EP0205230B1 - Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten - Google Patents

Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten Download PDF

Info

Publication number
EP0205230B1
EP0205230B1 EP86302118A EP86302118A EP0205230B1 EP 0205230 B1 EP0205230 B1 EP 0205230B1 EP 86302118 A EP86302118 A EP 86302118A EP 86302118 A EP86302118 A EP 86302118A EP 0205230 B1 EP0205230 B1 EP 0205230B1
Authority
EP
European Patent Office
Prior art keywords
aluminium
metal
product
weight
based metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86302118A
Other languages
English (en)
French (fr)
Other versions
EP0205230A2 (de
EP0205230A3 (en
Inventor
Donald Webster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaiser Aluminum and Chemical Corp
Original Assignee
Kaiser Aluminum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiser Aluminum and Chemical Corp filed Critical Kaiser Aluminum and Chemical Corp
Publication of EP0205230A2 publication Critical patent/EP0205230A2/de
Publication of EP0205230A3 publication Critical patent/EP0205230A3/en
Application granted granted Critical
Publication of EP0205230B1 publication Critical patent/EP0205230B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]

Definitions

  • This invention relates to high strength aluminum products, and particularly to methods for increasing the toughness of such products without substantial loss of strength.
  • High strength aluminum alloys and composites are required in certain applications, notably the aircraft industry where the combination of high strength, high stiffness and low density is particularly important.
  • High strength is generally achieved in aluminum alloys by combinations of copper, zinc and magnesium, and high stiffness is generally achieved by metal matrix composites such as those formed by the addition of silicon carbide, boron carbide or aluminum oxide particles to an aluminum matrix.
  • metal matrix composites such as those formed by the addition of silicon carbide, boron carbide or aluminum oxide particles to an aluminum matrix.
  • aluminum-lithium alloys containing 2.0-2.8% lithium by weight have been developed. These alloys possess a lower density and higher elastic modulus than conventional non-lithium-containing alloys.
  • alloys can be made by mixing elemental powders and heating the mixture to a temperature high enough to cause diffusion to take place and form an alloy of uniform composition. See The Physics of Powder Metallurgy , W.E. Scientific, ed., p. 372, McGraw Hill, New York (1951); and C.G. Goetzel, Treatise on Powder Metallurgy , vol. 11, p. 492, Interscience Publishers Inc., New York (1950). Because of the difficulties inherent in obtaining homogeneity, however, the usual practice in aluminium and other alloy systems is to form an alloy powder directly from a pre-alloyed melt.
  • GB-A-2107738 describes the preparation by powder metallurgical techniques of a high strength aluminium-based product comprising a matrix of a first aluminium-based metal and a second aluminium-based metal dispersed within the matrix.
  • the invention accordingly provides a high strength aluminium-based product comprising a matrix of a first aluminium-based metal and a second aluminium-based metal dispersed within the matrix, characterised in that it also exhibits high impact toughness; in that the first metal is a lithium-containing aluminium-based metal having a yield strength of at least 206 MPa (30 ksi), the metal containing at least 2% by weight lithium and also at least one more primary alloying element selected from magnesium, zinc and copper; and in that the second metal is an aluminium alloy containing at least 99.5% by weight aluminium and possessing an impact toughness of at least 27 Nm (20 foot-pounds); the quantity of the second aluminium-based metal in the product being in the range from 2% to 40% by weight and the particle sizes of the first metal and the second metal dispersed therein being in the range from 10 to 1000 ⁇ m.
  • the first metal is a lithium-containing aluminium-based metal having a yield strength of at least 206 MPa (30 ksi), the metal containing at least
  • the invention also provides a method for preparing a high strength aluminium-based product from first and second aluminium-based particulate metals, characterized by:
  • FIG. 1 is a plot of longitudinal tensile properties as a function of aging temperature for edge samples taken from one embodiment of the present invention.
  • FIG. 2 is a plot similar to FIG. 1, relating however to center samples.
  • FIG. 3 is a plot of transverse tensile properties as a function of aging temperature for the embodiment of FIG. 1.
  • FIG. 4 is a plot of Charpy impact values as a function of aging temperature for the embodiment of FIG. 1.
  • FIG. 5 is a plot of fracture toughness as a function of aging temperature for the embodiment of FIG. 1.
