EP0204367A1 - Proximity fuse for an artillery projectile with base bleed reducing means - Google Patents

Proximity fuse for an artillery projectile with base bleed reducing means Download PDF

Info

Publication number
EP0204367A1
EP0204367A1 EP86200912A EP86200912A EP0204367A1 EP 0204367 A1 EP0204367 A1 EP 0204367A1 EP 86200912 A EP86200912 A EP 86200912A EP 86200912 A EP86200912 A EP 86200912A EP 0204367 A1 EP0204367 A1 EP 0204367A1
Authority
EP
European Patent Office
Prior art keywords
chain
circuit
threshold
rocket
proximity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86200912A
Other languages
German (de)
French (fr)
Other versions
EP0204367B1 (en
Inventor
André Robert Jean Lefranc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione thomson - Trt Defense
Original Assignee
Telecommunications Radioelectriques et Telephoniques SA TRT
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telecommunications Radioelectriques et Telephoniques SA TRT, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Telecommunications Radioelectriques et Telephoniques SA TRT
Publication of EP0204367A1 publication Critical patent/EP0204367A1/en
Application granted granted Critical
Publication of EP0204367B1 publication Critical patent/EP0204367B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/04Proximity fuzes; Fuzes for remote detonation operated by radio waves

Definitions

  • the invention relates to a proximity rocket for an artillery projectile of the type for reduction of the aerodynamic drag of the base comprising a radar device for providing at the output of a mixer a subtractive beat signal Se between the emitted wave and the reflected wave.
  • a part in a first processing chain intended to activate the trigger of the ignition circuit of said rocket after a time '1 , variable, of the order of a tenth of a second, after said amplified beat signal and filtered has exceeded a certain number of times a certain threshold, on the other hand to a second anti-jamming chain having band-pass characteristics different from those of the first chain.
  • a very effective means consists in carrying out a reduction in the base drag (RDTC), which is formed in flight at the base of the shell, especially at the start of the trajectory.
  • RDTC base drag
  • This reduction in drag can be obtained by emitting a gas jet at the base, called “Base Bleed” in English, the principle of which is recalled below.
  • the invention applies precisely to a proximity rocket for this type of artillery projectile.
  • Known proximity rockets include an electronic circuit sensitive to signals included in predetermined frequency bands. This circuit responds either to signals transmitted from the designated target or to reflected signals, initially transmitted from the fired projectile such as, in particular Doppler signals, the latter case being more particularly targeted by the invention which relates to shells whose preferred target is the soil.
  • a known means consists in adding to a first processing chain a second chain which has the essential function of inhibiting the first chain in the presence of parasitic signals, as described for example in French patent 2,175,810 and its addition 2 223 658.
  • the spurious signals which justify the presence of a second chain may be due to particular atmospheric conditions or to voluntary or involuntary interference and their frequency bands are essentially outside the Doppler frequency band to which must be sensitive the proximity fuse in normal operation.
  • the additional interference induced by the emission of ionized gases at the base has two characteristics which make it very troublesome for correct operation of the rocket: approximately half of the additional parasitic radioelectric energy is located in the Doppler frequency band to be considered and the amplitude of these additional spurious signals is comparable to that of the Doppler signals.
  • the second anti-jamming chain mentioned above is inoperative.
  • the object of the invention is to adapt the sensitivity of the signal processing module of the proximity rocket of an artillery projectile with reduction of aerodynamic base drag.
  • Another object is to provide a proximity rocket adaptable to different types of artillery projectiles, whether or not these are of the RDTC type.
  • the proximity rocket defined in the preamble is remarkable in that it further comprises an additional chain intended to counteract the parasitic effect caused in said first chain by the electromagnetic disturbances due to the reduction of the aerodynamic base drag, that said additional chain has characteristics of bandpass filtering, amplification and threshold crossing by said beat signal comparable to those of said first chain, that the output signal of the additional chain is transmitted to inhibition means for partially or totally inhibit, via said first chain or said initiation circuit, the firing of the rocket, and that said additional chain comprises first delay means which delay the appearance of said output signal, relative to the input signal, of a time T 1 greater than the maximum value of ⁇ 1 and of the second delay means for maintaining said output signal of the additional chain for a time T 2 of the order of a few seconds after said amplified and filtered beat signal stopped exceeding the threshold of the additional channel.
  • the delay T 1 makes it possible to avoid that the additional chain n 'inhibits the first chain in the most frequent case where the shell arrives on the ground after the RDTC effect has ceased, which allows the first chain to trigger the explosion as expected in nominal fashion.
  • provision can be made to only partially inhibit the first chain, ground arrival being able to occur while one is still in RDTC phase.
  • the establishment of the delay time T 1 is made possible thanks to the property that the disturbing signal RDTC has of existing from the start of the shot, that is to say during the initial phase in which any explosion of the projectile is made impossible as a safety measure for the gunner. Furthermore, the presence of the additional chain is compatible with that of the second chain of the prior art described above.
  • said proximity rocket comprises in cascade a first and a second timing circuit of the priming circuit
  • the first chain comprises in cascade following said mixer a bandpass filter, an amplifier , a threshold circuit and a pulse counter with continuous progressive reset and said trigger
  • the additional chain comprises in cascade a bandpass filter, an amplifier, said first and second delay means, a threshold circuit and a decision circuit which supplies said output signal.
  • An advantageous embodiment of the proximity rocket according to which the pulse counter of the first chain, constituted by a charge transfer circuit between a first and a second capacitor, is partially inhibited, is remarkable in that said signal output of the additional chain acts, by means of inhibition, on said first capacitor, to reduce the charge transfer of the latter on the occasion of each threshold crossing in the threshold circuit of the first chain.
  • the rocket still operates in proximity at a reduced height compared to the nominal height provided.
  • the RDTC device is a relatively recent achievement.
  • the principle consists in providing the rear of the shell projectile with an appendage open towards the rear and which contains combustible material; the combustible material is ignited at the start of the projectile which results in the presence of ignited gases in the wake of the shell and by an increase in pressure which causes a reduction in the drag of the base which can reach 80%.
  • the projectile then functions like a rocket engine, the emission of ignited gases takes place at subsonic speed and no additional propelling force is provided, thanks to which the accuracy of the firing is in no way affected by this device.
  • the RDTC phase is planned to last during the fastest part of the trajectory of the shell for which the efficiency of the device is maximum, that is to say during the first 20 to 30 seconds counted from the start of the shot referenced to.
  • the RDTC phase is much less than the total time of the trajectory of the shell; on the other hand, for shots with a low emission angle, the arrival on the ground can occur during the RDTC phase.
  • a known proximity rocket for artillery projectile can comprise, as indicated in FIG. 1, a radar device constituted for example by an oscillator 1 coupled to a transmitting antenna 2 to emit a continuous wave.
  • the wave reflected by the target is picked up by a receiving antenna 3 assumed for example to be separate from the transmitting antenna.
  • the antennas 2 and 3 are assumed to be omnidirectional.
  • a mixer circuit 4 forms the subtractive beat signal between the signal supplied by the receiving antenna 3 and the signal supplied by a coupler 5 which takes a fraction of the signal from the oscillator 1. After removal of the DC component by means of 'a resistor 6 and a capacitor 7, this beat signal is supplied as signal Se to a terminal 8.
  • terminal 8 is connected to a first signal processing chain Se intended to activate the trigger 9 the rocket's ignition circuit 11 after a variable time ⁇ ⁇ , as described in more detail below.
  • the first chain comprises in cascade between terminal 8 and a terminal 10 a bandpass filter 12, an amplifier 13, a terminal 14, a threshold circuit 15, a pulse counter 16 and the trigger 9.
  • the filter 12 and the amplifier 13 are for example constituted by operational amplifiers.
  • the filter 12 allows signals of frequencies typically between 50 Hz and 300 Hz to pass, to fix ideas, that is to say the range of Doppler frequencies expected for the shell on its arrival on the ground, depending on its speed and its angle d incidence for a given given frequency of the transmitted wave.
  • the threshold circuit 15 can be produced by means of a transistor or an operational amplifier.
  • the pulse counter 16 which has the essential function of establishing the time T1 is for example an analog counter as described below in detail with reference to FIG. 5.
  • the trigger 9 can be a Zener diode.
  • the common point 18 with the elements Rn and Cn is connected to a trigger circuit 19, for example a suitably biased transistor, which in turn supplies a second timing circuit only when a predetermined voltage threshold is reached at point 18.
  • the second time delay circuit consists of the series connection of a resistor Ra of a connection point 22, and of a capacitor Ca connected to ground via the primer AM. Furthermore, point 22 is connected to ground by the parallel connection of the cathode anode path of a thyristor Q, the trigger of which is connected to terminal 10 and of an electromechanical target switch 24.
  • the power supply on the terminal 17 and at other points of the circuit is carried out in a known manner not shown, for example by means of a battery whose electrolyte is released under the effect of the shock from the shell.
  • the capacitor Ca After a time Tn of the order of 9 seconds, fixed by the values of Rn and Cn, the capacitor Ca in turn charges through the resistor Ra and the voltage at point 22 rises to a value such as a sudden discharge of the capacitor C A , at this voltage value, through the primer AM alone would suffice to ignite the latter, voltage value which is obtained after a time Ta, from order of a second, which is added to the time Tn.
  • the ignition of the primer AM can only be obtained after a time Tn + Ta of the order of 10 seconds after the departure of the shell either by triggering of the thyristor Q by the first chain, or by closing of the switch 24 obtained by percussion on the ground.
  • the operating principle of the counter 16 in its analog version is as follows: between two threshold overruns in the form of a pulse of the filtered and amplified signal Se, in the threshold circuit 15, a first capacitor of low capacity is charged under a constant tension across a resistance, during the time the threshold is exceeded by the pulse; the charge of the first capacitor is transferred to a second capacitor of high capacity. Furthermore, the second capacitor is shunted by a reset resistor which provides continuous progressive reset of the second capacitor. In FIG. 1, this continuous progressive reset is symbolically represented by an automatic reset circuit 25.
  • the period T typically corresponds to an altitude difference of 1 m on the final trajectory part of the projectile.
  • the proximity rocket shown in FIG. 1 may include a second anti-jamming chain which receives the signal present on terminal 8.
  • This second chain comprises for example a bandpass filter 27, an amplifier 28 and a threshold circuit 29.
  • the output of circuit 29 is connected to an input 31 of the pulse counter 16 to shunt, in the latter, the reset resistance to cause a sudden reset of the second capacitor, this which causes inhibition of the triggering of thyristor 10.
  • the circuits 27, 28 and 29 can be of the same structure as the homologous circuits 12, 13 and 15 of the first chain but their settings are different and the band (s) bandwidth (s) of filter 27 must be separated from the bandwidth of filter 12 in order to avoid inhibition of the triggering of thyristor Q on arrival at the ground of the projectile.
  • an additional chain which receives the signal Se on terminal 8 in the same way as the first and second chains, has the function of specifically counteracting the radio interference produced by the operation of the RDTC device when the projectile is fired.
  • This additional chain comprises in cascade a bandpass filter 32, an amplifier 33, first and second delay means 34, a threshold circuit 35 and a decision circuit 36 whose output 37 is provided for controlling one or more elements of the first chain or starting circuit 11 of the rocket.
  • the pass band of the filter 32 includes that of the filter 12 and has substantially the same lower terminal as the latter. This bandwidth is for example 50 to 1500 Hz, half of the energy being concentrated at the lowest frequencies which are also the Doppler frequencies, ie between 50 and 350 Hz.
