (20 foot-pounds) aufweist,- daß der Anteil des zweiten Aluminiummetalls in dem Werkstoff 2 Gew.-% bis 40 Gew.-% beträgt und- daß die Partikelgrößen des ersten und des zweiten, in dem ersten dispergierten Metalles in dem Bereich von 10 µm bis 1000 µm liegen. - Aluminiumwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß der Anteil des zweiten Metalls in dem Werkstoff in einem Bereich von 5 Gew.-% bis 25 Gew.-% liegt.
- Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Matrix aus einem solchen ersten Aluminiummetall gebildet ist, in dem zusätzlich zu Lithium als primäre Legierungselemente eine Kombination von Magnesium, Kupfer und Zink enthalten sind.
- Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Streckfestigkeit des ersten Metalls wenigstens 345 MPa (50 ksi) beträgt.
- Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Schlagzähigkeit des zweiten Metalls wenigstens 68 Nm (50 foot-pounds) beträgt.
- Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Partikelgrößen der ersten und zweiten Metalle angenähert gleich sind.
- Verfahren zur Herstellung eines hochfesten Aluminiumwerkstoffs aus ersten und zweiten, als Partikel vorliegenden Aluminiummetallen, gekennzeichnet durch die folgenden Verfahrensschritte:
a) Mischen eines pulverförmigen, hochfesten, zur Bildung einer Matrix bestimmten ersten Aluminiummetalles, welches eine Streckfestigkeit von wenigstens 206 MPa (30 ksi) und einen Lithiumgehalt von wenigstens 2 Gew.-% sowie zusätzlich zu dem Lithium wenigstens ein oder weitere primäre Legierungselemente aufweist, die aus der Gruppe Magnesium, Zink und Kupfer ausgewählt sind mit, einem pulverförmigen; zweiten Aluminiumwerkstoff, und zwar mit einem Anteil von 2 Gew.-% bis 40 Gew.-% des Werkstoffs, wobei das zweite Aluminiummetall eine Schlagzähigkeit von wenigstens 27 Nm (20 foot-pounds) und einen Aluminiumgehalt von wenigstens 99,5 Gew.-% aufweist;b) Vermengen der ersten und zweiten Aluminiummetalle zur Herstellung einer Pulvermischung, in der das zweite Aluminiummetall gleichförmig innerhalb einer Matrix des ersten Aluminiummetalls dispergiert ist;c) Festigung der Pulvermischung durch Verdichtung zwecks Bildung eines Blockes, dessen Dichte wenigstens 85 % der vollen Dichte beträgt, wobei der Werkstoff ebenfalls eine hohe Schlagzähigkeit aufweist. - Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das erste Aluminiummetall mit einer solchen Menge des zweiten Aluminiummetalls gemischt wird, deren Anteil 5 Gew.-% bis 25 Gew.-% des Werkstoffs beträgt.
- Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß das erste Aluminiummetall neben Lithium als primäre Legierungselemente eine Kombination von Magnesium, Zink und Kupfer enthält.
- Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die ersten und zweiten Aluminiummetalle eine Partikelgröße innerhalb des Bereichs von 10 µm bis 1000 µm aufweisen.
- Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Schlagzähigkeit des zweiten Metalls wenigstens 68 Nm (50 foot-pounds) beträgt.
- Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die Verdichtung der Mischung der ersten und zweiten Pulver eine Entfernung von im wesentlichen allem oberflächengebundenen Wasser umfaßt, indem die Mischung mit einem inerten Gas gereinigt wird.
- Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß der Block bis zu wenigstens 95 % seiner vollen Dichte verdichtet wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/742,830 US4597792A (en) | 1985-06-10 | 1985-06-10 | Aluminum-based composite product of high strength and toughness |
US742830 | 2000-12-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0205230A2 EP0205230A2 (de) | 1986-12-17 |
EP0205230A3 EP0205230A3 (en) | 1988-08-03 |
EP0205230B1 true EP0205230B1 (de) | 1991-12-27 |
Family
ID=24986425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86302118A Expired - Lifetime EP0205230B1 (de) | 1985-06-10 | 1986-03-21 | Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten |
Country Status (6)
Country | Link |
---|---|
US (1) | US4597792A (de) |
EP (1) | EP0205230B1 (de) |
JP (1) | JPH0742536B2 (de) |
AU (1) | AU571829B2 (de) |
CA (1) | CA1265942C (de) |
DE (1) | DE3683087D1 (de) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4758273A (en) * | 1984-10-23 | 1988-07-19 | Inco Alloys International, Inc. | Dispersion strengthened aluminum alloys |
US4693747A (en) * | 1985-11-18 | 1987-09-15 | Aluminum Company Of America | Alloy having improved fatigue crack growth resistance |
US4743299A (en) * | 1986-03-12 | 1988-05-10 | Olin Corporation | Cermet substrate with spinel adhesion component |
US4793967A (en) * | 1986-03-12 | 1988-12-27 | Olin Corporation | Cermet substrate with spinel adhesion component |
DE3817350A1 (de) * | 1987-05-23 | 1988-12-22 | Sumitomo Electric Industries | Verfahren zur herstellung von spiralfoermigen teilen sowie verfahren zur herstellung einer aluminiumpulverschmiedelegierung |
US4939032A (en) * | 1987-06-25 | 1990-07-03 | Aluminum Company Of America | Composite materials having improved fracture toughness |
US5122339A (en) * | 1987-08-10 | 1992-06-16 | Martin Marietta Corporation | Aluminum-lithium welding alloys |
US5032359A (en) * | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US4820488A (en) * | 1988-03-23 | 1989-04-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Aluminum alloy |
US4927458A (en) * | 1988-09-01 | 1990-05-22 | United Technologies Corporation | Method for improving the toughness of brittle materials fabricated by powder metallurgy techniques |
US5223347A (en) * | 1989-02-23 | 1993-06-29 | Composites Technology International, Inc. | Creep resistant composite alloys |
US5085830A (en) * | 1989-03-24 | 1992-02-04 | Comalco Aluminum Limited | Process for making aluminum-lithium alloys of high toughness |
GB2267912A (en) * | 1992-06-15 | 1993-12-22 | Secr Defence | Metal matrix for composite materials |
USH1411H (en) * | 1992-11-12 | 1995-02-07 | Deshmukh; Uday V. | Magnesium-lithium alloys having improved characteristics |
US5494634A (en) * | 1993-01-15 | 1996-02-27 | The United States Of America As Represented By The Secretary Of The Navy | Modified carbon for improved corrosion resistance |
US5561829A (en) * | 1993-07-22 | 1996-10-01 | Aluminum Company Of America | Method of producing structural metal matrix composite products from a blend of powders |
US5744734A (en) * | 1995-10-31 | 1998-04-28 | Industrial Technology Research Institute | Fabrication process for high temperature aluminum alloys by squeeze casting |
US6248453B1 (en) * | 1999-12-22 | 2001-06-19 | United Technologies Corporation | High strength aluminum alloy |
US7625520B2 (en) * | 2003-11-18 | 2009-12-01 | Dwa Technologies, Inc. | Manufacturing method for high yield rate of metal matrix composite sheet production |
CA2707311C (en) | 2007-12-04 | 2017-09-05 | Alcoa Inc. | Improved aluminum-copper-lithium alloys |
US20090260724A1 (en) * | 2008-04-18 | 2009-10-22 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
US8017072B2 (en) * | 2008-04-18 | 2011-09-13 | United Technologies Corporation | Dispersion strengthened L12 aluminum alloys |
US7875131B2 (en) * | 2008-04-18 | 2011-01-25 | United Technologies Corporation | L12 strengthened amorphous aluminum alloys |
US8409373B2 (en) * | 2008-04-18 | 2013-04-02 | United Technologies Corporation | L12 aluminum alloys with bimodal and trimodal distribution |
US7871477B2 (en) * | 2008-04-18 | 2011-01-18 | United Technologies Corporation | High strength L12 aluminum alloys |
US7879162B2 (en) * | 2008-04-18 | 2011-02-01 | United Technologies Corporation | High strength aluminum alloys with L12 precipitates |
US20090263273A1 (en) * | 2008-04-18 | 2009-10-22 | United Technologies Corporation | High strength L12 aluminum alloys |
US7811395B2 (en) * | 2008-04-18 | 2010-10-12 | United Technologies Corporation | High strength L12 aluminum alloys |
US7875133B2 (en) | 2008-04-18 | 2011-01-25 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
US8002912B2 (en) * | 2008-04-18 | 2011-08-23 | United Technologies Corporation | High strength L12 aluminum alloys |
US8778099B2 (en) * | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Conversion process for heat treatable L12 aluminum alloys |
US20100143177A1 (en) * | 2008-12-09 | 2010-06-10 | United Technologies Corporation | Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids |
US8778098B2 (en) * | 2008-12-09 | 2014-07-15 | United Technologies Corporation | Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids |
US20100226817A1 (en) * | 2009-03-05 | 2010-09-09 | United Technologies Corporation | High strength l12 aluminum alloys produced by cryomilling |
US20100252148A1 (en) * | 2009-04-07 | 2010-10-07 | United Technologies Corporation | Heat treatable l12 aluminum alloys |
US20100254850A1 (en) * | 2009-04-07 | 2010-10-07 | United Technologies Corporation | Ceracon forging of l12 aluminum alloys |
US9611522B2 (en) * | 2009-05-06 | 2017-04-04 | United Technologies Corporation | Spray deposition of L12 aluminum alloys |
US9127334B2 (en) * | 2009-05-07 | 2015-09-08 | United Technologies Corporation | Direct forging and rolling of L12 aluminum alloys for armor applications |
US20110044844A1 (en) * | 2009-08-19 | 2011-02-24 | United Technologies Corporation | Hot compaction and extrusion of l12 aluminum alloys |
US8728389B2 (en) * | 2009-09-01 | 2014-05-20 | United Technologies Corporation | Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding |
US8409496B2 (en) * | 2009-09-14 | 2013-04-02 | United Technologies Corporation | Superplastic forming high strength L12 aluminum alloys |
US20110064599A1 (en) * | 2009-09-15 | 2011-03-17 | United Technologies Corporation | Direct extrusion of shapes with l12 aluminum alloys |
US9194027B2 (en) * | 2009-10-14 | 2015-11-24 | United Technologies Corporation | Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling |
US20110091346A1 (en) * | 2009-10-16 | 2011-04-21 | United Technologies Corporation | Forging deformation of L12 aluminum alloys |
US20110091345A1 (en) * | 2009-10-16 | 2011-04-21 | United Technologies Corporation | Method for fabrication of tubes using rolling and extrusion |
US8409497B2 (en) * | 2009-10-16 | 2013-04-02 | United Technologies Corporation | Hot and cold rolling high strength L12 aluminum alloys |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB778269A (en) * | 1954-07-19 | 1957-07-03 | Gen Motors Corp | Improved sintered metal articles made by a powder metallurgy process |
US3816080A (en) * | 1971-07-06 | 1974-06-11 | Int Nickel Co | Mechanically-alloyed aluminum-aluminum oxide |
US4053011A (en) * | 1975-09-22 | 1977-10-11 | E. I. Du Pont De Nemours And Company | Process for reinforcing aluminum alloy |
JPS5375107A (en) * | 1976-12-15 | 1978-07-04 | Fujitsu Ltd | Manufacture of sintered aluminum alloy |
US4177069A (en) * | 1977-04-09 | 1979-12-04 | Showa Denko K.K. | Process for manufacturing sintered compacts of aluminum-base alloys |
DE2744994C2 (de) * | 1977-10-06 | 1985-08-29 | Stieber Division Der Borg-Warner Gmbh, 6900 Heidelberg | Verfahren zur Herstellung eines Synchronosierringes |
US4259112A (en) * | 1979-04-05 | 1981-03-31 | Dwa Composite Specialties, Inc. | Process for manufacture of reinforced composites |
DE3268826D1 (en) * | 1981-09-01 | 1986-03-13 | Sumitomo Chemical Co | Method for the preparation of fiber-reinforced metal composite material |
AU8657882A (en) * | 1981-10-09 | 1983-04-28 | Imperial Clevite Inc. | High strength powder metal material |
JPS5893841A (ja) * | 1981-11-30 | 1983-06-03 | Toyota Motor Corp | 繊維強化金属型複合材料 |
CA1213157A (en) * | 1981-12-02 | 1986-10-28 | Kohji Yamatsuta | Process for producing fiber-reinforced metal composite material |
JPS5950149A (ja) * | 1982-09-14 | 1984-03-23 | Toyota Motor Corp | 繊維強化金属複合材料 |
-
1985
- 1985-06-10 US US06/742,830 patent/US4597792A/en not_active Expired - Fee Related
-
1986
- 1986-02-24 CA CA502552A patent/CA1265942C/en not_active Expired
- 1986-03-21 EP EP86302118A patent/EP0205230B1/de not_active Expired - Lifetime
- 1986-03-21 DE DE8686302118T patent/DE3683087D1/de not_active Expired - Fee Related
- 1986-03-28 JP JP61070626A patent/JPH0742536B2/ja not_active Expired - Lifetime
- 1986-05-23 AU AU57868/86A patent/AU571829B2/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
Aluminium, Ed. J.E. Hatch (1984), p.354 and 364 ASM Ohio * |
Also Published As
Publication number | Publication date |
---|---|
US4597792A (en) | 1986-07-01 |
CA1265942A (en) | 1990-02-20 |
CA1265942C (en) | 1990-02-20 |
EP0205230A2 (de) | 1986-12-17 |
AU571829B2 (en) | 1988-04-21 |
EP0205230A3 (en) | 1988-08-03 |
JPH0742536B2 (ja) | 1995-05-10 |
JPS61284547A (ja) | 1986-12-15 |
DE3683087D1 (de) | 1992-02-06 |
AU5786886A (en) | 1986-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0205230B1 (de) | Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten | |
US3368881A (en) | Titanium bi-alloy composites and manufacture thereof | |
EP0244949B1 (de) | Herstellung einer stabilen Karbid enthaltenden Aluminiumlegierung durch mechanisches Legieren | |
US4639281A (en) | Advanced titanium composite | |
Benjamin et al. | Dispersion strengthened aluminum made by mechanical alloying | |
EP0130034B1 (de) | Verfahren zur Herstellung von Verbundwerkstoffen | |
EP0340788B1 (de) | Aluminiumlegierung mit hohem Elastizitätsmodul | |
US4634640A (en) | Dense shaped articles consisting of polycrystalline hexagonal boron nitride and process for their manufacture by isostatic hot-pressing | |
EP0436952B1 (de) | Aluminiumlegierungspulver, gesinterte Aluminiumlegierung sowie Verfahren zur Herstellung dieser gesinterten Legierung | |
EP0230123A1 (de) | Bildung von intermetallischen und intermetallischähnlichen Vorlegierungen für anschliessende Anwendung beim mechanischen Legieren | |
US5143795A (en) | High strength, high stiffness rapidly solidified magnesium base metal alloy composites | |
EP0556367B1 (de) | Verfahren zur herstellung einer giessbaren aluminium-basis-verbundlegierung | |
EP0529993B1 (de) | Herstellung von Verbundpulver mit Aluminiummatrix | |
EP0229499A1 (de) | Bildung von intermetallischen und intermetallischähnlichen Vorlegierungen für anschliessende Anwendung beim mechanischen Legieren | |
CA1213758A (en) | Dispersion strengthened low density ma-a1 | |
DE69028849T2 (de) | Aluminium-lithium-, aluminium-magnesium- und magnesium-lithium-legierungen von grosser härte | |
Bhaduri et al. | Processing and properties of SiC particulate reinforced Al6. 2Zn2. 5Mg1. 7Cu alloy (7010) matrix composites prepared by mechanical alloying | |
EP0577116A1 (de) | Verfahren zur Herstellung einer Verbundwerkstoff, bestehend aus einen Matrix aus beta-Titanaluminid mit eine Dispersion von Titandiborid ls Verstärkungsphase | |
EP0427492B1 (de) | Verbundlegierung auf Aluminium-Basis | |
EP0045622B1 (de) | Dispersionsgehärtete Aluminiumlegierungen | |
EP0366134A1 (de) | Aluminium-Legierung, verwendbar im Pulvermetallurgieverfahren | |
US5149496A (en) | Method of making high strength, high stiffness, magnesium base metal alloy composites | |
EP0340789B1 (de) | Warmformgebung von Aluminiumlegierungen | |
EP0501691A1 (de) | Legierung auf Aluminiumbasis zur Verwendung bei mittelhohen Temperaturen | |
JPH0368941B2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19880822 |
|
17Q | First examination report despatched |
Effective date: 19900419 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3683087 Country of ref document: DE Date of ref document: 19920206 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970210 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970224 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |