EP0204920B1 - Article with a high hardness and high tenacity for working metals, hard metals, ceramics and glasses - Google Patents

Article with a high hardness and high tenacity for working metals, hard metals, ceramics and glasses Download PDF

Info

Publication number
EP0204920B1
EP0204920B1 EP19860105056 EP86105056A EP0204920B1 EP 0204920 B1 EP0204920 B1 EP 0204920B1 EP 19860105056 EP19860105056 EP 19860105056 EP 86105056 A EP86105056 A EP 86105056A EP 0204920 B1 EP0204920 B1 EP 0204920B1
Authority
EP
European Patent Office
Prior art keywords
metals
range
homogeneously mixed
powder mixture
glasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19860105056
Other languages
German (de)
French (fr)
Other versions
EP0204920A1 (en
Inventor
Volker Dr. Heinzel
Hossein-Ali Keschtkar
Ingeborg Schub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19853519710 external-priority patent/DE3519710A1/en
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0204920A1 publication Critical patent/EP0204920A1/en
Application granted granted Critical
Publication of EP0204920B1 publication Critical patent/EP0204920B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/062Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on B4C

Definitions

  • the invention relates to a method for producing a shaped body with high hardness and high toughness from sintered boron carbide and a binder metal phase for the processing of metals, hard metals, ceramics and glasses.
  • Boron carbide is particularly resistant to sandblasting. This opens up certain application possibilities for sintered bodies containing boron carbide. According to DE-C-973 807, these sintered bodies can be obtained by sintering boron carbide powder with a grain size of 0.1-30 ⁇ at temperatures of 1,600 to 2,000 ° C. under pressure.
  • B4C particles are sintered with powder of the known binding metals cobalt or nickel, undesirable chemical reactions and the formation of further phases, for example borides, occur. As a result, the different properties of the phases that are already present and those that are forming can already cause cracks and gaps in the molded body during cooling.
  • the invention was based on the object of presenting a simple process for the production of moldings based on B 4 C, in which the strength, in particular the toughness, compared to moldings made of pure B 4 C is increased and which are suitable for cutting or grinding tools or for applications , where mechanical wear loads or high surface pressures must be met, such as. B. in nozzles, particularly well suited.
  • cutting platelets for machining or other shaped bodies for tools for grinding, honing, rubbing etc. of metals, in particular non-ferrous metals, hard metals, ceramics and glasses can be produced.
  • Mo and W belong to the metals with low heat of formation of both metal borides and carbides.
  • the lowest melting point of a Mo boride at 1,950 ° C, corresponding to 0.75 T Schm is already in the sintering region of Mo.
  • the B 4 C is doped with carbon.
  • 0.1 to 2.0% by weight of activated carbon, based on the product weight is homogeneously mixed into the powder mixture from step a) before step b).
  • the compact can be heated to the sintering temperature and then introduced into the die. The final compact can be ejected hot from the die and then cooled.
  • the sintering temperature is close to the upper range value.
  • the hot pressing of Mo and B 4 C powders takes place at temperatures at which both materials are compressed but no molten phase occurs yet.
  • the essence of the method according to the invention is the comparatively rapid execution of the hot pressing, in which even a very small proportion of the metal powder in the powder mixture is retained as the metallic phase in the molded product and embeds the B4C particles.
  • Molded articles were produced: with 5% by volume Mo (corresponds to 20% by weight) and 95% by volume B 4 C; with 15 vol.% Mo and 85 vol.% B 4 C; and with 35 vol.% Mo (corresponds to 80 wt.%) and 65 vol.% B 4 C.
  • the shaped articles produced according to the invention clearly show the separation of the embedded B4C particles (B 4 C dark, Mo light ⁇ from the surrounding Mo area. These differences are also confirmed in the scanning electron microscope and an X-ray scan of the same section. The X-ray fine structure analysis shows the metallic Mo in the compacts. The clear separation of B 4 C-containing areas and Mo-containing intermediate layers with thicknesses down to 3 ⁇ m was proven.
  • Compacts were sintered using a semi-isostatic hot press with a compressive force of approx. 80 kN. Shaped articles were produced and tested, the Mo contents contained between 5% by volume and 35% by volume.
  • the homogeneously mixed powders of molybdenum (37-140 ⁇ m) and boron carbide (0.1-1 360 ⁇ m) were placed in a graphite matrix. Square and round platelets were produced with punches movable from two sides under pressure of 10 and 30 MPa and at temperatures of 1,850 ° -2,000 ° C.
  • the heating rates were between 100 and 200 ° C / min.
  • the holding times were between 10 and 20 minutes.
  • the cooling rates were in the range of 100-200 ° C / min.
  • the moldings thus created were clamped in a tool holder and fastened in the steel holder of a lathe.
  • Various steels, including austenites, were machined with the cutting inserts.
  • AI 2 0 3 was processed with the same arrangement, it being possible to remove both over a large area and to achieve cuts.
  • TaC and TiN surfaces could be removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Formkörpers mit hoher Härte und hoher Zähigkeit aus gesintertem Borkarbid und einer Bindemetallphase für die Bearbeitung von Metallen, Hartmetallen, Keramiken und Gläsern.The invention relates to a method for producing a shaped body with high hardness and high toughness from sintered boron carbide and a binder metal phase for the processing of metals, hard metals, ceramics and glasses.

Borkarbid ist gegen Sandstrahlen besonders widerstandsfähig. Dadurch eröffnen sich für borkarbidhaltige Sinterkörper gewisse Anwendungsmöglichkeiten. Diese Sinterkörper können nach der DE-C-973 807 durch Sintern von Borkarbidpulver mit einer Korngröße von 0,1-30 µ bei Temperaturen von 1 600 bis 2 000 °C unter Druck erhalten werden. Bei einem Vergleich der Verschieißwerte von Hartmetallen und Hartstoffen, bestimmt nach der Sandstrahlmethode, ist der Verschleißwert eines Sinterkörpers mit 95 Gew.- % Borkarbid (20 Gew.-% C) und 5 Gew.-% Fe gegenüber den Verschleißwerten von Sinterkörpern aus WC-Co oder TiC-Fe-Cr oder TiC-VC-Fe-Ni der niedrigste (R. K. Kieffer, P. Schwarzkopf "Hartstoffe und Hartmetalle., Springer-Verlag, 1953, Seiten 524 und 525). Borkarbid-Sinterkörper weisen allerdings eine geringe Bruchfestigkeit auf. An anderer Stelle dieser Druckschrift (Seite 327) wird erwähnt, daß Versuche, Borkarbid mit zähen Metallen abzubinden, gescheitert seien.Boron carbide is particularly resistant to sandblasting. This opens up certain application possibilities for sintered bodies containing boron carbide. According to DE-C-973 807, these sintered bodies can be obtained by sintering boron carbide powder with a grain size of 0.1-30 μ at temperatures of 1,600 to 2,000 ° C. under pressure. When the wear values of hard metals and hard materials are compared, determined using the sandblasting method, the wear value of a sintered body with 95% by weight boron carbide (20% by weight C) and 5% by weight Fe compared to the wear values of sintered bodies made of WC Co or TiC-Fe-Cr or TiC-VC-Fe-Ni the lowest (RK Kieffer, P. Schwarzkopf " Hartstoffe und Hartmetalle., Springer-Verlag, 1953, pages 524 and 525). However, boron carbide sintered bodies have a low breaking strength Elsewhere in this document (page 327) it is mentioned that attempts to set boron carbide with tough metals have failed.

Werden B4C-Partikel mit Pulver der bekannten Bindemetalle Cobalt oder Nickel gesintert, so kommt es zu unerwünschten chemischen Reakionen und zur Bildung von weiteren Phasen, beispielsweise von Boriden. Hierdurch können durch die unterschiedlichen Eigenschaften der bereits vorhandenen und der sich bildenden Phasen bereits beim Abkühlen Risse und Lücken im Formkörper entstehen.If B4C particles are sintered with powder of the known binding metals cobalt or nickel, undesirable chemical reactions and the formation of further phases, for example borides, occur. As a result, the different properties of the phases that are already present and those that are forming can already cause cracks and gaps in the molded body during cooling.

Der Erfindung lag die Aufgabe zugrunde, ein einfaches Verfahren zur Herstellung von Formkörpern auf B4C-Basis vorzustellen, bei welchen die Festigkeit, insbesondere die Zähigkeit gegenüber Formkörpern aus reinem B4C erhöht ist und die sich für Schneid- oder Schleifwerkzeuge oder für Anwendungen, bei denen mechanischen Verschleißbelastungen oder hohen Flächenpressungen begegnet werden muß, wie z. B. bei Düsen, besonders gut eignen. Mit dem erfindungsgemä-Ben Verfahren sollen Schneidplättchen für spanabhebende Bearbeitung oder andere Formkörper für Werkzeuge zum Schleifen, Honen, Reiben etc. von Metallen, insbesondere Nichteisenmetallen, von Hartmetallen, von Keramiken und von Gläsern hergestellt werden können.The invention was based on the object of presenting a simple process for the production of moldings based on B 4 C, in which the strength, in particular the toughness, compared to moldings made of pure B 4 C is increased and which are suitable for cutting or grinding tools or for applications , where mechanical wear loads or high surface pressures must be met, such as. B. in nozzles, particularly well suited. With the method according to the invention, cutting platelets for machining or other shaped bodies for tools for grinding, honing, rubbing etc. of metals, in particular non-ferrous metals, hard metals, ceramics and glasses, can be produced.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem ein Formkörper aus gesintertem Borkarbid und einer Bindemetallphase hergestellt wird wobei das B4C. undotiert oder mit Kohlenstoff bis 2,0 Gew.% dotiert, in einem Volumen-Anteil von wenigstens 65 Vol.% im Formkörper enthalten ist und der Bindemetallphasen-Anteil dem Restvolumen des Formkörpers im Bereich von 5-35 Vol.-% entspricht und in der Weise vorgegangen wird, daß

  • a) B4C-Partikel von Korngrößen im Bereich von 1 µm bis 1 650 µm mit metallischem Pulver aus Mo und/oder W oder deren Legierungen mit anderen Metallen, deren Schmelzpunkt oberhalb der unteren Sintertemperaturgrenze von 1 000 °C liegt, und deren Legierungspartner keine flüssigen boridischen oder carbidischen Verbindungen im Sinterbereich von 1 800° bis 1 950 °C bilden, in einer Korngröße im Bereich zwischen 35 µm und 100 µm homogen gemischt werden,
  • b) das Pulver in eine Graphit-Matrize eingefüllt wird,
  • c) das Pulvergemisch auf eine Temperatur im Bereich von 1 800 °C bis 2 000 °C erhitzt, bei einem Druck von 100 N/mm2 bis 300 N/mm2 und einer Preßdauer zwischen 5 und 20 Minuten oder durch Schlagverdichten unter Schutzgas-Atmosphäre endverdichtet wird,
  • d) danach mit einer Kühlrate zwischen 100° C/min. und 200° C/min. abgekühlt wird, wobei
  • e) die Dauer des Aufheizens und Abkühlens insgesamt die Dauer des Pressens nach Schritt c) nicht übersteigt.
The object is achieved according to the invention by a method in which a molded body is produced from sintered boron carbide and a binder metal phase, the B 4 C. being undoped or doped with carbon to 2.0% by weight, in a volume fraction of at least 65 vol. % is contained in the molded body and the binder metal phase portion corresponds to the residual volume of the molded body in the range of 5-35% by volume and is carried out in such a way that
  • a) B 4 C particles of grain sizes in the range from 1 μm to 1 650 μm with metallic powder of Mo and / or W or their alloys with other metals, the melting point of which is above the lower sintering temperature limit of 1,000 ° C., and their alloy partner do not form any liquid boride or carbide compounds in the sintering range from 1 800 ° to 1 950 ° C, are homogeneously mixed in a grain size in the range between 35 µm and 100 µm
  • b) the powder is filled into a graphite matrix,
  • c) the powder mixture is heated to a temperature in the range from 1,800 ° C. to 2,000 ° C., at a pressure of 100 N / mm 2 to 300 N / mm 2 and a pressing time between 5 and 20 minutes or by impact compression under protective gas Atmosphere is finally compressed,
  • d) then with a cooling rate between 100 ° C / min. and 200 ° C / min. is cooled, whereby
  • e) the total heating and cooling time does not exceed the pressing time after step c).

Die abhängigen Verfahrensansprüche geben vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens an.The dependent method claims indicate advantageous refinements of the method according to the invention.

Mo und W gehören zu den Metallen mit geringen Bildungswärmen sowohl der Metallboride als auch der Karbide. Der niedrigste Schmelzpunkt eines Mo-Borids liegt mit 1 950 °C, entsprechend 0,75 TSchm, bereits im Sinterbereich von Mo. Um ein feinkörniges Sintermaterial zu erhalten, wird das B4C mit Kohlenstoff dotiert. Hierzu wird dem Pulvergemisch aus Schritt a) 0,1 bis 2,0 Gew.-% aktivierter Kohlenstoff, bezogen auf das Produktgewicht, vor Schritt b) homogen zugemischt. Im Falle eines Vorpressens kann der Preßling auf die Sintertemperatur erhitzt und danach in die Matrize eingeführt werden. Der endverdichtete Preßling kann heiß aus der Matrize ausgestoßen und anschließend abgekühlt werden. Die Sintertemperatur liegt bei Kohlenstoffdotierung in der Nähe des oberen Bereichswertes. Das Heißpressen von Mo- und B4C-Pulvern erfolgt bei Temperaturen, bei denen beide Materialien verdichtet werden, aber noch keine schmelzflüssige Phase auftritt. Das Wesentliche des erfindungsgemäßen Verfahrens ist die verhältnismäßig schnelle Ausführung des Heißpressens, bei welcher auch ein noch so geringer Anteil des Metallpulvers im Pulvergemisch als metallische Phase im Formkörper-Produkt erhalten bleibt und die B4C-Partikel einbettet.Mo and W belong to the metals with low heat of formation of both metal borides and carbides. The lowest melting point of a Mo boride at 1,950 ° C, corresponding to 0.75 T Schm , is already in the sintering region of Mo. In order to obtain a fine-grained sintered material, the B 4 C is doped with carbon. For this purpose, 0.1 to 2.0% by weight of activated carbon, based on the product weight, is homogeneously mixed into the powder mixture from step a) before step b). In the case of pre-pressing, the compact can be heated to the sintering temperature and then introduced into the die. The final compact can be ejected hot from the die and then cooled. With carbon doping, the sintering temperature is close to the upper range value. The hot pressing of Mo and B 4 C powders takes place at temperatures at which both materials are compressed but no molten phase occurs yet. The essence of the method according to the invention is the comparatively rapid execution of the hot pressing, in which even a very small proportion of the metal powder in the powder mixture is retained as the metallic phase in the molded product and embeds the B4C particles.

Es wurden Formkörper hergestellt: mit 5 Vol.- % Mo (entspricht 20 Gew -%) und 95 Vol.-% B4C ; mit 15 Vol.-% Mo und 85 Vol.-% B4C ; und mit 35 Vol.-% Mo (entspricht 80 Gew.-%) und 65 Vol.-% B4C.Molded articles were produced: with 5% by volume Mo (corresponds to 20% by weight) and 95% by volume B 4 C; with 15 vol.% Mo and 85 vol.% B 4 C; and with 35 vol.% Mo (corresponds to 80 wt.%) and 65 vol.% B 4 C.

Die erfindungsgemäß hergestellten Formkörper zeigen im Anschliff deutlich die Trennung der eingebetteten B4C-Partikel (B4C dunkel, Mo hell} von dem umgebenden Mo-Bereich. Diese Unterschiede werden auch bei den Aufnahmen im Rasterelektronenmikroskop und einem Röntgenscan des gleichen Ausschnitts bestätigt. Mit der Röntgen-Feinstrukturanalyse läßt sich das metallische Mo in den Preßlingen nachweisen. Die eindeutige Trennung von B4C-haltigen Bereichen und Mo-haltigen Zwischenschichten mit Stärken bis herunter zu 3 µm wurde nachgewiesen.The shaped articles produced according to the invention clearly show the separation of the embedded B4C particles (B 4 C dark, Mo light} from the surrounding Mo area. These differences are also confirmed in the scanning electron microscope and an X-ray scan of the same section. The X-ray fine structure analysis shows the metallic Mo in the compacts. The clear separation of B 4 C-containing areas and Mo-containing intermediate layers with thicknesses down to 3 µm was proven.

Im folgenden wird ein Durchführungsbeispiel der Erfindung beschrieben.An exemplary embodiment of the invention is described below.

Beispiel :For example:

Mittels einer semiisostatischen Heißpresse mit einer Druckkraft von ca. 80 kN wurden Preßlinge gesintert. Es wurden Formkörper hergestellt und getestet, die Mo-Anteile enthielten zwischen 5 Vol.-% und 35 Vol.-%. Dazu wurden die homogen gemischten Pulver aus Molybdän (37-140 µm) und Borkarbid (0,1-1 360 µm) in eine Graphit-Matrize eingefüllt. Mit von zwei Seiten beweglichen Stempeln wurden unter Druck von 10 und 30 MPa und bei Temperaturen von 1 850°-2 000 °C viereckige und runde Plättchen hergestellt.Compacts were sintered using a semi-isostatic hot press with a compressive force of approx. 80 kN. Shaped articles were produced and tested, the Mo contents contained between 5% by volume and 35% by volume. For this purpose, the homogeneously mixed powders of molybdenum (37-140 µm) and boron carbide (0.1-1 360 µm) were placed in a graphite matrix. Square and round platelets were produced with punches movable from two sides under pressure of 10 and 30 MPa and at temperatures of 1,850 ° -2,000 ° C.

Die Aufheizgeschwindigkeiten betrugen zwischen 100 und 200° C/min. Die Haltezeiten lagen zwischen 10 und 20 min. Die Abkühlgeschwindigkeiten lagen im Bereich von 100-200° C/min.The heating rates were between 100 and 200 ° C / min. The holding times were between 10 and 20 minutes. The cooling rates were in the range of 100-200 ° C / min.

Das Preßverfahren ließ jedoch noch wesentlich höhere Abkühlgeschwindigkeiten zu.The pressing process, however, allowed much higher cooling rates.

Die so entstandenen Formkörper wurden in einen Werkzeugaufnehmer eingespannt und in Stahlhalter einer Drehbank befestigt. Mit den Schneidplatten wurden verschiedene Stähle, auch Austenite, spanabhebend bearbeitet.The moldings thus created were clamped in a tool holder and fastened in the steel holder of a lathe. Various steels, including austenites, were machined with the cutting inserts.

Im optischen Vergleich mit einer mit TiN beschichteten Hartstoffschneidwendeplatte war die Verschleißfestigkeit der Formkörper mit 10 bzw. 15 Vol.-% Mo viel besser.In optical comparison with a hard material cutting insert coated with TiN, the wear resistance of the moldings with 10 or 15% by volume Mo was much better.

Mit derselben Anordnung wurde AI203 bearbeitet, wobei sowohl großflächig abgetragen werden konnte, als auch Schnitte erzielt wurden. Außerdem ließen sich TaC- und TiN-Oberflächen abtragen.AI 2 0 3 was processed with the same arrangement, it being possible to remove both over a large area and to achieve cuts. In addition, TaC and TiN surfaces could be removed.

Claims (3)

1. Method of producing a moulded body with a high hardness and high viscosity from sintered boron carbide and a binding metal phase for working metals, hard metals, ceramics and glasses, wherein the B4C, undoped or doped with carbon up to 2.0 % by wt, is contained in the moulded body in a volume proportion of at least 65 % by vol., and the binding metal phase proportion corresponds to the residual volume of the moulded body in the range of 5-35 % by vol. and is processed in such a manner that
a) B4C particles of particle sizes in the range of 1 µm to 1 650 µm are homogeneously mixed with metallic powder of Mo and/or W, or their alloys are homogeneously mixed with other metals, whose melting point lies above the lower sintering temperature limit of 1 800 °C and whose alloy partners form no liquid, boride or carbide compounds in the sintering range of 1 800 °C to 1 950 °C, in a particle size in the range of between 35 µm and 100 µm,
b) the powder mixture is introduced into a graphite matrix,
c) the powder mixture is heated to a temperature in the range of 1 800 °C to 2 000 °C, at a pressure of 100 N/mm2 to 300 N/mm2 and for a pressing period of between 5 and 20 minutes, or is ultimately compressed by impact compression in a protective gas atmosphere,
d) then is cooled at a cooling rate of between 100 °C/min. and 200 °C/min., whereby
e) the total heating and cooling period does not exceed the pressing period of step c).
2. Method according to claim 1, characterised in that 0.1 to 2.0 % by wt. of activated carbon, relative to the product weight, is homogeneously mixed with the powder mixture of step a) prior to step b).
3. Method according to claim 2 or 3, characterised in that the ultimately compressed blank is ejected, hot, from the matrix and subsequently cooled.
EP19860105056 1985-06-01 1986-04-12 Article with a high hardness and high tenacity for working metals, hard metals, ceramics and glasses Expired EP0204920B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3519710 1985-06-01
DE19853519710 DE3519710A1 (en) 1985-06-01 1985-06-01 MOLDED BODY WITH HIGH HARDNESS AND HIGH TOUGHNESS FOR THE PROCESSING OF METALS, HARD METALS, CERAMICS AND GLASSES
EP86102025A EP0204067A1 (en) 1985-06-01 1986-02-18 Article with a high hardness and high tenacity for working metals, hard metals, ceramics and glasses
EP86102025 1986-02-18

Publications (2)

Publication Number Publication Date
EP0204920A1 EP0204920A1 (en) 1986-12-17
EP0204920B1 true EP0204920B1 (en) 1989-02-22

Family

ID=25832775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860105056 Expired EP0204920B1 (en) 1985-06-01 1986-04-12 Article with a high hardness and high tenacity for working metals, hard metals, ceramics and glasses

Country Status (1)

Country Link
EP (1) EP0204920B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH226062A (en) * 1940-09-07 1943-03-15 P Hoffmann Fred Tool for drilling, turning and the like.
DE973807C (en) * 1942-04-19 1960-06-09 Beteiligungs & Patentverw Gmbh Process for the production of hard and wear-resistant utensils
FR1015543A (en) * 1948-02-27 1952-10-14 Plansee Metallwerk Boron carbide sintered alloy
DE2451774A1 (en) * 1973-11-02 1975-05-07 Borax Cons Ltd MOLDED BODY WITH IMPROVED WEAR RESISTANCE
US4400213A (en) * 1981-02-03 1983-08-23 Haskell Sheinberg Novel hard compositions and methods of preparation
GB2143847B (en) * 1983-07-26 1986-09-24 Us Energy Hard material

Also Published As

Publication number Publication date
EP0204920A1 (en) 1986-12-17

Similar Documents

Publication Publication Date Title
DE2621472C2 (en) Use of a hard alloy for cutting, shearing or deforming tools
EP1751320B1 (en) Wearing part consisting of a diamantiferous composite
DE69231381T2 (en) METHOD FOR PRODUCING CEMENTED CARBIDE ITEMS
EP2527480B1 (en) NiFe binder with universal application
DE69227503T2 (en) HARD ALLOY AND THEIR PRODUCTION
EP0433856B1 (en) Mixed hard metal materials based on borides, nitrides and iron group matrix metals
EP0628525B1 (en) Composites based on boron carbide, titanium boride and elemental carbon and method of their production
DE3932992A1 (en) HARD METAL COMPOSITES BY DISPERSION ALLOY
DE68928219T2 (en) High-strength, abrasion-resistant materials
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
DE2809184A1 (en) PROCESS FOR MANUFACTURING HARD, WEAR-RESISTANT WORKPIECES
EP2195473A1 (en) Tool
DE69128595T2 (en) Wear-resistant materials of high hardness
DE1204204C2 (en) Process for densifying materials in particulate form
DE69206148T2 (en) Transition metal boride-based cermets, their manufacture and use.
DE3519710C2 (en)
EP0204920B1 (en) Article with a high hardness and high tenacity for working metals, hard metals, ceramics and glasses
EP0387237A2 (en) Process for making objects, tools and parts by powder metallurgy
EP0232711B1 (en) Cutting plate
DE3308409C2 (en)
DE29511247U1 (en) Cobalt binder metal alloy for hard metal alloys for hard metal tools, in particular cutting tools, and hard metal tools with it
DE3025533C1 (en) Compound sintering process
DE2826544A1 (en) OVERHARD MIXING MATERIAL
DE19629993B4 (en) Alumina-based mixed ceramics, process for their preparation and their use
EP1548137B1 (en) Use of a hard metal for tools

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19870116

17Q First examination report despatched

Effective date: 19880229

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3662153

Country of ref document: DE

Date of ref document: 19890330

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86105056.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970416

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970430

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86105056.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030320

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050412