  • the amplification rate of the amplifier 33 is comparable to that of amplifier 13.
  • the first and second delay means which bring a delay T 1 to the appearance and a delay T 2 to the disappearance of the signal RDTC are represented ted in Figure 1 symbolically by a resistor and capacitor network, the durations T 1 of the order of 2 s and Tz, of the order of a few seconds and fairly widely variable depending on the type of projectile, which must be able to be set independently of each other.
  • the time Ti is established by the series connection, from the output of the amplifier 33, of a diode 35 in the passing direction, of a resistor Ri and of a capacitor Ci of which an armature is connected to ground.
  • a resistor Rj is connected between the point common to the diode 35 and to the resistor Ri and the ground, so that the capacitor Ci discharges through the series connection of the resistors Ri and Rj, this circuit being isolated, upstream, by the diode 35.
  • the threshold circuit 35 is produced by a Zener diode whose reverse conduction voltage sets the desired voltage threshold and the decision circuit 36 by a transistor which is turned on when this reverse voltage is exceeded, so as to connect, in substance, the output conductor 37 to ground , situation in which the output signal S d on the conductor 37, said in the logic state "1", activates at least one element of the ignition circuit 11 of the rocket or at least one element of the first chain to inhibit totally or partially the firing of the pr rocket approximation. Total inhibition is indicated, in FIG.
  • the voltage-controlled switch 44 is connected between ground and terminal 22 with a series resistance of high value 46, so as to inhibit the operation of the second time delay circuit by closing the switch 44 when the signal S d is in state 1.
  • the line 41 symbolizes for example the fact of directly connecting the terminal 10, that is to say the trigger of the thyristor Q to maintain the latter in the non-conducting state and the line 42 a, on the counting circuit 16 , the same authoritative reset effect as the second channel, when the latter exists.
  • the partial inhibition of the triggering of the proximity rocket is indicated by dashed lines 47, 48, 49 which respectively connect the conductor 37 to the amplifier 13, to the threshold circuit 15 or to the counter d pulses 16.
  • FIG 2 there is shown at a the signal Se present on terminal 8 of Figure 1 for which there are, in chronological order, four phases identified on the time axis of Figure 2b: the main phase of RDTC between instants to and t 3 and which lasts from 20 to 40 seconds; the so-called re-ignition phase between t 3 and t 4 which is that during which the RDTC device, theoretically extinguished by disappearance of the combustible material, can still possibly function sporadically; the phase between t 4 and t 10 during which the RDTC device no longer works and the target signal is not yet noticeable; then the final phase between t 10 and t 11 already described above during which the target signal is taken into account by the pulse counter 16.
  • the main phase of RDTC between instants to and t 3 and which lasts from 20 to 40 seconds
  • the so-called re-ignition phase between t 3 and t 4 which is that during which the RDTC device, theoretically extinguished by disappearance of the combustible material,
  • FIG. 2c characterizes the operation of the proximity rocket in so-called percussive emergency mode.
  • t 2 being before t 3 the two timing circuits of the priming circuit 11 prevent any explosion, the capacitor C A not yet being sufficiently charged, which is symbolized in FIG. 2c by a logical level "0".
  • the percussion on the ground of the projectile causes the explosion by triggering of the electromechanical target switch 24, which is symbolized by the logic level 1.
  • the phase between t 2 and t 4 is that during which the signal S d is in state 1, the inhibition due to the timing circuits being lifted, which is symbolized by logic level 1, this phase ending with the re-ignition phase from t 3 to t 4 whose duration t 4 - t 3 is identified with the delay T 2 insofar as it is possible to accurately estimate the duration t 4 - t 3 which is linked to the type of projectile considered.
  • the duration T 2 greater than the estimated duration t 4 - t 3 , this being true especially for projectiles whose shooting angle is high.
  • the delay T 2 should be set at a low value, to increase the probability of the projectile reaching the ground after l 'instant t 4 i.e. at an instant when the additional chain no longer inhibits the operation of the first chain and when the operation of the rocket proximity is nominal, which is symbolized by a logic level 0 in FIG. 2d.
  • the duration T 2 is for example between 3 s and 10 s.
  • FIG. 3 represents a particular embodiment of the invention according to which is used, in addition to the first chain, a first auxiliary processing chain, constituted, like the first chain, by the cascading of a bandpass filter 52 , an amplifier 53, a threshold circuit 55, a pulse counter 56 and a trip device 59.
  • the first chain and the first auxiliary chain are connected to terminals 8 and 10 by means of two-position switches 60 and 61 of so that when the signal S d on the conductor 37 is in state 1, the first auxiliary chain is connected to terminals 8 and 10, the first chain not being connected, as shown in the figure, the position of the switches 60 and 61 being inverted when the signal S d is in state 0.
  • the first auxiliary chain can have a structure identical to that of the first chain but its organs are adjusted so as to be less sensitive to a signal at Doppler frequency than those of e the first chain.
  • the filter 52 can be more selective than its homogoque 12 so as to improve the signal to noise ratio; amplifier 53 may have a lower gain than that of amplifier 13; the threshold voltage can be higher at 55 than at 15, the greater counting at 56 than at 16.
  • the switches 60 and 61 can be produced simply by means of transistors.
  • FIG. 4 shows how it is possible to use certain members in common for the first processing chain and the additional chain.
  • These organs are the bandpass filter 62 and the amplifier 63. It will be noted that if the gain of the amplifier 63 is not optimal either for the first processing chain or for the additional chain, it is always possible to compensate for this slight defect by an adequate adjustment of the organs located downstream in one or the other of these two chains.
  • the additional chain acts on the first processing chain by modifying the count in the pulse counter 16 as explained in more detail below with reference to FIG. 5.
  • FIG. 5 represents the part of the first processing chain and the part of the additional chain located downstream of the filter 12 (respectively 32, 62) and of the amplifier 13 (respectively 33, 63).
  • Terminal 14 is connected to the base of an NPN transistor T 1 via a capacitor C 10 which has the function of removing the DC component of the voltage signal on terminal 14.
  • the base of transistor T 1 is connected to the supply terminal 65 at the positive voltage Vo, for example equal to 30 volts, by a bias resistor of adjustable value R 10 .
  • the transmitter of T 1 is connected to ground and its collector at a point A which is itself connected on the one hand to the supply terminal 65 by means of a resistor R 1 on the other hand to a capacitor Ci, the other armature of which is connected to terminal 65 via a resistor R 2 and to the emitter of a PNP transistor T 2 , the base of which is connected to terminal 65.
  • the collector of T 2 is connected on the one hand to ground by the parallel connection of a capacitor C 2 , a resistor R 3 and the collector-emitter path of an NPN transistor T 3 , on the other hand to the cathode of a Zener diode D 1 .
  • point A is connected, via a resistor R 4 to the collector-emitter path of a transistor T 4 which is supposed to be blocked at first.
  • the circuit consisting essentially of the elements Ti, R 1 , C 1 , R 2 , T 2 , C 2 , is a charge transfer circuit, known under the name of transistor and diode pump, unlike close that in this assembly the diode is replaced by resistor R 2 .
  • the transistor T 1 is conductive and the capacitor Ci is charged at the voltage Vo through the resistor R 2 , the charge of the capacitor C 2 being zero , and the transistor T 2 is blocked.
  • the operating cycle described above is repeated for each pulse exceeding the threshold and the states of charge of C 2 , for sufficiently close pulses such as those due to the target signal are substantially equal to: neglecting the leakage current of C 2 through R 3 .
  • the presence of the resistor R 2 in place of a diode makes it possible to obtain substantially equal increases in charge of C 2 , with each pulse, instead of a variation in exponential progression, so that after a predetermined number N of charge increases, that is to say of threshold crossing pulses at 14, the reverse conduction voltage of the diode D 1 is exceeded, which has for the purpose of unblocking the thyristor Q.
  • This number N is for example chosen equal to 5.
  • N it is possible to vary the value of N slightly by slightly modifying one or more among the following parameters: value of C 1 , C 2 , R 2 , R 3 and reverse voltage of D 1 .
  • the output signal of the threshold circuit 29 of the second processing chain is supplied to the base of T 3 to make this transistor conductive and thus cause the almost instantaneous discharge of the capacitor C 2 .
  • the discharge of C 2 through R 3 outweighs the charge and the threshold the reverse voltage of D 1 cannot generally be reached.
  • the frequency of the threshold-crossing pulses, at 14 may be sufficient so that, the charge of C 2 prevailing over its discharge, the reverse voltage of D 1 is reached, after an indefinite number of threshold overruns in 14, which would cause an unwanted triggering of the proximity rocket.
  • the additional chain comprises, downstream of the amplifier 33, or 63 from a terminal 66, a circuit comparable to that described above for the first chain, namely a capacitor C 20 for removing the DC voltage component, a differential amplifier AD which performs a function similar to that of transistor T 1 and whose input inverter which constitutes a threshold is suitably polarized by means of resistors Rs and R 6 , capacitors C 11 and C 12 , resistors R 12 and R 13 , a transistor T 12 and a Zener diode D 11 homologous respectively of the compostants C 1 , C 2 , R 2 , R 3 , T 2 and D 1 .
  • the function provided by this latter circuit is different and does not strictly speaking consist of counting but of establishing a signal, beyond a certain threshold, having a delay T 1 on the appearance and a delay T 2 at disappearance.
  • the delay T 1 is obtained by means of the transistor pump T 12 and resistance R 12 by transfer of charges between C 11 and C 12
  • the threshold function is provided by the Zener diode D 11 whose anode is connected to the base of transistor T 4 and to ground via a resistor R 15 .
  • the discharge of C 12 through D 11 and R 15 defines the delay T 2 .
  • parasitic pulses of threshold crossing can slip between pulses of threshold crossing due to the target signal, which reduces the time accordingly triggering of the rocket, counted from time t 10 marking the first recorded pulse due to the target, and therefore which brings the operation comprising an action of the additional chain all the closer to the nominal operation of the first chain only .
  • the ratio C 12 C 11 of the order of 200, is much higher than the ratio C 2 C 1 , of the order of 10. This corresponds to the fact that two hundred RDTC pulses are necessary for the establishment of the delay T 1 of the order of 2 s whereas the time ⁇ 1 of counting from five to ten pulses of exceeding the threshold at 14 takes place in approximately 0.1 s.
  • the differential amplifier AD is not essential and that terminal 66 could be connected directly to the capacitor C 11 , with slight modifications to the part of the circuit located downstream to compensate for the fact that the load of C 11 does not then takes place more under constant tension. It is also possible to replace the resistor 12 with a diode. Furthermore, the differential amplifier AD could be replaced by a transistor and the transistor T 1 by a differential amplifier.
  • the invention is not limited to an analog embodiment because the different channels can also perform digital processing of the signal Se, in particular for counting N and establishing the delay times Tt and T 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Un dispositif de radar (1,2,3,4) fournit un signal de battement Se à une première chaîne pour activer le déclencheur (9) au bout d'un temps τ 1 après que Se a dépassé un certain seuil. Selon l'invention la fusée comporte une chaîne supplémentaire, pour contrecarrer l'effect de traînée, qui présente des caractéristiques de blocage (32) d'amplification (33) et de dépassement de seuil (35, 36) comparables à celles de la première chaîne, dont le signal de sortie est transmis à des moyens d'inhibition (47, 48, 49, 41, 39 et 44, 38 et 43) et qui comporte des premiers et des deuxièmes moyens de retard (34). Application : projectile d'artillerie du type à réduction de la traînée aérodynamique de culot.A radar device (1,2,3,4) provides a beat signal Se to a first chain to activate the trigger (9) after a time τ 1 after Se has exceeded a certain threshold. According to the invention, the rocket comprises an additional chain, to counteract the effect of drag, which has blocking (32) amplification (33) and threshold crossing (35, 36) characteristics comparable to those of the first. chain, the output signal of which is transmitted to inhibition means (47, 48, 49, 41, 39 and 44, 38 and 43) and which comprises first and second delay means (34). Application: artillery projectile of the type with reduction of the aerodynamic drag of base.