  • FIG. 6 is a plot of yield strength vs. impact toughness for specimens taken from the center of an extrusion of the embodiment of FIG. 1.
  • FIG. 7 is a plot similar to FIG. 6 except that the plotted values relate to edge specimens.
  • FIG. 8 is a plot similar to FIG. 1 for a second embodiment of the present invention, the data taken on center specimens.
  • FIG. 9 is a plot of longitudinal tensile properties on edge specimens vs. aging temperature for the embodiment of FIG. 8.
  • FIG. 10 is a plot of transverse tensile properties vs. aging temperature for the embodiment of FIG. 8.
  • FIG. 11 is a plot of Charpy impact values vs. aging temperature for the embodiment of FIG. 8.
  • FIG. 12 is a plot of yield strength vs. impact toughness for the embodiment of FIG. 8.
  • FIG. 13 is a plot of Charpy impact values vs. percent lithium taken from the values in the preceding figures for both embodiments.
  • the present invention is applicable to high strength aluminum-based metallic materials of a wide range of composition, including both alloys and high strength composites having a yield strength of at least about 30ksi (thousand pounds per square inch) (206 MPa), preferably at least about 50ksi (345 MPa), when heat treated to the highest level.
  • the term "primary alloying element" is used herein to designate any element which amounts to about 1% or more by weight of the alloy, preferably 2% or more.
  • High strength composites to which the present invention is applicable include a wide range of products wherein aluminum matrices are reinforced with particles, whiskers or fibers of various materials having a high strength or modulus.
  • the reinforcing phase include boron fibers, B4C-coated boron, SiC-coated boron, B4C whiskers and particles, SiC whiskers and particles, carbon or graphite fibers, fused silica, alumina, steel, beryllium, tungsten and titanium.
  • the alloys are generally preferred.
  • the high toughness component of the present invention may be an aluminum-based alloy or composite with an impact toughness of at least about 20 foot-pounds (27 Nm), preferably at least about 50 foot-pounds (68 Nm), or aluminum itself.
  • impact toughness designates a value determined by conventional impact techniques, notably the Charpy test technique, a standard procedure established by the American Society for Testing and Materials. Straight aluminum having a maximum impurity level of about 0.5% by weight is preferred. Commercially pure aluminum will generally suffice.
  • the composite of the present invention may be formed by blending particles of the two components in the desired proportion.
  • the particle size is not critical and may vary over a wide range. In most applications, particles ranging in diameter from about 10 to about 1,000 ⁇ m, preferably from about 50 to about 500 ⁇ m, or having a volume of about 0.0001 to about 0.01 cm3 each, will provide the best results. It is preferred that the particles of both components have approximately the same size range.
  • the relative amounts of the components may also vary widely, depending upon the composition of each component and upon the desired properties of the ultimate product.
  • the particles themselves may be formed according to conventional techniques, including pulverization, ribbon and splat techniques. Once the powders are formed and sized and appropriate amounts selected, blending is achieved by conventional means.
  • Consolidation may be achieved by unidirectional compaction (including canister techniques), isostatic compaction (both cold and hot), rolling, forging, sintering, or other known methods. Consolidation preferably includes compaction to at least about 85% full density, more preferably at least about 95%. It is particularly preferred that the consolidation and compaction processing steps include the removal of substantially all bound water from the surface of the particles prior to the achievement of full density. This is generally achieved by purging the particle mixture with an inert gas and/or degassing the particles either prior to consolidation or after partial compaction, involving the use of reduced pressure and elevated temperature, preferably not exceeding about 1100°F (593°C).
  • the increase in toughness will be accompanied by a loss in strength.
  • the former will more than compensate for the latter, resulting in a product which is improved in overall properties.
  • a composite product was prepared as follows.
  • a powdered aluminum-lithium alloy containing 2.41% Li, 1.21% Cu, 0.73% Mg and 0.11% Zr (designated herein as 1611) was prepared by a conventional powder metallurgy technique, involving melting and combining the component metals at 1700°F (927°C) and atomizing the melt in an inert gas. The resulting particles were sized to -100 mesh (U.S. Sieve Series).