Description

L'invention concerne une fusée de proximité pour projectile d'artillerie du type à réduction de la traînée aérodynamique de culot comportant un dispositif de radar pour fournir en sortie d'un mélangeur un signal de battement soustractif Se entre onde émise et onde réfléchie d'une part à une première chaîne de traitement destinée à activer le déclencheur du circuit d'amorçage de ladite fusée au bout d'un temps '1, variable, de l'ordre d'un dixième de seconde, après que ledit signal de battement amplifié et filtré a dépassé un certain nombre de fois un certain seuil, d'autre part à une deuxième chaîne antibrouillage ayant des caractéristiques passe-bande différentes de celles de la première chaîne.The invention relates to a proximity rocket for an artillery projectile of the type for reduction of the aerodynamic drag of the base comprising a radar device for providing at the output of a mixer a subtractive beat signal Se between the emitted wave and the reflected wave. a part in a first processing chain intended to activate the trigger of the ignition circuit of said rocket after a time '1 , variable, of the order of a tenth of a second, after said amplified beat signal and filtered has exceeded a certain number of times a certain threshold, on the other hand to a second anti-jamming chain having band-pass characteristics different from those of the first chain.

Afin d'augmenter la portée des obus, un moyen très efficace consiste à effectuer une réduction de la traînée de culot (RDTC), traînée qui se forme en vol au culot de l'obus, surtout au début de la trajectoire. Cette réduction de traînée peut s'obtenir par émisson d'un jet de gaz au culot, dit "Base Bleed" en langue anglaise, dont le principe est rappelé ci-dessous. L'invention s'applique précisément à une fusée de proximité pour ce type de projectile d'artillerie.In order to increase the range of the shells, a very effective means consists in carrying out a reduction in the base drag (RDTC), which is formed in flight at the base of the shell, especially at the start of the trajectory. This reduction in drag can be obtained by emitting a gas jet at the base, called "Base Bleed" in English, the principle of which is recalled below. The invention applies precisely to a proximity rocket for this type of artillery projectile.

Les fusées de proximité connues comportent un circuit électronique sensible à des signaux compris dans des bandes de fréquence prédéterminées. Ce circuit répond soit à des signaux transmis à partir de la cible désignée soit à des signaux réfléchis, initialement transmis à partir du projectile tiré tels que, notamment des signaux Doppler, ce dernier cas étant plus particulièrement visé par l'invention qui concerne des obus dont la cible privilégiée est le sol.Known proximity rockets include an electronic circuit sensitive to signals included in predetermined frequency bands. This circuit responds either to signals transmitted from the designated target or to reflected signals, initially transmitted from the fired projectile such as, in particular Doppler signals, the latter case being more particularly targeted by the invention which relates to shells whose preferred target is the soil.

Le problème technique majeur qui se pose pour des fusées de proximité de ce type est le risque d'être influencées par des signaux parasites qui peuvent provoquer un déclenchement intempestif en général loin de la cible. Pour contrecarrer ces signaux parasites un moyen connu consiste à adjoindre à une première chaîne de traitement une deuxième chaîne qui a pour fonction essentielle d'inhiber la première chaîne en présence de signaux parasites, comme décrit par exemple dans le brevet français 2 175 810 et son addition 2 223 658.The major technical problem which arises for proximity rockets of this type is the risk of being influenced by parasitic signals which can cause a untimely triggering in general far from the target. To counteract these parasitic signals, a known means consists in adding to a first processing chain a second chain which has the essential function of inhibiting the first chain in the presence of parasitic signals, as described for example in French patent 2,175,810 and its addition 2 223 658.

Les signaux parasites qui justifient la présence d'une deuxième chaîne peuvent être dûs à des conditions atmosphériques particulières ou à des brouillages volontaires ou involontaires et leurs bandes de fréquence se situent pour l'essentiel en dehors de la bande de fréquences Doppler à laquelle doit être sensible la fusée de proximité en fonctionnement normal. Pour les projectiles du type RDTC, par contre, le brouillage additionnel induit par l'émission de gaz ionisés au culot présente deux caractéristiques qui le rendent très gênant pour un fonctionnement correct de la fusée : environ la moitié de l'énergie radioélectrique parasite additionnelle se situe dans la bande des fréquences Doppler à envisager et l'amplitude de ces signaux parasites additionnels est comparable à celle des signaux Doppler. Contre de tels signaux parasites la deuxième chaîne antibrouillage évoquée ci-dessus est inopérante.The spurious signals which justify the presence of a second chain may be due to particular atmospheric conditions or to voluntary or involuntary interference and their frequency bands are essentially outside the Doppler frequency band to which must be sensitive the proximity fuse in normal operation. For RDTC type projectiles, on the other hand, the additional interference induced by the emission of ionized gases at the base has two characteristics which make it very troublesome for correct operation of the rocket: approximately half of the additional parasitic radioelectric energy is located in the Doppler frequency band to be considered and the amplitude of these additional spurious signals is comparable to that of the Doppler signals. Against such parasitic signals the second anti-jamming chain mentioned above is inoperative.

L'invention a pour but d'adapter la sensibilité du module de traitement du signal de la fusée de proximité d'un projectile d'artillerie à réduction de traînée aérodynamique de culot.The object of the invention is to adapt the sensitivity of the signal processing module of the proximity rocket of an artillery projectile with reduction of aerodynamic base drag.

Un autre but est de procurer une fusée de proximité adaptable à différents types de projectiles d'artillerie, que ces derniers soient ou non du type RDTC.Another object is to provide a proximity rocket adaptable to different types of artillery projectiles, whether or not these are of the RDTC type.

Ces buts sont atteints grâce au fait que la fusée de proximité définie en préambule est remarquable en ce qu'elle comporte en outre une chaîne supplémentaire destinée à contrecarrer l'effet parasite occasionné dans ladite première chaîne par les perturbations électromagnétiques dues à la réduction de la traînée aérodynamique de culot, que ladite chaîne supplémentaire présente des caractéristiques de filtrage passe-bande, d'amplification et de dépassement de seuil par ledit signal de battement comparables à celles de ladite première chaîne, que le signal de sortie de la chaîne supplémentaire est transmis à des moyens d'inhibition pour inhiber partiellement ou totalement, par l'intermédiaire de ladite première chaîne ou dudit circuit d'amorçage, le déclenchement de la fusée, et que ladite chaîne supplémentaire comporte des premier moyens de retard qui retardent l'apparition dudit signal de sortie, par rapport au signal d'entrée, d'un temps T1 supérieur à la valeur maximale de τ1 ainsi que des deuxièmes moyens de retard pour maintenir ledit signal de sortie de la chaîne supplémentaire pendant un temps T2 de l'ordre de quelques secondes après que ledit signal de battement amplifié et filtré a cessé de dépasser le seuil de la chaîne supplémentaire.These aims are achieved thanks to the fact that the proximity rocket defined in the preamble is remarkable in that it further comprises an additional chain intended to counteract the parasitic effect caused in said first chain by the electromagnetic disturbances due to the reduction of the aerodynamic base drag, that said additional chain has characteristics of bandpass filtering, amplification and threshold crossing by said beat signal comparable to those of said first chain, that the output signal of the additional chain is transmitted to inhibition means for partially or totally inhibit, via said first chain or said initiation circuit, the firing of the rocket, and that said additional chain comprises first delay means which delay the appearance of said output signal, relative to the input signal, of a time T 1 greater than the maximum value of τ1 and of the second delay means for maintaining said output signal of the additional chain for a time T 2 of the order of a few seconds after said amplified and filtered beat signal stopped exceeding the threshold of the additional channel.

Etant donné que la chaîne supplémentaire traite des signaux dont l'amplitude et la fréquence est comparable à celle des signaux utiles, c'est-à-dire des signaux Doppler de cible, le retard T1 permet d'éviter que la chaîne supplémentaire n'inhibe la première chaîne dans le cas le plus fréquent où l'obus arrive au sol après que l'effet RDTC a cessé, ce qui permet à la première chaîne de déclencher l'explosion comme prévu de façon nominale. Pour le tir à courte portée qui reste intéressant avec des projectiles du type RDTC à cause de leur vitesse accrue, on peut prévoir de n'inhiber que partiellement la première chaîne, l'arrivée au sol pouvant se produire alors qu'on est encore en phase RDTC.Since the additional chain processes signals whose amplitude and frequency is comparable to that of useful signals, that is to say target Doppler signals, the delay T 1 makes it possible to avoid that the additional chain n 'inhibits the first chain in the most frequent case where the shell arrives on the ground after the RDTC effect has ceased, which allows the first chain to trigger the explosion as expected in nominal fashion. For short-range shooting, which remains interesting with RDTC type projectiles because of their increased speed, provision can be made to only partially inhibit the first chain, ground arrival being able to occur while one is still in RDTC phase.

On notera que l'établissement du temps de retard T1 est rendu possible grâce à la propriété qu'a le signal perturbateur RDTC d'exister dès le départ du tir, c'est-à-dire pendant la phase initiale dans laquelle toute explosion du projectile est rendue impossible par mesure de sécurité pour l'artilleur. Par ailleurs la présence de la chaîne supplémentaire est compatible avec celle de la deuxième chaîne de l'art antérieur décrite ci-dessus.It will be noted that the establishment of the delay time T 1 is made possible thanks to the property that the disturbing signal RDTC has of existing from the start of the shot, that is to say during the initial phase in which any explosion of the projectile is made impossible as a safety measure for the gunner. Furthermore, the presence of the additional chain is compatible with that of the second chain of the prior art described above.

Selon un mode de réalisation préféré de l'invention ladite fusée de proximité comporte en cascade un premier et un deuxième circuits de temporisation du circuit d'amorçage, la première chaîne comporte en cascade à la suite dudit mélangeur un filtre passe-bande, un amplificateur, un circuit à seuil et un compteur d'impulsions à remise à zéro progressive continue et ledit déclencheur, et la chaîne supplémentaire comporte en cascade un filtre passe-bande, un amplificateur, lesdits premiers et deuxièmes moyens de retard, un circuit à seuil et un circuit de décision qui fournit ledit signal de sortie.According to a preferred embodiment of the invention, said proximity rocket comprises in cascade a first and a second timing circuit of the priming circuit, the first chain comprises in cascade following said mixer a bandpass filter, an amplifier , a threshold circuit and a pulse counter with continuous progressive reset and said trigger, and the additional chain comprises in cascade a bandpass filter, an amplifier, said first and second delay means, a threshold circuit and a decision circuit which supplies said output signal.

Un mode de réalisation avantageux de la fusée de proximité selon lequel le compteur d'impulsions de la première chaîne, constitué par un circuit à transfert de charges entre un premier et un deuxième condensateurs, est inhibé partiellement, est remarquable en ce que ledit signal de sortie de la chaîne supplémentaire agit, au titre des moyens d'inhibition, sur ledit premier condensateur, pour faire diminuer le transfert de charge de ce dernier à l'occasion de chaque dépassement de seuil dans le circuit à seuil de la première chaîne.An advantageous embodiment of the proximity rocket according to which the pulse counter of the first chain, constituted by a charge transfer circuit between a first and a second capacitor, is partially inhibited, is remarkable in that said signal output of the additional chain acts, by means of inhibition, on said first capacitor, to reduce the charge transfer of the latter on the occasion of each threshold crossing in the threshold circuit of the first chain.

Selon ce dernier mode de réalisation, si l'arrivée du projectile sur la cible, en l'occurrence le sol, se produit pendant la phase de réduction de la traînée de culot, la fusée fonctionne encore en proximité à une hauteur réduite par rapport à la hauteur nominale prévue.According to this last embodiment, if the arrival of the projectile on the target, in this case the ground, occurs during the phase of reduction of the pellet drag, the rocket still operates in proximity at a reduced height compared to the nominal height provided.

La description qui suit en regard des dessins annexés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.The following description with reference to the accompanying drawings, all given by way of example, will make it clear how the invention can be implemented.

  • La figure 1 est un schéma électronique synoptique d'ensemble de la fusée de proximité selon l'invention.Figure 1 is an overall block diagram of the proximity rocket according to the invention.
  • La figure 2a représente en fonction du temps la forme du signal de battement à traiter et les figures 2b à 2d sont des diagrammes de temps explicitant le fonctionnement de la fusée de proximité selon l'invention.FIG. 2a represents the shape of the beat signal to be processed as a function of time and FIGS. 2b to 2d are time diagrams explaining the operation of the proximity rocket according to the invention.
  • La figure 3 représente un premier mode de réalisation de l'invention sous forme d'un schéma électronique synoptique partiel.FIG. 3 represents a first embodiment of the invention in the form of a partial synoptic electronic diagram.
  • La figure 4 représente un deuxième mode de réalisation de l'invention sous forme d'un schéma électronique synoptique partiel.FIG. 4 represents a second embodiment of the invention in the form of a partial synoptic electronic diagram.
  • La figure 5 est un schéma électronique d'une partie de la première chaîne de traitement ainsi que d'une partie de la chaîne supplémentaire pour un troisième mode de réalisation de l'invention.FIG. 5 is an electronic diagram of part of the first processing chain as well as part of the additional chain for a third embodiment of the invention.

Sur les figures les mêmes références désignent les mêmes éléments avec les mêmes fonctions.In the figures, the same references designate the same elements with the same functions.

Le dispositif RDTC est une réalisation relativement récente. Le principe consiste à munir l'arrière du projectile-obus d'un appendice ouvert vers l'arrière et qui contient un matériau combustible ; le matériau combustible est enflammé au départ du projectile ce qui se traduit par la présence de gaz enflammés dans le sillage de l'obus et par une augmentation de pression qui entraîne une diminution de la traînée de culot pouvant atteindre 80 %. Bien que le projectile fonctionne alors comme un moteur-fusée, l'émission de gaz enflammés a lieu à vitesse subsonique et aucune force de propulsion additionnelle n'est fournie, grâce à quoi la précision du tir n'est nullement affectée par ce dispositif. La phase RDTC est prévue pour durer pendant la partie la plus rapide de la trajectoire de l'obus pour laquelle l'efficacité du dispositif est maximale, soit pendant les 20 à 30 premières secondes comptées à partir du début du tir référencé to. Pour des tirs à angle d'émission élevé, voisin de 45 degrés par rapport à l'horizontale, la phase RDTC est nettement inférieure au temps total de la trajectoire de l'obus ; par contre, pour des tirs à angle d'émission faible, l'arrivée au sol peut intervenir pendant la phase RDTC. Les rappels donnés ci-dessus sur le fonctionnement des projectiles du type RDTC sont utiles pour une bonne compréhension de l'invention.The RDTC device is a relatively recent achievement. The principle consists in providing the rear of the shell projectile with an appendage open towards the rear and which contains combustible material; the combustible material is ignited at the start of the projectile which results in the presence of ignited gases in the wake of the shell and by an increase in pressure which causes a reduction in the drag of the base which can reach 80%. Although the projectile then functions like a rocket engine, the emission of ignited gases takes place at subsonic speed and no additional propelling force is provided, thanks to which the accuracy of the firing is in no way affected by this device. The RDTC phase is planned to last during the fastest part of the trajectory of the shell for which the efficiency of the device is maximum, that is to say during the first 20 to 30 seconds counted from the start of the shot referenced to. For shots with a high emission angle, close to 45 degrees with respect to the horizontal, the RDTC phase is much less than the total time of the trajectory of the shell; on the other hand, for shots with a low emission angle, the arrival on the ground can occur during the RDTC phase. The reminders given above on the operation of RDTC type projectiles are useful for a good understanding of the invention.

Une fusée de proximité connue pour projectile d'artillerie peut comporter, comme indiqué à la figure 1, un dispositif de radar constitué par exemple par un oscillateur 1 couplé à une antenne émettrice 2 pour émettre une onde continue. L'onde réfléchie par la cible, normalement le sol, est captée par une antenne réceptrice 3 supposée par exemple distincte de l'antenne émettrice. Les antennes 2 et 3 sont supposées omnidirectionnelles. Un circuit mélangeur 4 forme le signal de battement soustractif entre le signal fourni par l'antenne réceptrice 3 et le signal fourni par un coupleur 5 qui prélève une fraction du signal issu de l'oscillateur 1. Après suppression de la composante continue au moyen d'une résistance 6 et d'un condensateur 7, ce signal de battement est fourni en tant que signal Se à une borne 8. De façon connue la borne 8 est reliée à une première chaîne de traitement du signal Se destinée à activer le déclencheur 9 du circuit d'amorçage 11 de la fusée au bout d'un temps τ†, variable, comme décrit plus en détail ci-dessous. La première chaîne comporte en cascade entre la borne 8 et une borne 10 un filtre passe-bande 12, un amplificateur 13, une borne 14, un circuit à seuil 15, un compteur d'impulsions 16 et le déclencheur 9. Le filtre 12 et l'amplificateur 13 sont par exemple constitués par des amplificateurs opérationnels. Le filtre 12 laisse passer des signaux de fréquences typiquement comprises entre 50 Hz et 300 Hz, pour fixer les idées, soit la gamme de fréquences Doppler attendues pour l'obus à son arrivée au sol, en dépendance de sa vitesse et de son angle d'incidence pour une fréquence donnée correspondante de l'onde émise. Le circuit à seuil 15 peut être réalisé au moyen d'un transistor ou d'un amplificateur opérationnel. Le compteur d'impulsions 16 qui a pour fonction essentielle l'établissement du temps Tl est par exemple un compteur analogique tel que décrit ci-dessous en détail en référence à la figure 5. Le déclencheur 9 peut être une diode Zener. Le circuit d'amorçage 11 représenté à l'intérieur d'un trait interrompu comporte, entre une borne d'alimentation électrique 17 et la masse un premier circuit de temporisation constitué par le montage en série d'une résistance Rn et d'un condensateur Cn qui définissent un temps de charge Tn = RnCn. Le point commun 18 aux éléments Rn et Cn est relié à un circuit de déclenchement 19, par exemple un transistor convenablement polarisé, qui alimente à son tour un deuxième circuit de temporisation seulement lorsqu'un seuil de tension prédéterminé est atteint au point 18. Le deuxième circuit de temporisation se compose du montage en série d'une résistance Ra d'un point de branchement 22, et d'un condensateur Ca relié à la masse par l'intermédiaire de l'amorce AM. Par ailleurs, le point 22 est relié à la masse par le montage en parallèle du trajet anode cathode d'un thyristor Q dont la gâchette est reliée à la borne 10 et d'un commutateur de cible électromécanique 24. L'alimentation électrique sur la borne 17 et en d'autres points du circuit s'effectue de façon connue non représentée par exemple au moyen d'une pile dont l'électrolyte est libéré sous l'effet du choc au départ de l'obus. Au bout d'un temps Tn de l'ordre de 9 secondes, fixé par les valeurs de Rn et Cn, le condensateur Ca se charge à son tour à travers la résistance Ra et la tension au point 22 s'élève jusqu'à une valeur telle qu'une décharge brusque du condensateur CA, à cette valeur de tension, à travers la seule amorce AM suffirait pour allumer à coup sûr cette dernière, valeur de tension qui est obtenue au bout d'un temps Ta, de l'ordre d'une seconde, qui s'ajoute au temps Tn. En résumé, l'allumage de l'amorce AM ne peut être obtenu qu'après un temps Tn + Ta de l'ordre de 10 secondes après le départ de l'obus soit par déclenchement du thyristor Q par la première chaîne, soit par fermeture du commutateur 24 obtenue par percussion au sol.A known proximity rocket for artillery projectile can comprise, as indicated in FIG. 1, a radar device constituted for example by an oscillator 1 coupled to a transmitting antenna 2 to emit a continuous wave. The wave reflected by the target, normally the ground, is picked up by a receiving antenna 3 assumed for example to be separate from the transmitting antenna. The antennas 2 and 3 are assumed to be omnidirectional. A mixer circuit 4 forms the subtractive beat signal between the signal supplied by the receiving antenna 3 and the signal supplied by a coupler 5 which takes a fraction of the signal from the oscillator 1. After removal of the DC component by means of 'a resistor 6 and a capacitor 7, this beat signal is supplied as signal Se to a terminal 8. In a known manner terminal 8 is connected to a first signal processing chain Se intended to activate the trigger 9 the rocket's ignition circuit 11 after a variable time τ †, as described in more detail below. The first chain comprises in cascade between terminal 8 and a terminal 10 a bandpass filter 12, an amplifier 13, a terminal 14, a threshold circuit 15, a pulse counter 16 and the trigger 9. The filter 12 and the amplifier 13 are for example constituted by operational amplifiers. The filter 12 allows signals of frequencies typically between 50 Hz and 300 Hz to pass, to fix ideas, that is to say the range of Doppler frequencies expected for the shell on its arrival on the ground, depending on its speed and its angle d incidence for a given given frequency of the transmitted wave. The threshold circuit 15 can be produced by means of a transistor or an operational amplifier. The pulse counter 16 which has the essential function of establishing the time T1 is for example an analog counter as described below in detail with reference to FIG. 5. The trigger 9 can be a Zener diode. The priming circuit 11 shown inside a broken line comprises, between a terminal of ali electrical mentation 17 and ground a first time delay circuit constituted by the series connection of a resistor Rn and of a capacitor Cn which define a charging time Tn = RnCn. The common point 18 with the elements Rn and Cn is connected to a trigger circuit 19, for example a suitably biased transistor, which in turn supplies a second timing circuit only when a predetermined voltage threshold is reached at point 18. The second time delay circuit consists of the series connection of a resistor Ra of a connection point 22, and of a capacitor Ca connected to ground via the primer AM. Furthermore, point 22 is connected to ground by the parallel connection of the cathode anode path of a thyristor Q, the trigger of which is connected to terminal 10 and of an electromechanical target switch 24. The power supply on the terminal 17 and at other points of the circuit is carried out in a known manner not shown, for example by means of a battery whose electrolyte is released under the effect of the shock from the shell. After a time Tn of the order of 9 seconds, fixed by the values of Rn and Cn, the capacitor Ca in turn charges through the resistor Ra and the voltage at point 22 rises to a value such as a sudden discharge of the capacitor C A , at this voltage value, through the primer AM alone would suffice to ignite the latter, voltage value which is obtained after a time Ta, from order of a second, which is added to the time Tn. In summary, the ignition of the primer AM can only be obtained after a time Tn + Ta of the order of 10 seconds after the departure of the shell either by triggering of the thyristor Q by the first chain, or by closing of the switch 24 obtained by percussion on the ground.

Le principe de fonctionnement du compteur 16, dans sa version analogique est le suivant : entre deux dépassements de seuil en forme d'impulsion du signal Se filtré et amplifié, dans le circuit à seuil 15, un premier condensateur de faible capacité est chargé sous une tension constante à travers une résistance, pendant le temps de dépassement de seuil par l'impulsion ; la charge du premier condensateur est transférée à un deuxième condensateur de forte capacité. Par ailleurs le deuxième condensateur est shunté par une résistance de remise à zéro qui procure une remise à zéro progressive continue du deuxième condensateur. Sur la figure 1, cette remise à zéro progressive continue est représentée symboliquement par un circuit de remise à zéro automatique 25. Pour des impulsions de dépassement de seuil suffisamment rapprochées dans le temps, la charge sous forme discrète du deuxième condensateur l'emporte sur sa décharge continue et on peut dimensionner les éléments du compteur d'impulsions 16 pour qu'un deuxième seuil de tension apte à rendre conducteur le thyristor Q soit obtenu au bout d'un nombre prédéterminé N d'impulsions Doppler dépassant en amplitude un premier seuil, en 15, les impulsions Doppler prises en compte et par exemple au nombre de N = 5 étant suffisamment rapprochées pour que la charge du deuxième condensateur l'emporte nettement sur sa décharge. Le temps Ti précédemment défini peut donc s'exprimer sous la forme :
T1 = NT
τ désignant la période du signal à la fréquence Doppler pour le tir considéré. Pour fixer les idées, à la période T correspond typiquement une différence d'altitude de 1 m sur la partie de trajectoire finale du projectile. Etant donné que l'amplitude du signal d'écho croît très fortement lors de l'arrivée au sol, ceci se traduit par une enveloppe de forme sensiblement hyperbolique du signal de battement dans les vingt ou trente derniers mètres de la trajectoire. Le circuit à seuil 15 est par exemple réglé de façon telle que le seuil soit dépassé, pour le signal de cible, à partir d'une altitude de 15 m au temps tio. D'après ce qui précède, il en résulte que le déclenchement de la fusée aura lieu cinq mètres plus bas, c'est-à-dire à l'altitude nominale de 10 m, au temps t111 = t11 - tio = 0,1 s).
The operating principle of the counter 16, in its analog version is as follows: between two threshold overruns in the form of a pulse of the filtered and amplified signal Se, in the threshold circuit 15, a first capacitor of low capacity is charged under a constant tension across a resistance, during the time the threshold is exceeded by the pulse; the charge of the first capacitor is transferred to a second capacitor of high capacity. Furthermore, the second capacitor is shunted by a reset resistor which provides continuous progressive reset of the second capacitor. In FIG. 1, this continuous progressive reset is symbolically represented by an automatic reset circuit 25. For threshold crossing pulses sufficiently close in time, the charge in discrete form of the second capacitor prevails over its continuous discharge and it is possible to size the elements of the pulse counter 16 so that a second voltage threshold capable of making the thyristor Q conductive is obtained after a predetermined number N of Doppler pulses exceeding in amplitude a first threshold, at 15, the Doppler pulses taken into account and for example the number of N = 5 being close enough that the charge of the second capacitor clearly outweighs its discharge. The time T i previously defined can therefore be expressed in the form:
T1 = N T
τ designating the period of the signal at the Doppler frequency for the shot considered. To fix the ideas, the period T typically corresponds to an altitude difference of 1 m on the final trajectory part of the projectile. Since the amplitude of the echo signal increases very strongly upon arrival on the ground, this results in an envelope of substantially hyperbolic shape of the beat signal in the last twenty or thirty meters of the trajectory. The threshold circuit 15 is for example adjusted so that the threshold is exceeded, for the target signal, from an altitude of 15 m at time tio. From the above, it follows that the launching of the rocket will take place five meters lower, that is to say at the nominal altitude of 10 m, at time t 111 = t 11 - tio = 0.1 s).

Toujours au titre de l'art antérieur connu, la fusée de proximité représentée à la figure 1 peut comporter une deuxième chaîne antibrouillage qui reçoit le signal présent sur la borne 8. Cette deuxième chaîne comporte par exemple un filtre passe-bande 27, un amplificateur 28 et un circuit à seuil 29. La sortie du circuit 29 est reliée à une entrée 31 du compteur d'impulsions 16 pour shunter, dans ce dernier, la résistance de remise à zéro pour provoquer une remise à zéro brutale du deuxième condensateur, ce qui provoque l'inhibition du déclenchement du thyristor 10. Les circuits 27, 28 et 29 peuvent être de même structure que les circuits homologues 12, 13 et 15 de la première chaîne mais leurs réglages sont différents et la (les) bande(s) passante(s) du filtre 27 doit (doivent) être disjointe(s) de la bande passante du filtre 12 afin d'éviter l'inhibition du déclenchement du thyristor Q à l'arrivée au sol du projectile.Still under the known prior art, the proximity rocket shown in FIG. 1 may include a second anti-jamming chain which receives the signal present on terminal 8. This second chain comprises for example a bandpass filter 27, an amplifier 28 and a threshold circuit 29. The output of circuit 29 is connected to an input 31 of the pulse counter 16 to shunt, in the latter, the reset resistance to cause a sudden reset of the second capacitor, this which causes inhibition of the triggering of thyristor 10. The circuits 27, 28 and 29 can be of the same structure as the homologous circuits 12, 13 and 15 of the first chain but their settings are different and the band (s) bandwidth (s) of filter 27 must be separated from the bandwidth of filter 12 in order to avoid inhibition of the triggering of thyristor Q on arrival at the ground of the projectile.

Selon l'invention une chaîne supplémentaire, qui reçoit au même titre que la première et la deuxième chaîne le signal Se sur la borne 8, a pour fonction de contrecarrer spécifiquement le brouillage radioélectrique induit par le fonctionnement du dispositif RDTC lors du tir du projectile. Cette chaîne supplémentaire comporte en cascade un filtre passe-bande 32, un amplificateur 33, des premiers et deuxièmes moyens de retard 34, un circuit à seuil 35 et un circuit de décision 36 dont la sortie 37 est prévue pour commander un ou plusieurs éléments de la première chaîne ou du circuit d'amorçage 11 de la fusée. La bande passante du filtre 32 englobe celle du filtre 12 et a sensiblement la même borne inférieure que ce dernier. Cette bande passante est par exemple 50 à 1500 Hz, la moitié de l'énergie étant concentrée aux fréquences les plus basses qui sont aussi les fréquences Doppler, soit entre 50 et 350 Hz. Le taux d'amplification de l'amplificateur 33 est comparable à celui de l'amplificateur 13. Les premiers et deuxièmes moyens de retard qui apportent un retard T1 à l'apparition et un retard T2 à la disparition du signal RDTC sont représen tés à la figure 1 de façon symbolique par un réseau à résistances et condensateur, les durées T1 de l'ordre de 2 s et Tz, de l'ordre de quelques secondes et assez largement variable selon le type de projectile, devant pouvoir être réglées indépendamment l'une de l'autre. Selon le montage de la figure 1, le temps Ti est établi par le montage en série, à partir de la sortie de l'amplificateur 33, d'une diode 35 dans le sens passant, d'une résistance Ri et d'un condensateur Ci dont une armature est reliée à la masse. Par ailleurs, une résistance Rj est branchée entre le point commun à la diode 35 et à la résistance Ri et la masse, de façon que le condensateur Ci se décharge à travers le montage en série des résistances Ri et Rj, ce montage étant isolé, vers l'amont, par la diode 35. La fonction précise remplie par la mise en oeuvre des retards T1 et T2 est explicitée ci-dessous en référence à la figure 2. Par exemple, le circuit à seuil 35 est réalisé par une diode Zener dont la tension inverse de conduction fixe le seuil de tension désiré et le circuit de décision 36 par un transistor qui est rendu passant lorsque cette tension inverse est dépassée, de façon à relier, en substance, le conducteur de sortie 37 à la masse, situation dans laquelle le signal de sortie Sd sur le conducteur 37, dit à l'état logique "1", active au moins un élément du circuit d'amorçage 11 de la fusée ou au moins un élément de la première chaîne pour inhiber totalement ou partiellement le déclenchement de la fusée de proximité. L'inhibition totale est signalée, sur la figure 1 par des lignes en traits mixtes 38, 39, 41, 42 qui relient respectivement le conducteur 37 à un interrupteur à commande par tension 43 ou à un interrupteur à commande par tension 44, ou au déclencheur 9, ou encore à l'entrée 31 du compteur d'impulsions 16 soit directement, soit, en présence d'une deuxième chaîne, par l'intermédiaire d'un circuit-porte logique OU 45 dont une autre entrée est reliée à la sortie du circuit à seuil 29 lorsqu'il existe une deuxième chaîne de traitement antibrouillage. L'interrupteur à commande par tension 43 est branché entre le point 18 et la masse. L'état 1 du signal Sd peut ainsi provoquer la fermeture de l'interrupteur 43 ce qui inhibe le fonctionnement du premier circuit de temporisation par empêchement de la charge du condensateur Cn. De façon analogue, l'interrupteur à commande par tension 44 est branché entre la masse et la borne 22 avec une résistance en série de forte valeur 46, de façon à inhiber le fonctionnement du deuxième circuit de temporisation par fermeture de l'interrupteur 44 lorsque le signal Sd est à l'état 1. La ligne 41 symbolise par exemple le fait de relier directement à la masse la borne 10, c'est-à-dire la gâchette du thyristor Q pour maintenir ce dernier à l'état non conducteur et la ligne 42 a, sur le circuit de comptage 16, le même effet de remise à zéro autoritaire que la deuxième chaîne, lorsque cette dernière existe. Sur la figure 1, l'inhibition partielle du déclenchement de la fusée de proximité est indiquée par des lignes en traits interrompus 47, 48, 49 qui relient respectivement le conducteur 37 à l'amplificateur 13, au circuit à seuil 15 ou au compteur d'impulsions 16. Lorsque le signal Sd est à l'état 1 il est ainsi possible de diminuer le gain de l'amplificateur 13 ou d'augmenter le niveau du seuil dans le circuit 15, de façon connue en soi, ou encore de modifier le comptage dans le compteur d'impulsions 16 comme décrit ci-dessous en référence à la figure 5.According to the invention, an additional chain, which receives the signal Se on terminal 8 in the same way as the first and second chains, has the function of specifically counteracting the radio interference produced by the operation of the RDTC device when the projectile is fired. This additional chain comprises in cascade a bandpass filter 32, an amplifier 33, first and second delay means 34, a threshold circuit 35 and a decision circuit 36 whose output 37 is provided for controlling one or more elements of the first chain or starting circuit 11 of the rocket. The pass band of the filter 32 includes that of the filter 12 and has substantially the same lower terminal as the latter. This bandwidth is for example 50 to 1500 Hz, half of the energy being concentrated at the lowest frequencies which are also the Doppler frequencies, ie between 50 and 350 Hz. The amplification rate of the amplifier 33 is comparable to that of amplifier 13. The first and second delay means which bring a delay T 1 to the appearance and a delay T 2 to the disappearance of the signal RDTC are represented ted in Figure 1 symbolically by a resistor and capacitor network, the durations T 1 of the order of 2 s and Tz, of the order of a few seconds and fairly widely variable depending on the type of projectile, which must be able to be set independently of each other. According to the arrangement of FIG. 1, the time Ti is established by the series connection, from the output of the amplifier 33, of a diode 35 in the passing direction, of a resistor Ri and of a capacitor Ci of which an armature is connected to ground. Furthermore, a resistor Rj is connected between the point common to the diode 35 and to the resistor Ri and the ground, so that the capacitor Ci discharges through the series connection of the resistors Ri and Rj, this circuit being isolated, upstream, by the diode 35. The precise function fulfilled by the implementation of the delays T 1 and T 2 is explained below with reference to FIG. 2. For example, the threshold circuit 35 is produced by a Zener diode whose reverse conduction voltage sets the desired voltage threshold and the decision circuit 36 by a transistor which is turned on when this reverse voltage is exceeded, so as to connect, in substance, the output conductor 37 to ground , situation in which the output signal S d on the conductor 37, said in the logic state "1", activates at least one element of the ignition circuit 11 of the rocket or at least one element of the first chain to inhibit totally or partially the firing of the pr rocket approximation. Total inhibition is indicated, in FIG. 1, by dashed lines 38, 39, 41, 42 which respectively connect the conductor 37 to a voltage-controlled switch 43 or to a voltage-controlled switch 44, or to the trigger 9, or even at input 31 of the pulse counter 16 either directly or, in the presence of a second chain, via an OR logic gate circuit 45, another input of which is connected to the output of the threshold circuit 29 when there is a second anti-jamming processing chain. Voltage-controlled switch 43 is connected between point 18 and mass. The state 1 of the signal S d can thus cause the closing of the switch 43 which inhibits the operation of the first time-delay circuit by preventing the charging of the capacitor Cn. Similarly, the voltage-controlled switch 44 is connected between ground and terminal 22 with a series resistance of high value 46, so as to inhibit the operation of the second time delay circuit by closing the switch 44 when the signal S d is in state 1. The line 41 symbolizes for example the fact of directly connecting the terminal 10, that is to say the trigger of the thyristor Q to maintain the latter in the non-conducting state and the line 42 a, on the counting circuit 16 , the same authoritative reset effect as the second channel, when the latter exists. In FIG. 1, the partial inhibition of the triggering of the proximity rocket is indicated by dashed lines 47, 48, 49 which respectively connect the conductor 37 to the amplifier 13, to the threshold circuit 15 or to the counter d pulses 16. When the signal S d is in state 1, it is thus possible to reduce the gain of the amplifier 13 or to increase the level of the threshold in the circuit 15, in a manner known per se, or to modify the count in the pulse counter 16 as described below with reference to FIG. 5.

Sur la figure 2 on a représenté en a le signal Se présent sur la borne 8 de la figure 1 pour lequel on distingue, dans l'ordre chronologique, quatre phases repérées sur l'axe des temps de la figure 2b : la phase principale de RDTC comprise entre les instants to et t3 et qui dure de 20 à 40 secondes ; la phase dite de réallumages comprise entre t3 et t4 qui est celle pendant laquelle le dispositif RDTC, théoriquement éteint par disparition du matériau combustible peut encore éventuellement fonctionner de façon sporadique ; la phase comprise entre t4 et t10 pendant laquelle le dispositif RDTC ne fonctionne plus et le signal de cible n'est pas encore perceptible ; puis la phase finale entre t10 et t11 déjà décrite ci-dessus pendant laquelle le signal de cible est pris en compte par le compteur d'impulsions 16.In Figure 2 there is shown at a the signal Se present on terminal 8 of Figure 1 for which there are, in chronological order, four phases identified on the time axis of Figure 2b: the main phase of RDTC between instants to and t 3 and which lasts from 20 to 40 seconds; the so-called re-ignition phase between t 3 and t 4 which is that during which the RDTC device, theoretically extinguished by disappearance of the combustible material, can still possibly function sporadically; the phase between t 4 and t 10 during which the RDTC device no longer works and the target signal is not yet noticeable; then the final phase between t 10 and t 11 already described above during which the target signal is taken into account by the pulse counter 16.

La figure 2c caractérise le fonctionnement de la fusée de proximité en mode dit mode percutant de secours. Entre les instants to et t2, t2 étant antérieur à t3 les deux circuits de temporisation du circuit d'amorçage 11 empêchent toute explosion, le condensateur CA n'étant pas encore suffisamment chargé, ce qui est symbolisé sur la figure 2c par un niveau logique "0". Après l'instant t2, la percussion au sol du projectile provoque l'explosion par déclenchement du commutateur de cible électromécanique 24, ce qui est symbolisé par le niveau logique 1.FIG. 2c characterizes the operation of the proximity rocket in so-called percussive emergency mode. Between the instants to and t 2 , t 2 being before t 3 the two timing circuits of the priming circuit 11 prevent any explosion, the capacitor C A not yet being sufficiently charged, which is symbolized in FIG. 2c by a logical level "0". After the instant t 2 , the percussion on the ground of the projectile causes the explosion by triggering of the electromechanical target switch 24, which is symbolized by the logic level 1.

A la figure 2d, on retrouve la phase d'inhibition totale comprise entre to et t2, renforcée si besoin était par l'inhibition totale ou partielle apportée par la chaîne supplémentaire entre les instants t1 et t2, l'instant t1 antérieur à t2 étant celui pour lequel le signal Sd passe de l'état 0 à l'état 1, avec : t1 - to = Tl. La phase comprise entre t2 et t4 est celle pendant laquelle le signal Sd est à l'état 1, l'inhibition due aux circuits de temporisation étant levée, ce qui est symbolisé par le niveau logique 1, cette phase se terminant par la phase de réallumages de t3 à t4 dont la durée t4 - t3 s'identifie avec le retard T2 dans la mesure où il est possible d'estimer avec précision la durée t4 - t3 qui est liée au type de projectile considéré. Par sécurité, on peut choisir la durée T2 supérieure à la durée estimée t4 - t3, ceci étant vrai surtout pour des projectiles dont l'angle de tir est élevé. Par contre pour des projectiles dont la phase de réallumages est courte et/ou pour lesquels les angles de tir sont faibles, il convient de régler le retard T2 à une valeur faible, pour augmenter la probabilité d'arrivée au sol du projectile après l'instant t4 c'est-à-dire à un instant où la chaîne supplémentaire n'inhibe plus le fonctionnement de la première chaîne et où le fonctionnement de la fusée de proximité est nominal, ce qui est symbolisé par un niveau logique 0 sur la figure 2d. La durée T2 est par exemple comprise entre 3 s et 10 s.In FIG. 2d, we find the phase of total inhibition between to and t 2 , reinforced if necessary by the total or partial inhibition provided by the additional chain between the instants t 1 and t 2 , the instant t 1 prior to t 2 being that for which the signal S d goes from state 0 to state 1, with: t 1 - to = T l . The phase between t 2 and t 4 is that during which the signal S d is in state 1, the inhibition due to the timing circuits being lifted, which is symbolized by logic level 1, this phase ending with the re-ignition phase from t 3 to t 4 whose duration t 4 - t 3 is identified with the delay T 2 insofar as it is possible to accurately estimate the duration t 4 - t 3 which is linked to the type of projectile considered. For safety, one can choose the duration T 2 greater than the estimated duration t 4 - t 3 , this being true especially for projectiles whose shooting angle is high. On the other hand, for projectiles whose re-ignition phase is short and / or for which the firing angles are small, the delay T 2 should be set at a low value, to increase the probability of the projectile reaching the ground after l 'instant t 4 i.e. at an instant when the additional chain no longer inhibits the operation of the first chain and when the operation of the rocket proximity is nominal, which is symbolized by a logic level 0 in FIG. 2d. The duration T 2 is for example between 3 s and 10 s.

La figure 3 représente un mode de réalisation particulier de l'invention selon lequel est utilisée, outre la première chaîne, une première chaîne auxiliaire de traitement, constituée, comme la première chaîne, par la mise en cascade d'un filtre passe-bande 52, un amplificateur 53, un circuit à seuil 55, un compteur d'impulsions 56 et un déclencheur 59. La première chaîne et la première chaîne auxiliaire sont reliées aux bornes 8 et 10 par l'intermédiaire de commutateurs à deux positions 60 et 61 de façon telle que lorsque le signal Sd sur le conducteur 37 est à l'état 1, la première chaîne auxiliaire est reliée aux bornes 8 et 10, la première chaîne n'étant pas reliée, comme représenté sur la figure, la position des commutateurs 60 et 61 étant inversée lorsque le signal Sd est à l'état 0. La première chaîne auxiliaire peut avoir une structure identique à celle de la première chaîne mais ses organes sont réglés de façon à être moins sensibles à un signal à fréquence Doppler que ceux de la première chaîne. Notamment le filtre 52 peut être plus sélectif que son homogoque 12 de façon à améliorer le rapport signal sur bruit ; l'amplificateur 53 peut avoir un gain plus faible que celui de l'amplificateur 13 ; la tension de seuil peut être plus élevée en 55 qu'en 15, le comptage plus grand en 56 qu'en 16. Les commutateurs 60 et 61 peuvent être réalisés simplement au moyen de transistors. Par ailleurs il est clair qu'il n'est pas indispensable de commuter entièrement de la première chaîne sur une première chaîne auxiliaire complète, seulement un organe ou un groupe d'organes de la première chaîne pouvant aussi être commutés sur des organes homologues dont les réglages sont différents.FIG. 3 represents a particular embodiment of the invention according to which is used, in addition to the first chain, a first auxiliary processing chain, constituted, like the first chain, by the cascading of a bandpass filter 52 , an amplifier 53, a threshold circuit 55, a pulse counter 56 and a trip device 59. The first chain and the first auxiliary chain are connected to terminals 8 and 10 by means of two-position switches 60 and 61 of so that when the signal S d on the conductor 37 is in state 1, the first auxiliary chain is connected to terminals 8 and 10, the first chain not being connected, as shown in the figure, the position of the switches 60 and 61 being inverted when the signal S d is in state 0. The first auxiliary chain can have a structure identical to that of the first chain but its organs are adjusted so as to be less sensitive to a signal at Doppler frequency than those of e the first chain. In particular, the filter 52 can be more selective than its homogoque 12 so as to improve the signal to noise ratio; amplifier 53 may have a lower gain than that of amplifier 13; the threshold voltage can be higher at 55 than at 15, the greater counting at 56 than at 16. The switches 60 and 61 can be produced simply by means of transistors. Furthermore, it is clear that it is not essential to switch entirely from the first chain to a first complete auxiliary chain, only one organ or a group of organs from the first chain can also be switched to homologous organs whose settings are different.

La figure 4 montre comment il est possible d'utiliser certains organes en commun pour la première chaîne de traitement et la chaîne supplémentaire. Ces organes sont le filtre passe-bande 62 et l'amplificateur 63. On notera que si le gain de l'amplificateur 63 n'est pas optimal soit pour la première chaîne de traitement soit pour la chaîne supplémentaire, il est toujours possible de compenser ce léger défaut par un réglage adéquat des organes situés en aval dans l'une ou l'autre de ces deux chaînes. Dans le mode de réalisation représenté à la figure 4, la chaîne supplémentaire agit sur la première chaîne de traitement par modification du comptage dans le compteur d'impulsions 16 comme expliqué plus en détail ci-dessous en référence à la figure 5.FIG. 4 shows how it is possible to use certain members in common for the first processing chain and the additional chain. These organs are the bandpass filter 62 and the amplifier 63. It will be noted that if the gain of the amplifier 63 is not optimal either for the first processing chain or for the additional chain, it is always possible to compensate for this slight defect by an adequate adjustment of the organs located downstream in one or the other of these two chains. In the embodiment shown in FIG. 4, the additional chain acts on the first processing chain by modifying the count in the pulse counter 16 as explained in more detail below with reference to FIG. 5.

La figure 5 représente la partie de la première chaîne de traitement et la partie de la chaîne supplémentaire situées en aval du filtre 12 (respectivement 32, 62) et de l'amplificateur 13 (respectivement 33, 63). La borne 14 est reliée à la base d'un transistor NPN T1 par l'intermédiaire d'un condensateur C10 qui a pour fonction de supprimer la composante continue du signal de tension sur la borne 14. La base du transistor T1 est reliée à la borne d'alimentation 65 à la tension positive Vo par exemple égale à 30 volts, par une résistance de polarisation de valeur réglable R10. L'émetteur de T1 est relié à la masse et son collecteur à un point A lui-même relié d'une part à la borne d'alimentation 65 par l'intermédiaire d'une résistance R1 d'autre part à un condensateur Ci dont l'autre armature est reliée à la borne 65 par l'intermédiaire d'une résistance R2 et à l'émetteur d'un transistor PNP T2 dont la base est reliée à la borne 65. Le collecteur de T2 est relié d'une part à la masse par le montage en parallèle d'un condensateur C2, d'une résistance R3 et du trajet collecteur-émetteur d'un transistor NPN T3, d'autre part à la cathode d'une diode Zener D1. Par ailleurs le point A est relié, par l'intermédiaire d'une résistance R4 au trajet collecteur-émetteur d'un transistor T4 qu'on suppose bloqué dans un premier temps. Le montage constitué pour l'essentiel par les éléments Ti, R1, C1, R2, T2, C2, est un circuit de transfert de charges, connu sous le nom de pompe à transistor et à diode, à la différence près que dans le présent montage la diode est remplacée par la résistance R2. Tant qu'un seuil de tension négative prédéterminé sur la borne 14 n'est pas dépassé, le transistor T1 est conducteur et le condensateur Ci est chargé à la tension Vo à travers la résistance R2, la charge du condensateur C2 étant nulle, et le transistor T2 est bloqué. Au premier dépassement de seuil et pendant toute la durée de l'angle électrique de l'impulsion de dépassement au-delà du seuil, le transistor T1 se bloque, il se produit un décalage de tension égal à Vo sur les deux armatures de C1, T2 devient conducteur et la charge de C1 est transférée à C2, de façon telle que la tension sur l'armature de C2 reliée au collecteur de T2 passe de la valeur nulle à la valeur :
Ci Vo C 2 Ci et C2 désignant aussi les capacités respectives
des condensateurs C1 et C2 et étant dans un rapport de l'ordre de 1 à 10. Enre deux impulsions successives de dépassement de seuil C1 se charge à nouveau et C2 se décharge à travers R3, ce qui constitue la remise à zéro progressive continue du compteur d'impulsions 16. Le cycle de fonctionnement décrit ci-dessus se répète pour chaque impulsion de dépassement de seuil et les états de charge de C2, pour des impulsions suffisamment rapprochées telles que celles dues au signal de cible sont sensiblement égaux à :

Figure imgb0001
en négligeant le courant de fuite de C2 à travers R3. La présence de 1a résistance R2 à la place d'une diode permet d'obtenir des accroissements de charge de C2 sensiblement égaux, à chaque impulsion, au lieu d'une variation en progression exponentielle, de façon qu'après un nombre prédéterminé N d'accroissements de charge, c'est-à-dire d'impulsions de dépassement de seuil en 14, la tension de conduction en inverse de la diode D1 soit dépassée, ce qui a pour effet de débloquer le thyristor Q. Ce nombre N est par exemple choisi égal à 5. Il est possible de faire varier légèrement la valeur de N en modifiant légèrement un ou plusieurs parmi les paramètres suivants : valeur de C1, C2, R2, R3 et tension inverse de D1. Le signal de sortie du circuit à seuil 29 de la deuxième chaine de traitement est fourni à la base de T3 pour rendre conducteur ce transistor et provoquer ainsi la décharge quasi instantanée du condensateur C2. En présence de signaux parasites pour lesquels les dépassements de seuil sont irréguliers et en moyenne nettement plus espacés dans le temps que ceux qui sont dus au signal de cible, la décharge de C2 à travers R3 l'emporte sur la charge et le seuil de tension inverse de D1 ne peut en général pas être atteint. Pour des signaux parasites de type RDTC, par contre, la fréquence des impulsions de dépassement de seuil, en 14, peut être suffisante pour que, la charge de C2 l'emportant sur sa décharge, la tension inverse de D1 soit atteinte, au bout d'un nombre indéterminé de dépassements de seuil en 14, ce qui provoquerait un déclenchement intempestif de la fusée de proximité. Pour éviter ce défaut, on a prévu qu'un tel signal RDTC parasite provoque l'augmentation du comptage N. A cet effet, la chaîne supplémentaire comporte, en aval 4e l'amplificateur 33, ou 63 à partir d'une borne 66, un circuit comparable à celui qui est décrit ci-dessus pour la première chaîne, soit un condensateur C20 de suppression de la composante de tension continue, un amplificateur différentiel AD qui remplit une fonction analogue à celle du transistor T1 et dont l'entrée inverseuse qui constitue un seuil est convenablement polarisée au moyen de résistances Rs et R6, des condensateurs C11 et C12, des résistances R12 et R13, un transistor T12 et une diode Zener D11 homologues respectivement des compostants C1, C2, R2, R3, T2 et D1. Cependant, la fonction assurée par ce dernier circuit est différente et ne consiste pas à proprement parler en un comptage mais en l'établissement d'un signal, au-delà d'un certain seuil, ayant un retard T1 à l'apparition et un retard T2 à la disparition. Le retard T1 est obtenu au moyen de la pompe à transistor T12 et résistance R12 par transfert de charges entre C11 et C12, la fonction de seuil est assurée par la diode Zener D11 dont l'anode est reliée à la base du transistor T4 et à la masse par l'intermédiaire d'une résistance R15. La décharge de C12 à travers D11 et R15 définit le retard T2. Ce dernier circuit est réglé de façon telle que le signal RDTC provoque le déblocage du transistor T4, ce qui a pour effet de faire baisser la tension du point A, à l'état bloqué du transistor T1, de la valeur Vo à la valeur R4 R1 + R4 Vo, par Vo exemple la valeur 2 = 15 volts si les valeurs de Ri et R4 sont égales. Ceci entraîne qu'à chaque transfert de charge de Ci à C2, la quantité d'électricité transmise est plus faible, par exemple dans un rapport de 1 à 0,5 en comparaison du fonctionnement précédemment décrit. Pour le signal de cible, ceci se traduit par une valeur de N doublée. Physiquement, ceci signifie, pour une arrivée au sol du projectile en phase RDTC, qu'au lieu d'un comptage d'impulsions Doppler compris entre 15 m et 10 m au-dessus du sol avec explosion à la hauteur nominale de 10 m du projectile on obtient dès lors un comptage d'impulsions Doppler compris entre 15 m et 5 m avec explosion à la hauteur réduite de 5 m, à raison d'une période Doppler par mètre de dénivelé. On notera que dans cette hypothèse de présence simultanée de signal de cible et de signal parasite RDTC, des impulsions parasites de dépassement de seuil peuvent se glisser entre des impulsions de dépassement de seuil dues au signal de cible, ce qui réduit d'autant le temps de déclenchement de la fusée, compté à partir de l'instant t10 marquant la première impulsion comptabilisée due à la cible, et donc qui rapproche d'autant le fonctionnement comportant une action de la chaîne supplémentaire, du fonctionnement nominal de la première chaîne seule. Par exemple, pour 3 impulsions parasites interdigitées parmi 7 impulsions de cible et qui seraient toutes trois prises en compte, l'explosion en proximité pendant la phase RDTC se produirait à : 15 - 7 = 8 m au-dessus du sol et on peut faire en sorte qu'une telle fréquence d'impulsions parasites soit insuffisante pour provoquer à elle seule l'explosion, en augmentant suffisamment la valeur de la résistance R3.FIG. 5 represents the part of the first processing chain and the part of the additional chain located downstream of the filter 12 (respectively 32, 62) and of the amplifier 13 (respectively 33, 63). Terminal 14 is connected to the base of an NPN transistor T 1 via a capacitor C 10 which has the function of removing the DC component of the voltage signal on terminal 14. The base of transistor T 1 is connected to the supply terminal 65 at the positive voltage Vo, for example equal to 30 volts, by a bias resistor of adjustable value R 10 . The transmitter of T 1 is connected to ground and its collector at a point A which is itself connected on the one hand to the supply terminal 65 by means of a resistor R 1 on the other hand to a capacitor Ci, the other armature of which is connected to terminal 65 via a resistor R 2 and to the emitter of a PNP transistor T 2 , the base of which is connected to terminal 65. The collector of T 2 is connected on the one hand to ground by the parallel connection of a capacitor C 2 , a resistor R 3 and the collector-emitter path of an NPN transistor T 3 , on the other hand to the cathode of a Zener diode D 1 . Furthermore, point A is connected, via a resistor R 4 to the collector-emitter path of a transistor T 4 which is supposed to be blocked at first. The circuit consisting essentially of the elements Ti, R 1 , C 1 , R 2 , T 2 , C 2 , is a charge transfer circuit, known under the name of transistor and diode pump, unlike close that in this assembly the diode is replaced by resistor R 2 . As long as a predetermined negative voltage threshold on terminal 14 is not exceeded, the transistor T 1 is conductive and the capacitor Ci is charged at the voltage Vo through the resistor R 2 , the charge of the capacitor C 2 being zero , and the transistor T 2 is blocked. When the threshold is exceeded for the first time and for the entire duration of the electrical angle of the overshoot pulse beyond the threshold, the transistor T 1 is blocked, there is a voltage offset equal to Vo on the two armatures of C 1 , T 2 becomes conductive and the charge from C 1 is transferred to C 2 , so that the voltage on the armature of C 2 connected to the collector of T 2 goes from the zero value to the value:
Ci Vo VS 2 Ci and C 2 also designating the respective capacities
of the capacitors C 1 and C 2 and being in a ratio of the order of 1 to 10. Between two successive pulses of threshold crossing C 1 is charged again and C 2 is discharged through R 3 , which constitutes the discount at continuous progressive zero of the pulse counter 16. The operating cycle described above is repeated for each pulse exceeding the threshold and the states of charge of C 2 , for sufficiently close pulses such as those due to the target signal are substantially equal to:
Figure imgb0001
neglecting the leakage current of C 2 through R 3 . The presence of the resistor R 2 in place of a diode makes it possible to obtain substantially equal increases in charge of C 2 , with each pulse, instead of a variation in exponential progression, so that after a predetermined number N of charge increases, that is to say of threshold crossing pulses at 14, the reverse conduction voltage of the diode D 1 is exceeded, which has for the purpose of unblocking the thyristor Q. This number N is for example chosen equal to 5. It is possible to vary the value of N slightly by slightly modifying one or more among the following parameters: value of C 1 , C 2 , R 2 , R 3 and reverse voltage of D 1 . The output signal of the threshold circuit 29 of the second processing chain is supplied to the base of T 3 to make this transistor conductive and thus cause the almost instantaneous discharge of the capacitor C 2 . In the presence of spurious signals for which the threshold overshoots are irregular and on average significantly more spaced in time than those due to the target signal, the discharge of C 2 through R 3 outweighs the charge and the threshold the reverse voltage of D 1 cannot generally be reached. For parasitic signals of RDTC type, on the other hand, the frequency of the threshold-crossing pulses, at 14, may be sufficient so that, the charge of C 2 prevailing over its discharge, the reverse voltage of D 1 is reached, after an indefinite number of threshold overruns in 14, which would cause an unwanted triggering of the proximity rocket. To avoid this fault, provision has been made for such a parasitic RDTC signal to cause the counting N to increase. For this purpose, the additional chain comprises, downstream of the amplifier 33, or 63 from a terminal 66, a circuit comparable to that described above for the first chain, namely a capacitor C 20 for removing the DC voltage component, a differential amplifier AD which performs a function similar to that of transistor T 1 and whose input inverter which constitutes a threshold is suitably polarized by means of resistors Rs and R 6 , capacitors C 11 and C 12 , resistors R 12 and R 13 , a transistor T 12 and a Zener diode D 11 homologous respectively of the compostants C 1 , C 2 , R 2 , R 3 , T 2 and D 1 . However, the function provided by this latter circuit is different and does not strictly speaking consist of counting but of establishing a signal, beyond a certain threshold, having a delay T 1 on the appearance and a delay T 2 at disappearance. The delay T 1 is obtained by means of the transistor pump T 12 and resistance R 12 by transfer of charges between C 11 and C 12 , the threshold function is provided by the Zener diode D 11 whose anode is connected to the base of transistor T 4 and to ground via a resistor R 15 . The discharge of C 12 through D 11 and R 15 defines the delay T 2 . The latter circuit is adjusted so that the RDTC signal causes the transistor T 4 to be unblocked, which has the effect of lowering the voltage of point A, in the blocked state of transistor T 1 , from the value Vo to the value R 4 R 1 + R 4 Vo, for example Vo the value 2 = 15 volts if the values of Ri and R 4 are equal. This results in each charge transfer from Ci to C 2 , the quantity of electricity transmitted is lower, for example in a ratio of 1 to 0.5 in comparison with the previously described operation. For the target signal, this results in a doubled value of N. Physically, this means, for an arrival on the ground of the projectile in RDTC phase, that instead of a Doppler pulse count between 15 m and 10 m above the ground with explosion at the nominal height of 10 m from projectile we then obtain a Doppler pulse count between 15 m and 5 m with explosion at the reduced height of 5 m, at the rate of a Doppler period per vertical drop. It will be noted that in this hypothesis of simultaneous presence of target signal and parasitic signal RDTC, parasitic pulses of threshold crossing can slip between pulses of threshold crossing due to the target signal, which reduces the time accordingly triggering of the rocket, counted from time t 10 marking the first recorded pulse due to the target, and therefore which brings the operation comprising an action of the additional chain all the closer to the nominal operation of the first chain only . For example, for 3 parasitic pulses your interdigitated among 7 target pulses and which would all be taken into account, the explosion in proximity during the RDTC phase would occur at: 15 - 7 = 8 m above the ground and we can make such that the frequency of parasitic pulses is insufficient to cause the explosion alone, by sufficiently increasing the value of the resistance R 3 .

Les valeurs de certains composants de la figure 5 sont par exemple les suivantes :

Figure imgb0002
The values of certain components of FIG. 5 are for example the following:
Figure imgb0002

On notera que le rapport C12 C11, de l'ordre de 200, est beaucoup plus élevé que le rapport C2 C1, de l'ordre de 10. Ceci correspond au fait que deux cents impulsions RDTC sont nécessaires pour l'établissement du retard T1 de l'ordre de 2 s alors que le temps τ1 de comptage de cinq à dix impulsions de dépassement de seuil en 14 s'effectue en 0,1 s environ.It will be noted that the ratio C 12 C 11 , of the order of 200, is much higher than the ratio C 2 C 1 , of the order of 10. This corresponds to the fact that two hundred RDTC pulses are necessary for the establishment of the delay T 1 of the order of 2 s whereas the time τ 1 of counting from five to ten pulses of exceeding the threshold at 14 takes place in approximately 0.1 s.

On notera que l'amplificateur différentiel AD n'est pas indispensable et que la borne 66 pourrait être reliée directement au condensateur C11, moyennant de légères modifications de la partie du circuit située en aval pour compenser le fait que la charge de C11 ne s'effectue alors plus sous une tension constante. Il est aussi possible de remplacer la résistance 12 par une diode. Par ailleurs l'amplificateur différentiel AD pourrait être remplacé par un transistor et le transistor T1 par un amplificateur différentiel.It will be noted that the differential amplifier AD is not essential and that terminal 66 could be connected directly to the capacitor C 11 , with slight modifications to the part of the circuit located downstream to compensate for the fact that the load of C 11 does not then takes place more under constant tension. It is also possible to replace the resistor 12 with a diode. Furthermore, the differential amplifier AD could be replaced by a transistor and the transistor T 1 by a differential amplifier.

L'invention ne se limite pas à une réalisation analogique car les différentes chaines peuvent aussi effectuer un traitement numérique du signal Se, notamment pour le comptage N et l'établissement des temps de retard Tt et T2.The invention is not limited to an analog embodiment because the different channels can also perform digital processing of the signal Se, in particular for counting N and establishing the delay times Tt and T 2 .

Claims (8)

1. Fusée de proximité pour projectile d'artillerie du type à réduction de la traînée aérodynamique de culot comportant un dispositif de radar pour fournir en sortie d'un mélangeur un signal de battement soustractif Se entre onde émise et onde réfléchie d'une part à une première chaîne de traitement destinée à activer le déclencheur du circuit d'amorçage de ladite fusée au bout d'un temps '1, variable, de l'ordre d'un dixième de seconde, après que ledit signal de battement amplifié et filtré a dépassé un certain nombre de fois un certain seuil, d'autre part à une deuxième chaîne antibrouillage ayant des caractéristiques passe-bande différentes de celles de la première chaîne, caractérisée en ce qu'elle comporte en outre une chaîne supplémentaire destinée à contrecarrer l'effet occasionné dans ladite première chaîne par les perturbations électromagnétiques dues à la réduction de la traînée aérodynamique de culot, que ladite chaîne supplémentaire présente des caractéristiques de filtrage passe-bande, d'amplification et de dépassement de seuil par ledit signal de battement comparables à celles de ladite première chaîne, que le signal de sortie de la chaîne supplémentaire est transmis à des moyens d'inhibition pour inhiber partiellement ou totalement, par l'intermédiaire de ladite première chaîne ou dudit circuit d'amorçage, le déclenchement de la fusée, et que ladite chaîne supplémentaire comporte des premiers moyens de retard qui retardent l'apparition dudit signal de sortie, par rapport au signal d'entrée, d'un temps τ† ainsi que des deuxièmes moyens de retard pour maintenir ledit signal de sortie de la chaîne supplémentaire pendant un temps T2 de l'ordre de quelques secondes après que ledit signal de battement Se amplifié et filtré a cessé de dépasser le seuil de la chaîne supplémentaire.1. Proximity rocket for artillery projectiles of the aerodynamic base drag reduction type comprising a radar device for providing at the output of a mixer a subtractive beat signal Se between emitted wave and reflected wave on the one hand a first processing chain intended to activate the trigger of the ignition circuit of said rocket after a time '1 , variable, of the order of a tenth of a second, after said amplified and filtered beat signal has exceeded a certain number of times a certain threshold, on the other hand to a second anti-jamming chain having band pass characteristics different from those of the first chain, characterized in that it also comprises an additional chain intended to counteract the effect caused in said first chain by the electromagnetic disturbances due to the reduction in the aerodynamic drag of the base, that said additional chain has filtering characteristics bandpass, amplification and threshold crossing by said beat signal comparable to those of said first chain, that the output signal of the additional chain is transmitted to inhibition means to partially or totally inhibit, by l intermediary of said first chain or of said priming circuit, the triggering of the rocket, and that said additional chain comprises first delay means which delay the appearance of said output signal, relative to the input signal, a time τ † as well as second delay means for maintaining said output signal from the additional chain for a time T 2 of the order of a few seconds after said beat signal Se amplified and filtered has ceased to exceed the threshold of the extra chain. 2. Fusée de proximité pour projectile d'artillerie comportant en cascade un premier et un deuxième circuits de temporisation du circuit d'amorçage et dont la première chaîne comporte en cascade à la suite dudit mélangeur un filtre passe-bande, un amplificateur, un circuit à seuil et un compteur d'impulsions à remise à zéro progressive continue et ledit déclencheur, selon la revendication 1.2. Proximity rocket for artillery projectile comprising in cascade first and second timing circuits of the priming circuit and the first chain of which, in cascade following said mixer, comprises a bandpass filter, an amplifier, a circuit with threshold and a counter of continuous progressive reset pulses and said trigger according to claim 1. 3. Fusée de proximité pour projectile d'artillerie selon la revendication 2, caractérisée en ce que ladite chaîne supplémentaire comporte en cascade un filtre passe-bande, un amplificateur, lesdits premiers et deuxièmes moyens de retard, un circuit à seuil et un circuit de décision.3. Proximity rocket for artillery projectile according to claim 2, characterized in that said additional chain comprises in cascade a bandpass filter, an amplifier, said first and second delay means, a threshold circuit and a decision. 4. Fusée de proximité pour projectile d'artillerie selon la revendication 3, caractérisée en ce que ledit filtre passe-bande et ledit amplificateur de la chaîne supplémentaire s'identifient respectivement au filtre passe-bande et à l'amplificateur de ladite première chaîne.4. proximity fuse for artillery projectile according to claim 3, characterized in that said bandpass filter and said amplifier of the additional chain are identified respectively with the bandpass filter and with the amplifier of said first chain. 5. Fusée de proximité pour projectile d'artillerie selon la revendication 2 ou 3, caractérisée en ce que lesdits moyens d'inhibition commandent, afin de l'inhiber totalement, au moins l'un parmi les organes suivants : premier circuit de temporisation, deuxième circuit de temporisation, déclencheur, compteur d'impulsions.5. Proximity rocket for artillery projectile according to claim 2 or 3, characterized in that said inhibition means control, in order to totally inhibit it, at least one of the following organs: first timing circuit, second timing circuit, trip unit, pulse counter. 6. Fusée de proximité pour projectile d'artillerie selon la revendication 2 ou 3, caractérisée en ce que lesdits moyens d'inhibition commandent, afin de l'inhiber partiellement, au moins l'un parmi les organes suivants : amplificateur, circuit à seuil, compteur d'impulsions.6. Proximity rocket for artillery projectile according to claim 2 or 3, characterized in that said inhibition means control, in order to partially inhibit it, at least one of the following organs: amplifier, threshold circuit , pulse counter. 7. Fusée de proximité pour projectile d'artillerie à inhibition partielle du compteur d'impulsions par la chaîne supplémentaire, dans laquelle ledit compteur d'impulsions est constitué par un circuit à transfert de charges entre un premier et un deuxième condensateurs, selon la revendication 6, caractérisée en ce que ledit signal de sortie de la chaîne supplémentaire agit au titre des moyens d'inhibition, sur ledit premier condensateur, pour faire diminuer le transfert de charge de ce dernier à l'occasion de chaque dépassement de seuil dans le circuit à seuil de la première chaîne.7. Proximity fuse for artillery projectile with partial inhibition of the pulse counter by the additional chain, in which said pulse counter consists of a charge transfer circuit between a first and a second capacitor, according to claim 6, characterized in that said output signal from the additional chain acts as inhibition means, on said first capacitor, to reduce the charge transfer of the latter on the occasion of each threshold crossing in the circuit at the threshold of the first chain. 8. Fusée de proximité pour projectile d'artillerie selon l'une des revendications 1 à 3, caractérisée en ce qu'elle comporte en outre une première chaîne auxiliaire ou une partie de première chaîne auxiliaire de traitement moins sensible audit signal de battement que ladite première chaîne, et que lesdits moyens d'inhibition sont constitués par deux commutateurs électroniques qui permettent de substituer à ladite première chaîne ladite première chaîne auxiliaire.8. Proximity fuse for artillery projectile according to one of claims 1 to 3, characterized in that it further comprises a first auxiliary chain or a part of first auxiliary processing chain less sensitive to said beat signal than said first chain, and that said inhibition means are constituted by two electronic switches which make it possible to substitute for said first chains said first auxiliary chain.
EP86200912A 1985-05-31 1986-05-26 Proximity fuse for an artillery projectile with base bleed reducing means Expired EP0204367B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8508224 1985-05-31
FR8508224A FR2582798B1 (en) 1985-05-31 1985-05-31 PROXIMITY ROCKET FOR ARTILLERY PROJECTILE OF THE TYPE WITH REDUCTION OF AERODYNAMIC PULL TRAIL

Publications (2)

Publication Number Publication Date
EP0204367A1 true EP0204367A1 (en) 1986-12-10
EP0204367B1 EP0204367B1 (en) 1989-12-13

Family

ID=9319741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86200912A Expired EP0204367B1 (en) 1985-05-31 1986-05-26 Proximity fuse for an artillery projectile with base bleed reducing means

Country Status (4)

Country Link
US (1) US4726291A (en)
EP (1) EP0204367B1 (en)
DE (1) DE3667536D1 (en)
FR (1) FR2582798B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202532A (en) * 1990-05-21 1993-04-13 Alliant Techsystems Inc. Autonomous acoustic detonation device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976202A (en) * 1988-05-31 1990-12-11 Honigsbaum Richard F Antitank-antipersonnel weapon
US5056436A (en) * 1988-10-03 1991-10-15 Loral Aerospace Corp. Solid pyrotechnic compositions for projectile base-bleed systems
US6098547A (en) * 1998-06-01 2000-08-08 Rockwell Collins, Inc. Artillery fuse circumferential slot antenna for positioning and telemetry
US6729240B1 (en) * 2002-11-26 2004-05-04 The Boeing Company Ignition isolating interrupt circuit
US6966261B2 (en) * 2003-05-20 2005-11-22 Alliant Techsystems Inc. Fuze explosive ordnance disposal circuit
US7417582B2 (en) * 2004-10-22 2008-08-26 Time Domain Corporation System and method for triggering an explosive device
US7286333B2 (en) * 2004-10-28 2007-10-23 The Boeing Company Switch card apparatus and methods
US8113118B2 (en) * 2004-11-22 2012-02-14 Alliant Techsystems Inc. Spin sensor for low spin munitions
FR3013843B1 (en) * 2013-11-22 2016-07-01 Thales Sa DEVICE AND METHOD FOR DETERMINING THE PRESENCE OF DEGRADATION OR SOIL ON A DOPPLER LASER ANEMOMETRY PROBE HALLOT
US10935357B2 (en) 2018-04-25 2021-03-02 Bae Systems Information And Electronic Systems Integration Inc. Proximity fuse having an E-field sensor
US10637489B1 (en) * 2019-06-05 2020-04-28 Infineon Technologies Ag Detecting signal disturbance using asynchronous counter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2175810A1 (en) * 1972-03-10 1973-10-26 Kongsberg Vapenfab As
FR2223658A2 (en) * 1972-03-10 1974-10-25 Kongsberg Vapenfab As
FR2289875A1 (en) * 1974-11-01 1976-05-28 Bofors Ab GROUND CONTROL ACTIVATION DEVICE FOR PROXIMITY ROCKETS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906493A (en) * 1959-03-27 1975-09-16 Us Navy Autocorrelation type spectral comparison fuze system
US4354192A (en) * 1966-09-06 1982-10-12 The United States Of America As Represented By The Secretary Of The Army Radio ranging
US4333079A (en) * 1970-07-21 1982-06-01 The United States Of America As Represented By The Secretary Of The Navy Doppler signal processing circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2175810A1 (en) * 1972-03-10 1973-10-26 Kongsberg Vapenfab As
FR2223658A2 (en) * 1972-03-10 1974-10-25 Kongsberg Vapenfab As
FR2289875A1 (en) * 1974-11-01 1976-05-28 Bofors Ab GROUND CONTROL ACTIVATION DEVICE FOR PROXIMITY ROCKETS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202532A (en) * 1990-05-21 1993-04-13 Alliant Techsystems Inc. Autonomous acoustic detonation device

Also Published As

Publication number Publication date
DE3667536D1 (en) 1990-01-18
EP0204367B1 (en) 1989-12-13
FR2582798A1 (en) 1986-12-05
FR2582798B1 (en) 1988-12-30
US4726291A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
EP0204367B1 (en) Proximity fuse for an artillery projectile with base bleed reducing means
EP0215707B1 (en) Voltage switching apparatus
FR2502792A1 (en) LASER TELEMETER
EP0016705B1 (en) R.f. stage with automatic gain control and receiver comprising such a circuit
FR2704639A1 (en) Electronic rocket adjustment system for a barrel ammunition.
EP0511914B1 (en) Echo distance measurement system with calibration device
EP0485292B1 (en) Optical device to measure the roll-angle of a projectile
FR2799510A1 (en) COMBUSTION STATE DETECTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
FR2538039A1 (en) CAPACITOR DISCHARGE IGNITION SYSTEM WITH MULTIPLE SPARKS
WO2020030696A1 (en) Radio-frequency energy collection circuit and communication device incorporating such a radio-frequency collection circuit
FR2483160A5 (en) PRE-SENSITIVE SENSITIVITY TRIGGERING DEVICE FOR MINE ELECTRIC STARTING
EP0454539B1 (en) Control system for the programmable time delay firing of a projectile comprising at least a military charge
EP0127870A1 (en) Detecting device of an undesired infrared camera
EP0193453B1 (en) Device for controlling a pulse period
EP0098183B1 (en) Proximity radar
CH660808A5 (en) ANALOGUE FIRE DETECTOR.
EP0283386B1 (en) Remotely controlled apparatus to fire a projectile
FR2608267A1 (en) OPTICALLY PROGRAMMABLE AMMUNITION AND WEAPON SYSTEM COMPRISING APPLICATION
WO2007006984A9 (en) Device for controlling a high-voltage transistor, in particular a mos transistor of a high-voltage radio-frequency generator for the spark ignition of an internal combustion engine
EP0252821B1 (en) Transmission process and system for an initiation order to an apparatus aboard an engine
CH362943A (en) Electric rocket
EP0256914B1 (en) Monitoring circuit for the leading edge of a power pulse applied to a magnetron
FR2474155A1 (en) High speed projectile fuse programming for weapons system - using optically transmitted binary data derived from LED or diode laser, carried by weapon
BE876269R (en) EXPLOSIVE MINE EQUIPPED WITH AN ANTI-ELIMINABLE DEVICE AND TO BE LAYED IN PARTICULAR BY SELF-PROPELLED MACHINES
FR2545599A1 (en) Proximity fuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19870515

17Q First examination report despatched

Effective date: 19880120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3667536

Country of ref document: DE

Date of ref document: 19900118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;THOMSON - TRT DEFENSE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86200912.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020419

Year of fee payment: 17

Ref country code: DE

Payment date: 20020419

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020422

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020517

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050526