  • the particles were then blended for 2 hours at room temperature in a rotating V-shaped blender with similarly sized particles of commercially pure aluminum (minimum purity 99.5%), the latter comprising 10% of the total mixture.
  • the mixture was then heated to 900°F (482°C), degassed and consolidated by compaction to full density in a canister.
  • the billet was then removed from the canister and extruded at 850°F (454°C) at a 29-to-1 ratio, followed by solution heat treatment, stretching in the direction of extrusion to a 5% length increase and aging for 16-100 hours. Different samples were aged at different temperatures.
  • Table 1.1 below lists yield strengths and elongations measured in the longitudinal direction for the various aging temperatures, most entries indicating several trials. An average value for each aging temperature is shown graphically in FIG. 1 (edge results) and FIG. 2 (center results), where the 300°F (149°C) values are for 16h aging time. TABLE 1.1 LONGITUDINAL TENSILE PROPERTIES Aging Temp.
  • Table 1.2 lists yield strengths and elongations measured in the transverse direction for the same aging temperatures. Samples from two different locations were taken for each aging temperature, as shown in the table. Averages for each pair are shown graphically in FIG. 3. TABLE 1.2 TRANSVERSE TENSILE PROPERTIES Aging Temp.
  • Impact values were determined in the longitudinal direction by Charpy impact tests, using 10mm square, V-notched specimens at ambient temperature, the notches running transverse to the direction of extrusion. Multiple specimens from both the center and edge of the extruded samples at the extrusion edge were tested. The results are shown in Table 1.3. Averaged values are shown graphically in FIG. 4, where the 300°F values are for 16h aging time. TABLE 1.3 IMPACT VALUES Aging Temp.
  • Fracture toughness values (K 1A ) in the short transverse direction were provided by the stress intensity factor measured by applying tension in the short transverse direction at right angles to a machined notch extending into the sample in the extrusion direction.
  • the extrusions used were 0.5 inch (1.3cm) thick and 1.5 inch (3.8cm) wide.
  • the stress intensity results at the various aging temperatures (three trials each) are show in Table 1.4, and the averages depicted graphically in FIG. 5.
  • Threshold (ksi-in 1 ⁇ 2 )/(MPa.m 1 ⁇ 2 ) 1611 1611+10%Al 250/121 16 7.2/7.9 10.4/11.4 7.6/8.4 11.8/13.0 7.6/8.4 300/149 16 8.0/8.8 9.6/10.6 5.6/6.2 12.1/13.3 6.3/6.9 12.2/13.4 Again, the results for the samples containing the added unalloyed aluminum are consistently higher.
  • FIGS. 6 and 7 demonstrate that the overall result, i.e., the combination of strength and toughness at both center and edge of the extrusion, measured longitudinally, is superior for the product containing the added unalloyed aluminum.
  • the values for the points in these graphs are given in Tables 1.6 and 1.7, each of which cover a range of aging conditions in terms of both temperature and time. The ranges extend from mild conditions through optimum conditions (resulting in peak properties) and beyond into overaging with detrimental effects. Since overaging is both detrimental and wasteful of both energy and processing time, the results plotted for comparison in the figures are those corresponding to aging conditions increasing to and including the optimum but not beyond.
  • a composite product was prepared according to the procedure of Example 1, using, however, an aluminum-lithium alloy containing 3.49% Li, 1.25% Cu, 0.74% Mg and 0.12% Zr (designated herein as 1614).
  • Example 1 The test procedures of Example 1 were applied. Tensile properties measured in the longitudinal direction at the center of the extrusion for different aging temperatures are listed in Table 2.1 below and shown graphically in FIG. 8. TABLE 2.1 LONGITUDINAL CENTER TENSILE PROPERTIES Aging Temp. (°F/°C) Aging Time (h) 0.2 Yield Strength(ksi/MPa) Elongation(%) 1614 1614+10%Al 1614 1614+10%Al 200/93 16 45.9/316 42.1/290 9 8 250/121 16 54.5/376 52.3/361 6 6 300/149 16 67.5/465 64.9/447 5 3 340/171 100 72.1/497 73.5/507 4 3
  • FIG. 12 is a plot of data taken from Tables 2.1, 2.2 and 2.4.
  • the Charpy impact values are plotted as a function of lithium content in FIG. 13 for the four alloys covered by Examples 1 and 2. These values all represent the data from aging at 250°F for 16 hours. While toughness does decrease with increased lithium content, the plot demonstrates that at the same lithium level, the products containing the added unalloyed aluminum are tougher than those composed of the straight alloys. This is evidenced by the vertical distance between the dashed and solid lines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Claims (13)

  1. Hochfester Aluminiumwerkstoff, mit einem ersten, eine Matrix bildenden aluminiumhaltigen Metall und einem zweiten, in der Matrix dispergierten aluminiumhaltigen Metall, dadurch gekennzeichnet,
    - daß er eine hohe Schlagzähigkeit aufweist,
    - daß das erste Metall ein lithiumhaltiges Aluminium mit einer Streckfestigkeit von wenigstens 206 MPa (30 ksi) ist, welches wenigstens 2 Gew.-% Lithium und wenigstens ein weiteres primäres Legierungselement aus der Gruppe Magnesium, Zink und Kupfer aufweist,
    - daß das zweite Metall eine Aluminiumlegierung mit wenigstens 99,5 Gew.-% Aluminium ist und eine Schlagzähigkeit von 27 Nm (20 foot-pounds) aufweist,
    - daß der Anteil des zweiten Aluminiummetalls in dem Werkstoff 2 Gew.-% bis 40 Gew.-% beträgt und
    - daß die Partikelgrößen des ersten und des zweiten, in dem ersten dispergierten Metalles in dem Bereich von 10 µm bis 1000 µm liegen.
  2. Aluminiumwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß der Anteil des zweiten Metalls in dem Werkstoff in einem Bereich von 5 Gew.-% bis 25 Gew.-% liegt.
  3. Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Matrix aus einem solchen ersten Aluminiummetall gebildet ist, in dem zusätzlich zu Lithium als primäre Legierungselemente eine Kombination von Magnesium, Kupfer und Zink enthalten sind.
  4. Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Streckfestigkeit des ersten Metalls wenigstens 345 MPa (50 ksi) beträgt.
  5. Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Schlagzähigkeit des zweiten Metalls wenigstens 68 Nm (50 foot-pounds) beträgt.
  6. Aluminiumwerkstoff nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Partikelgrößen der ersten und zweiten Metalle angenähert gleich sind.
  7. Verfahren zur Herstellung eines hochfesten Aluminiumwerkstoffs aus ersten und zweiten, als Partikel vorliegenden Aluminiummetallen, gekennzeichnet durch die folgenden Verfahrensschritte:
    a) Mischen eines pulverförmigen, hochfesten, zur Bildung einer Matrix bestimmten ersten Aluminiummetalles, welches eine Streckfestigkeit von wenigstens 206 MPa (30 ksi) und einen Lithiumgehalt von wenigstens 2 Gew.-% sowie zusätzlich zu dem Lithium wenigstens ein oder weitere primäre Legierungselemente aufweist, die aus der Gruppe Magnesium, Zink und Kupfer ausgewählt sind mit, einem pulverförmigen; zweiten Aluminiumwerkstoff, und zwar mit einem Anteil von 2 Gew.-% bis 40 Gew.-% des Werkstoffs, wobei das zweite Aluminiummetall eine Schlagzähigkeit von wenigstens 27 Nm (20 foot-pounds) und einen Aluminiumgehalt von wenigstens 99,5 Gew.-% aufweist;
    b) Vermengen der ersten und zweiten Aluminiummetalle zur Herstellung einer Pulvermischung, in der das zweite Aluminiummetall gleichförmig innerhalb einer Matrix des ersten Aluminiummetalls dispergiert ist;
    c) Festigung der Pulvermischung durch Verdichtung zwecks Bildung eines Blockes, dessen Dichte wenigstens 85 % der vollen Dichte beträgt, wobei der Werkstoff ebenfalls eine hohe Schlagzähigkeit aufweist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das erste Aluminiummetall mit einer solchen Menge des zweiten Aluminiummetalls gemischt wird, deren Anteil 5 Gew.-% bis 25 Gew.-% des Werkstoffs beträgt.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß das erste Aluminiummetall neben Lithium als primäre Legierungselemente eine Kombination von Magnesium, Zink und Kupfer enthält.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die ersten und zweiten Aluminiummetalle eine Partikelgröße innerhalb des Bereichs von 10 µm bis 1000 µm aufweisen.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Schlagzähigkeit des zweiten Metalls wenigstens 68 Nm (50 foot-pounds) beträgt.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die Verdichtung der Mischung der ersten und zweiten Pulver eine Entfernung von im wesentlichen allem oberflächengebundenen Wasser umfaßt, indem die Mischung mit einem inerten Gas gereinigt wird.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß der Block bis zu wenigstens 95 % seiner vollen Dichte verdichtet wird.
EP86302118A 1985-06-10 1986-03-21 Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten Expired - Lifetime EP0205230B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/742,830 US4597792A (en) 1985-06-10 1985-06-10 Aluminum-based composite product of high strength and toughness
US742830 2000-12-20

Publications (3)

Publication Number Publication Date
EP0205230A2 EP0205230A2 (de) 1986-12-17
EP0205230A3 EP0205230A3 (en) 1988-08-03
EP0205230B1 true EP0205230B1 (de) 1991-12-27

Family

ID=24986425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86302118A Expired - Lifetime EP0205230B1 (de) 1985-06-10 1986-03-21 Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten

Country Status (6)

Country Link
US (1) US4597792A (de)
EP (1) EP0205230B1 (de)
JP (1) JPH0742536B2 (de)
AU (1) AU571829B2 (de)
CA (1) CA1265942C (de)
DE (1) DE3683087D1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758273A (en) * 1984-10-23 1988-07-19 Inco Alloys International, Inc. Dispersion strengthened aluminum alloys
US4693747A (en) * 1985-11-18 1987-09-15 Aluminum Company Of America Alloy having improved fatigue crack growth resistance
US4743299A (en) * 1986-03-12 1988-05-10 Olin Corporation Cermet substrate with spinel adhesion component
US4793967A (en) * 1986-03-12 1988-12-27 Olin Corporation Cermet substrate with spinel adhesion component
DE3817350A1 (de) * 1987-05-23 1988-12-22 Sumitomo Electric Industries Verfahren zur herstellung von spiralfoermigen teilen sowie verfahren zur herstellung einer aluminiumpulverschmiedelegierung
US4939032A (en) * 1987-06-25 1990-07-03 Aluminum Company Of America Composite materials having improved fracture toughness
US5122339A (en) * 1987-08-10 1992-06-16 Martin Marietta Corporation Aluminum-lithium welding alloys
US5032359A (en) * 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US4820488A (en) * 1988-03-23 1989-04-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aluminum alloy
US4927458A (en) * 1988-09-01 1990-05-22 United Technologies Corporation Method for improving the toughness of brittle materials fabricated by powder metallurgy techniques
US5223347A (en) * 1989-02-23 1993-06-29 Composites Technology International, Inc. Creep resistant composite alloys
US5085830A (en) * 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness
GB2267912A (en) * 1992-06-15 1993-12-22 Secr Defence Metal matrix for composite materials
USH1411H (en) * 1992-11-12 1995-02-07 Deshmukh; Uday V. Magnesium-lithium alloys having improved characteristics
US5494634A (en) * 1993-01-15 1996-02-27 The United States Of America As Represented By The Secretary Of The Navy Modified carbon for improved corrosion resistance
US5561829A (en) * 1993-07-22 1996-10-01 Aluminum Company Of America Method of producing structural metal matrix composite products from a blend of powders
US5744734A (en) * 1995-10-31 1998-04-28 Industrial Technology Research Institute Fabrication process for high temperature aluminum alloys by squeeze casting
US6248453B1 (en) * 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
US7625520B2 (en) * 2003-11-18 2009-12-01 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production
CA2707311C (en) 2007-12-04 2017-09-05 Alcoa Inc. Improved aluminum-copper-lithium alloys
US20090260724A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation Heat treatable L12 aluminum alloys
US8017072B2 (en) * 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US7875131B2 (en) * 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys
US8409373B2 (en) * 2008-04-18 2013-04-02 United Technologies Corporation L12 aluminum alloys with bimodal and trimodal distribution
US7871477B2 (en) * 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US7879162B2 (en) * 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US20090263273A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation High strength L12 aluminum alloys
US7811395B2 (en) * 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
US7875133B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US8002912B2 (en) * 2008-04-18 2011-08-23 United Technologies Corporation High strength L12 aluminum alloys
US8778099B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US20100143177A1 (en) * 2008-12-09 2010-06-10 United Technologies Corporation Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids
US8778098B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US20100226817A1 (en) * 2009-03-05 2010-09-09 United Technologies Corporation High strength l12 aluminum alloys produced by cryomilling
US20100252148A1 (en) * 2009-04-07 2010-10-07 United Technologies Corporation Heat treatable l12 aluminum alloys
US20100254850A1 (en) * 2009-04-07 2010-10-07 United Technologies Corporation Ceracon forging of l12 aluminum alloys
US9611522B2 (en) * 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US9127334B2 (en) * 2009-05-07 2015-09-08 United Technologies Corporation Direct forging and rolling of L12 aluminum alloys for armor applications
US20110044844A1 (en) * 2009-08-19 2011-02-24 United Technologies Corporation Hot compaction and extrusion of l12 aluminum alloys
US8728389B2 (en) * 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) * 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US20110064599A1 (en) * 2009-09-15 2011-03-17 United Technologies Corporation Direct extrusion of shapes with l12 aluminum alloys
US9194027B2 (en) * 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US20110091346A1 (en) * 2009-10-16 2011-04-21 United Technologies Corporation Forging deformation of L12 aluminum alloys
US20110091345A1 (en) * 2009-10-16 2011-04-21 United Technologies Corporation Method for fabrication of tubes using rolling and extrusion
US8409497B2 (en) * 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778269A (en) * 1954-07-19 1957-07-03 Gen Motors Corp Improved sintered metal articles made by a powder metallurgy process
US3816080A (en) * 1971-07-06 1974-06-11 Int Nickel Co Mechanically-alloyed aluminum-aluminum oxide
US4053011A (en) * 1975-09-22 1977-10-11 E. I. Du Pont De Nemours And Company Process for reinforcing aluminum alloy
JPS5375107A (en) * 1976-12-15 1978-07-04 Fujitsu Ltd Manufacture of sintered aluminum alloy
US4177069A (en) * 1977-04-09 1979-12-04 Showa Denko K.K. Process for manufacturing sintered compacts of aluminum-base alloys
DE2744994C2 (de) * 1977-10-06 1985-08-29 Stieber Division Der Borg-Warner Gmbh, 6900 Heidelberg Verfahren zur Herstellung eines Synchronosierringes
US4259112A (en) * 1979-04-05 1981-03-31 Dwa Composite Specialties, Inc. Process for manufacture of reinforced composites
DE3268826D1 (en) * 1981-09-01 1986-03-13 Sumitomo Chemical Co Method for the preparation of fiber-reinforced metal composite material
AU8657882A (en) * 1981-10-09 1983-04-28 Imperial Clevite Inc. High strength powder metal material
JPS5893841A (ja) * 1981-11-30 1983-06-03 Toyota Motor Corp 繊維強化金属型複合材料
CA1213157A (en) * 1981-12-02 1986-10-28 Kohji Yamatsuta Process for producing fiber-reinforced metal composite material
JPS5950149A (ja) * 1982-09-14 1984-03-23 Toyota Motor Corp 繊維強化金属複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aluminium, Ed. J.E. Hatch (1984), p.354 and 364 ASM Ohio *

Also Published As

Publication number Publication date
US4597792A (en) 1986-07-01
CA1265942A (en) 1990-02-20
CA1265942C (en) 1990-02-20
EP0205230A2 (de) 1986-12-17
AU571829B2 (en) 1988-04-21
EP0205230A3 (en) 1988-08-03
JPH0742536B2 (ja) 1995-05-10
JPS61284547A (ja) 1986-12-15
DE3683087D1 (de) 1992-02-06
AU5786886A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
EP0205230B1 (de) Verbundwerkstoff auf Aluminiumbasis mit hohen Festigkeits- und Zähigkeitsfähigkeiten
US3368881A (en) Titanium bi-alloy composites and manufacture thereof
EP0244949B1 (de) Herstellung einer stabilen Karbid enthaltenden Aluminiumlegierung durch mechanisches Legieren
US4639281A (en) Advanced titanium composite
Benjamin et al. Dispersion strengthened aluminum made by mechanical alloying
EP0130034B1 (de) Verfahren zur Herstellung von Verbundwerkstoffen
EP0340788B1 (de) Aluminiumlegierung mit hohem Elastizitätsmodul
US4634640A (en) Dense shaped articles consisting of polycrystalline hexagonal boron nitride and process for their manufacture by isostatic hot-pressing
EP0436952B1 (de) Aluminiumlegierungspulver, gesinterte Aluminiumlegierung sowie Verfahren zur Herstellung dieser gesinterten Legierung
EP0230123A1 (de) Bildung von intermetallischen und intermetallischähnlichen Vorlegierungen für anschliessende Anwendung beim mechanischen Legieren
US5143795A (en) High strength, high stiffness rapidly solidified magnesium base metal alloy composites
EP0556367B1 (de) Verfahren zur herstellung einer giessbaren aluminium-basis-verbundlegierung
EP0529993B1 (de) Herstellung von Verbundpulver mit Aluminiummatrix
EP0229499A1 (de) Bildung von intermetallischen und intermetallischähnlichen Vorlegierungen für anschliessende Anwendung beim mechanischen Legieren
CA1213758A (en) Dispersion strengthened low density ma-a1
DE69028849T2 (de) Aluminium-lithium-, aluminium-magnesium- und magnesium-lithium-legierungen von grosser härte
Bhaduri et al. Processing and properties of SiC particulate reinforced Al6. 2Zn2. 5Mg1. 7Cu alloy (7010) matrix composites prepared by mechanical alloying
EP0577116A1 (de) Verfahren zur Herstellung einer Verbundwerkstoff, bestehend aus einen Matrix aus beta-Titanaluminid mit eine Dispersion von Titandiborid ls Verstärkungsphase
EP0427492B1 (de) Verbundlegierung auf Aluminium-Basis
EP0045622B1 (de) Dispersionsgehärtete Aluminiumlegierungen
EP0366134A1 (de) Aluminium-Legierung, verwendbar im Pulvermetallurgieverfahren
US5149496A (en) Method of making high strength, high stiffness, magnesium base metal alloy composites
EP0340789B1 (de) Warmformgebung von Aluminiumlegierungen
EP0501691A1 (de) Legierung auf Aluminiumbasis zur Verwendung bei mittelhohen Temperaturen
JPH0368941B2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19880822

17Q First examination report despatched

Effective date: 19900419

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3683087

Country of ref document: DE

Date of ref document: 19920206

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970224

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST