EP0201955B1 - Procédé de traitement d'un carburant composé d'un mélange d'hydrocarbures et d'alcools, et produit d'adsorption selective d'eau - Google Patents
Procédé de traitement d'un carburant composé d'un mélange d'hydrocarbures et d'alcools, et produit d'adsorption selective d'eau Download PDFInfo
- Publication number
- EP0201955B1 EP0201955B1 EP86200666A EP86200666A EP0201955B1 EP 0201955 B1 EP0201955 B1 EP 0201955B1 EP 86200666 A EP86200666 A EP 86200666A EP 86200666 A EP86200666 A EP 86200666A EP 0201955 B1 EP0201955 B1 EP 0201955B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- treatment
- mixture
- water
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 44
- 239000000446 fuel Substances 0.000 title claims description 42
- 239000000203 mixture Substances 0.000 title claims description 27
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 19
- 229930195733 hydrocarbon Natural products 0.000 title claims description 16
- 238000001179 sorption measurement Methods 0.000 title description 16
- 150000001298 alcohols Chemical class 0.000 title description 4
- 239000011347 resin Substances 0.000 claims description 48
- 229920005989 resin Polymers 0.000 claims description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 125000002091 cationic group Chemical group 0.000 claims description 14
- 239000004215 Carbon black (E152) Substances 0.000 claims description 13
- 239000011777 magnesium Substances 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000003729 cation exchange resin Substances 0.000 claims description 2
- 230000001143 conditioned effect Effects 0.000 claims 4
- 238000010494 dissociation reaction Methods 0.000 claims 1
- 230000005593 dissociations Effects 0.000 claims 1
- 159000000011 group IA salts Chemical class 0.000 claims 1
- 230000003019 stabilising effect Effects 0.000 claims 1
- 239000003463 adsorbent Substances 0.000 description 23
- 239000002609 medium Substances 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 229960001866 silicon dioxide Drugs 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- -1 des ions Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- HIGRAKVNKLCVCA-UHFFFAOYSA-N alumine Chemical compound C1=CC=[Al]C=C1 HIGRAKVNKLCVCA-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G33/00—Dewatering or demulsification of hydrocarbon oils
- C10G33/04—Dewatering or demulsification of hydrocarbon oils with chemical means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/023—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
Definitions
- the invention relates to a method of treating a fuel composed of a mixture of hydrocarbon (s) and alcohol (s) having an alcoholic content by volume of less than 10%; it extends to a product for selective adsorption of water in the presence of polar compounds.
- Alcohols and in particular methanol and ethanol, are alternative fuels which, added in small percentage to hydrocarbons, have the advantage of providing a fuel mixture requiring no modification or specific adjustment of traditional petrol engines.
- these mixtures are very sensitive to the presence of traces of water which cause a phenomenon of demixing leading to separation of the liquid into two phases of different densities: an upper phase containing the majority of the hydrocarbons and a phase polar lower rich in alcohol; this demixing phenomenon is all the more marked when the temperature of the mixture is low.
- it is impossible to rigorously avoid the presence of water in this type of mixture because of the inevitable contact of the latter with more or less humid atmospheres during storage, transport and distribution.
- a content of 500 p.p.m. of water is sufficient to produce the demixing at 11 ° C of a mixture composed of 5% methanol and 95% of premium fuel.
- US Pat. No. 4,279,620 describes a process for stabilizing a premium fuel / ethanol mixture, which consists in drying it by contact with a saturated solution of Ca C1 2 and with solid Ca CI 2 .
- the implementation of such a two-step process is relatively delicate; moreover, the calcium chloride which becomes deliquescent after hydration is the source of serious difficulties in the case of a continuous industrial implementation in a fixed bed.
- the water adsorbents commonly used in a fixed bed are essentially aluminas, molecular sieves and silica gel.
- the regeneration of the first two adsorbents takes place at high temperatures (250 ° to 300 ° C) and leads to significant energy consumption, so that their use would make the overall energy balance of alcohol fuels unfavorable.
- Silica gel can be regenerated at a more moderate temperature but is mechanically fragile, which makes it difficult to use.
- the present invention proposes to provide a new process for the treatment of fuels containing alcohols in order to prevent their demixing and to stabilize their homogeneity.
- An essential objective of the invention is to provide an economical process from an energy point of view.
- Another objective is to ensure rapid treatment making it possible to treat large quantities of fuels with moderate quantities of adsorbents.
- Another objective is to authorize continuous industrial implementation.
- the invention also aims to provide a new adsorption product having a preferential affinity with respect to water, which makes it possible to carry out drying in the presence of polar compounds.
- the treatment process targeted by the invention applies to fuels composed of a mixture of hydrocarbon (s) and alcohol (s) having an alcohol content by volume of less than 10%; this process consists in bringing the mixture into the presence of at least one ion-exchange resin, cationic, capable of dissociating strongly in ionic form in an aqueous medium, so as to adsorb part of the water dissolved in said mixture in order to to limit its water content to a value below the limit threshold for demixing of said mixture at the minimum temperature for use.
- the ion-exchange resins mentioned above were capable of selectively fixing the water dissolved in the hydrocarbon / alcohol mixture, with good efficiency, making it easy to lower the water content of the fuel, below the demixing limit threshold (even in the case of a low value threshold corresponding to low operating temperatures expected for the fuel). These resins can be regenerated at low temperature (of the order of 120 ° C.) so that the process of the invention uses low levels of calories.
- ion exchange resins have so far been used on an industrial scale for the exclusive purpose of demineralization or softening by ion exchange; however, certain scientific publications mention the adsorbent properties of these resins with regard to various compounds and in particular water (CE WYMORE, “Sulfonic-type cation-exchange resins as desiccants” Ind. Eng. Chem. Prod. Res. .Development 1962, Vol. 1 n ° 3, p. 173 to 178; JA BOHORQUEZ et al, "Application of strong cationic resins to the drying of organic solvents", Bull. Soc. Chim. De France, 1982, n ° 5 -6 Part I, p. 193 to 196 and p. 197 to 201).
- it is well known to scientists specializing in this type of resins that their field of effectiveness is limited to apolar organic media.
- the prior art teaches a person skilled in the art that the targeted resins are incapable of selectively fixing water and would preferentially fix alcohol in the application concerned, taking into account the high percentage of alcohol relative to water. eliminate that the hydrocarbon / alcohol mixtures contain.
- the inventors rejected this prejudice and demonstrated experimentally that the targeted resins had, in a mixed hydrocarbon / alcohol medium, a selective power for adsorption of water, making it possible to eliminate most of the water initially present; this unexpected result is currently difficult to explain. Tests have shown that this selective water adsorption remains effective for fuels containing an alcohol content of less than about 10%; this area of efficiency covers the legal area of composition of hydrocarbon / alcohol fuel mixtures (decree of October 9, 1983 in the Official Journal FR).
- a cationic resin is used, packaged in the form of alkaline or alkaline-earth salts.
- This type of resin has the advantage of not undergoing any degradation and therefore no loss of adsorption capacity, during the regeneration phases.
- the said resins are advantageously packaged in the form of potassium or in the form of magnesium; it is possible to use both ionic forms of resins at the same time.
- the resin packaged in potassium form has the advantage of having a very rapid adsorption kinetics and is therefore particularly well suited to continuous processing, the fuel being brought through a fixed bed of resin.
- the resin packaged in the form of magnesium has a much slower kinetics but a very high adsorption capacity (of the order of 5 times greater than the first); Consequently, this resin is more particularly suitable for batch processing in which it remains in situ in the fuel for long periods.
- the combination of the two resins and of the two implementations can make it possible, in certain applications, to cope, at the same time, with a rapid increase in the water content of the fuel (requiring rapid trapping), and with a slow evolution of this content (generally requiring the fixing of large quantities of water)
- the process of the invention can in particular be applied to hydrocarbon (s) / methanol, or hydrocarbon (s) / ethanol mixtures, optionally containing a third solvent consisting of an alcohol of higher molecular weight, in particular tert-butanol; the hydrocarbon can as well consist of a super-fuel as an ordinary fuel.
- the comparative examples provided below relate to a fuel of known formulation (usually designated by “M3B2”), containing by volume (to within approximately 1%) 95% of super-fuel, 3% of methanol and 2% of tert-butanoi.
- the invention extends, as such, to a product for the selective adsorption of water in the presence of polar compounds, comprising at least one cationic resin, capable of dissociating strongly in ionic form in aqueous and conditioned medium (s ) so as to contain on its ionic sites, either K ⁇ counterions, or Mg ⁇ counterions, or a coupling of two K ⁇ , Mg ⁇ counterions.
- the resin or resins of said adsorption product are in particular constituted by strong cationic sulfonic resins or weak cationic carboxylic resins.
- Example 1 Treatment in a fixed bed
- the dry adsorbent is introduced over a height of 10 cm.
- the fuel M3B2 is brought to pass through this bed, from top to bottom with a flow rate of 0.42 l / h (passage speed: 0.066 cm / s); the initial water content of this fuel is in the example of 720 mg / l. Content water is measured at the end of the bed.
- the adsorbent according to the invention is, in this example, a cationic sulfonic resin packaged in potassium form, having a structure composed of the styrene-divinylbenzene copolymer, type "X8 (bridging rate: 8% of divinylbenzene); the particle size of this resin is between 50 and 100 mesh (resin "DOWEX 50 W manufactured by the company Dow Chemical).
- the curves A, B, C, D of FIG. 1 illustrate the results obtained respectively for these four adsorbents (on the abscissa is the amount of cumulative fuel treated, and on the ordinate, the water content of the fuel at the outlet).
- the adsorbent targeted by the invention proves by far the most effective and makes it possible to fix considerably greater amounts of water than the others and, therefore, to treat larger volumes of fuel for the same volume. adsorbent involved.
- the adsorbent according to the invention is, in this example, a cationic sulfonic resin packaged in magnesium form, having the same supporting structure as above.
- the curves E and F of FIG. 2 correspond respectively to the isotherms of these two adsorbents (on the abscissa is plotted in mg / 1 the water content of the fuel at equilibrium, and on the ordinate, in mg of water per g. D dry adsorbent, the water content of the adsorbent at equilibrium).
- the resin according to the invention has an adsorption capacity equivalent to, or even greater than, that of the molecular sieve which is considered to be remarkable.
- the essential advantage of the resin lies, on the one hand, in its much lower price, on the other hand, in its ease of regeneration which operates from low-level calories (120 to 140 ° C), while the regeneration of the molecular sieve requires temperatures of the order of 250 ° C to 300 ° C.
- the demixing threshold is of the order of 800 p.p.m. of water by weight.
- the quantity of resin to be used is only about 120 kg.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Liquid Carbonaceous Fuels (AREA)
Description
- L'invention concerne un procédé de traitement- d'un carburant composé d'un mélange d'hydrocarbure(s) et d'alcool(s) présentant une teneur volumique en alcool inférieure à 10 % ; elle s'étend à un produit d'adsorption sélective d'eau en présence de composés polaires.
- Les alcools, et notamment le méthanol et l'éthanol, sont des carburants de substitution qui, ajoutés en faible pourcentage aux hydrocarbures, présentent l'avantage de fournir un mélange carburant ne nécessitant aucune modification ni réglage spécifique des moteurs traditionnels à essence. Toutefois, on a pu constater que ces mélanges sont très sensibles à la présence de traces d'eau qui provoquent un phénomène de démixtion conduisant à une séparation du liquide en deux phases de densités différentes : une phase supérieure contenant la majorité des hydrocarbures et une phase inférieure polaire riche en alcool ; ce phénomène de démixtion est d'autant plus marqué que la température du mélange est faible. Or, en pratique, il est impossible d'éviter rigoureusement la présence d'eau dans ce type de mélange en raison du contact inévitable de ces derniers avec des atmosphères plus ou moins humides lors du stockage, du transport et de la distribution. Par exemple, une teneur de 500 p.p.m. d'eau suffit à produire la démixtion à 11 °C d'un mélange composé de 5 % de méthanol et de 95 % de supercarburant.
- Le brevet US n° 4 279 620 décrit un procédé permettant de stabiliser un mélange supercarburant/étha- nol, qui consiste à réaliser un séchage de celui-ci par contact avec une solution saturée de Ca C12 et avec du Ca CI2 solide. La mise en oeuvre d'un tel procédé en deux étapes est relativement délicate ; de plus, le chlorure de calcium qui devient déliquescent après hydratation est la source de graves difficultés dans le cas d'une mise en oeuvre industrielle en continu en lit fixe.
- A l'échelle industrielle, les adsorbants d'eau couramment utilisés en lit fixe sont essentiellement les alumines, les tamis moléculaires et le silicagel. Toutefois, la régénération des deux premiers adsorbants s'opère à hautes températures (250° à 300°C) et conduit à des consommations énergétiques importantes, de sorte que leur utilisation rendrait peu favorable le bilan énergétique global des carburants aux alcools. Le silicagel est régénérable à température plus modérée mais est mécaniquement fragile ce qui rend sa mise en oeuvre délicate.
- De plus, les inventeurs ont pu constater en laboratoire que la cinétique d'adsorption d'eau de ces adsorbants est lente dans le milieu hydrocarbure/alcool, ce qui les rend difficilement utilisables industriellement en continu en lit fixe.
- La présente invention se propose de fournir un nouveau procédé de traitement de carburants contenant des alcools en vue de prévenir leur démixtion et de stabiliser leur homogénéité.
- Un objectif essentiel de l'invention est de fournir un procédé économique de point de vue énergétique.
- Un autre objectif est d'assurer un traitement rapide permettant de traiter de grandes quantités de carburants avec des quantités d'adsorbants modérées.
- Un autre objectif est d'autoriser une mise en oeuvre industrielle en continu.
- Par ailleurs, l'invention vise également à fournir un nouveau produit d'adsorption présentant une affinité préférentielle à l'égard de l'eau, qui permet d'effectuer des séchages en présence de composés polaires.
- Le procédé de traitement visé par l'invention s'applique aux carburants composés d'un mélange d'hydrocarbure(s) et d'alcool(s) présentant une teneur volumique en alcool inférieure à 10 % ; ce procédé consiste à mettre le mélange en présence d'au moins une résine échangeuse d'ions, cationique, apte à se dissocier fortement sous forme ionique en milieu aqueux, de façon à adsorber une partie de l'eau dissoute dans ledit mélange en vue de limiter sa teneur en eau à une valeur inférieure au seuil limite de démixtion dudit mélange à la température minimale d'utilisation.
- Les expérimentations ont mis en évidence que les résines échangeuses d'ions sus-évoquées étaient aptes à fixer sélectivement l'eau dissoute dans le mélange hydrocarbure/alcool et ce, avec une bonne efficacité permettant aisément d'abaisser la teneur en eau du carburant, au-dessous du seuil limite de démixtion (même dans le cas d'un seuil de faible valeur correspondant à de basses températures d'utilisation prévues pour le carburant). Ces résines sont régénérables à basse température (de l'ordre de 120 °C) de sorte que le procédé de l'invention utilise des calories de bas niveaux.
- Il est à noter que les résines échangeuses d'ions sont jusqu'à présent utilisées à échelle industrielle à des fins exclusives de déminéralisations ou d'adoucissements par échange d'ions ; cependant, certaines publications scientifiques évoquent des propriétés adsorbantes de ces résines vis-à-vis de différents composés et notamment de l'eau (C.E. WYMORE, « Sulfonic-type cation-exchange resins as desiccants » Ind. Eng. Chem. Prod. Res. Develop. 1962, Vol. 1 n° 3, p. 173 à 178 ; J.A. BOHORQUEZ et al, « Application des résines cationiques fortes au séchage des solvants organiques », Bull. Soc. Chim. de France, 1982, n° 5-6 Part I, p. 193 à 196 et p. 197 à 201). Toutefois, il est bien connu des scientifiques spécialistes de ce type de résines que leur domaine d'efficacité est limité aux milieux organiques apolaires.
- Ainsi, les essais effectués en milieu organique polaire, en particulier en milieu alcoolique, ont montré que ces résines ne présentent qu'une très faible sélectivité vis-à-vis de l'eau : elles fixent aussi bien les molécules d'alcool que les molécules d'eau et sont incapables d'éliminer des traces d'eau dissoutes dans un alcool, du fait qu'elles sont très rapidement saturées par les molécules d'alcool du milieu, qui se fixent sur elles. C'est ainsi que dans la première publication évoquée précédemment, il est mentionné (traduction) :
- - p. 173 : « les matériaux très polaires tels que les alcools inférieurs sont difficiles à sécher »,
- - p. 175 « avec l'éthanol, la performance des résines est en rapport avec leur cinétique relative d'adsorption de l'eau, car l'éthanol est difficile à sécher, et le facteur cinétique devient plus important dans la performance globale de la résine »... « L'alcool qui a envahi la résine apparaît entrer en compétition avec l'eau vis-à-vis des ions hydrogènes ».
- De même, dans la seconde publication évoquée précédemment, il est indiqué au sujet des solvants polaires et en particulier de l'éthanol :
- - p. 195 : « Malgré une mise en contact de plus de 24 heures et l'emploi de quantités de résine sèche notablement supérieures à celles utilisées avec le benzène, nous n'avons constaté aucune adsorption sélective de l'eau contenue dans ces solvants. On peut penser qu'il y a, en ce qui concerne la fixation des molécules d'eau, compétition entre la résine et le solvant ; de plus, étant donné le caractère polaire des molécules de solvant, c'est l'ensemble solvant-eau dissoute qui pénètre dans les pores de la résine et provoque son gonflement. De ce fait la quantité d'eau fixée par la résine est très faible. Par conséquent, nous avons admis que les résines échangeuses d'ions de type cationique forte ne sont pas efficaces pour le séchage des liquides polaires ».
- Ainsi l'art antérieur enseigne à l'homme du métier que les résines visées sont inaptes à fixer sélectivement l'eau et fixeraient préférentiellement l'alcool dans l'application concernée compte tenu du fort pourcentage d'alcool par rapport à l'eau à éliminer que contiennent les mélanges hydrocarbure/alcool. Les inventeurs ont repoussé ce préjugé et ont mis expérimentalement en évidence que les résines visées possédaient en milieu mixte hydrocarbure/alcool un pouvoir sélectif d'adsorption de l'eau, permettant d'éliminer la majeure partie de l'eau initialement présente ; ce résultat inattendu est actuellement difficilement explicable. Les essais ont montré que cette adsorption sélective d'eau demeurait efficace pour les carburants contenant une teneur en alcool inférieure à environ 10 % ; ce domaine d'efficacité couvre le domaine légal de composition des mélanges carburants hydrocarbure/alcool (arrêté du 9 octobre 1983 au Journal Officiel FR).
- Selon un mode de mise en œuvre préférentiel, on utilise une (ou des) résine(s) cationique(s), conditionnée(s) sous forme de sels alcalins ou alcalinoterreux. Ce type de résine présente l'avantage de ne subir aucune dégradation et donc aucune perte de capacité d'adsorption, lors des phases de régénération.
- De plus, la ou lesdites résines sont avantageusement conditionnées sous forme de potassium ou sous forme de magnésium ; il est possible d'utiliser, à la fois, les deux formes ioniques de résines.
- La résine conditionnée sous forme de potassium présente l'avantage de posséder une cinétique d'adsorption très rapide et est donc particulièrement bien adaptée à une mise en œuvre en continu, le carburant étant amené à traverser un lit fixe de résine. La résine conditionnée sous forme de magnésium présente, quant à elle, une cinétique beaucoup plus lente mais une capacité d'adsorption très élevée (de l'ordre de 5 fois supérieure à la première) ; en conséquence cette résine est plus particulièrement adaptée à une mise en oeuvre en discontinu dans laquelle elle demeure in situ dans le carburant durant de longues périodes. La combinaison des deux résines et des deux mises en oeuvre peut permettre, dans certaines applications, de faire face, à la fois, à une augmentation rapide de la teneur en eau du carburant (exigeant un piégage rapide), et à une évolution lente de cette teneur (exigeant globalement la fixation de grandes quantités d'eau).
- Les expérimentations paraissent montrer que les résines sulfoniques cationiques fortes sont préférables ; toutefois d'autres résines donnent également de bons résultats et notamment les résines carboxyliques cationiques faibles.
- Le procédé de l'invention peut en particulier être appliqué aux mélanges hydrocarbure(s)/méthanol, ou hydrocarbure(s)/éthanol, contenant éventuellement un tiers solvant constitué par un alcool de poids moléculaire plus élevé, notamment tertiobutanol ; l'hydrocarbure peut aussi bien être constitué par un supercarburant que par un carburant ordinaire.
- Les exemples comparatifs fournis plus loin sont relatifs à un carburant de formulation connue (habituellement désigné par « M3B2 »), contenant en volume (à environ 1 % près) 95 % de supercarburant, 3 % de méthanol et 2 % de tertiobutanoi.
- L'invention s'étend, en tant que tel, à un produit d'adsorption sélective d'eau en présence de composés polaires, comprenant au moins une résine cationique, apte à se dissocier fortement sous forme ionique en milieu aqueux et conditionnée(s) de façon à comporter sur ses sites ioniques, soit des contre-ions K┬, soit des contre-ions Mg┬┬, soit un couplage de deux contre-ions K┬, Mg┬┬.
- La ou les résines dudit produit d'adsorption sont notamment constituées par des résines sulfoniques cationiques fortes ou des résines carboxyliques cationiques faibles.
- Dans une colonne de diamètre intérieur D = 1,5 cm, l'adsorbant sec est introduit sur une hauteur de 10 cm. Le carburant M3B2 est amené à traverser ce lit, de haut en bas avec un débit de 0,42 I/h (vitesse de passage : 0,066 cm/s) ; la teneur initiale en eau de ce carburant est en l'exemple de 720 mg/I. La teneur en eau est mesurée en sortie de lit.
- L'expérimentation est réalisée dans les quatre cas suivants :
- - adsorbant constitué par de l'alumine activé type « Gamma » (granulométrie : 2 à 5 mm),
- - adsorbant constitué par du silicagel (granulométrie : 3 à 6 mm),
- - adsorbant constitué par un tamis moléculaire 3.10-10 m (extrudé 1,6 mm),
- - adsorbant conforme à l'invention.
- L'adsorbant conforme à l'invention est, en cet exemple, une résine cationique sulfonique conditionnée sous forme potassium, ayant une structure composée du copolymère styrène-divinylbenzène, type « X8 (taux de pontage : 8 % de divinylbenzène) ; la granulométrie de cette résine est comprise entre 50 et 100 Mesh (résine « DOWEX 50 W fabriquée par la Société Dow Chemical).
- Les courbes A, B, C, D de la figure 1 illustrent les résultats obtenus respectivement pour ces quatre adsorbants (en abscisse est portée la quantité de carburant cumulée traitée, et en ordonnée, la teneur en eau du carburant en sortie).
- On voit que l'adsorbant visé par l'invention s'avère de loin le plus efficace et permet de fixer des quantités d'eau considérablement plus importantes que les autres et, donc, de traiter des volumes de carburant plus importants pour un même volume d'adsorbant mis en jeu.
- Dans une série de flacons, on dispose un volume de 250 cm3 de carburant M3B2 ayant une teneur en eau de 650 mg/1. On rajoute dans chacun de ces flacons une quantité croissante d'adsorbant sec ; chaque flacon est fermé hermétiquement et agité jusqu'à obtention de l'équilibre liquide/solide. On mesure alors la concentration en eau résiduelle de chacun des flacons par la méthode de « Karl Fischer" ; les points ainsi définis permettent de dessiner l'isotherme de l'adsorbant concerné.
- Cette expérimentation est effectuée pour les deux adsorbants suivants :
- - tamis moléculaire 3.10-10 m, identique au précédent,
- - adsorbant conforme à l'invention.
- L'adsorbant conforme à l'invention est, en cet exemple, une résine cationique sulfonique conditionnée sous forme magnésium, ayant la même structure porteuse que précédemment.
- Les courbes E et F de la figure 2 correspondent respectivement aux isothermes de ces deux adsorbants (en abscisse est portée en mg/1 la teneur en eau du carburant à l'équilibre, et en ordonnée, en mg d'eau par g. d'adsorbant sec, la teneur en eau de l'adsorbant à l'équilibre).
- La résine conforme à l'invention présente une capacité d'adsorption équivalente, voire supérieure, à celle du tamis moléculaire qui est considérée comme remarquable.
- L'avantage essentiel de la résine réside, d'une part, dans son prix beaucoup plus bas, d'autre part, dans sa facilité de régénération qui s'opère à partir de calories de bas niveaux (120 à 140 °C), alors que la régénération du tamis moléculaire exige des températures de l'ordre de 250 °C à 300 °C.
- A partir de l'isotherme F relative à l'adsorbant conforme à l'invention, il est possible dans chaque cas de déduire la quantité de résine à mettre en œuvre.
- Par exemple, pour un carburant M3B2 appelé à être utilisé à une température minimale de -24 °C, le seuil de démixtion est de l'ordre de 800 p.p.m. d'eau en poids.
- Si l'on considère un réservoir de stockage de 50 000 litres de M3B2 ayant une teneur en eau de 1 500 p.p.m. en poids, il faut disposer environ 360 kg de résine sus-évoquée pour atteindre à l'équilibre une teneur égale à 400 p.p.m. (coefficient de sécurité égal à 2).
- Si l'on se limite à une teneur à l'équilibre de 800 p.p.m., la quantité de résine à mettre en oeuvre n'est plus que de 120 kg environ.
-
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8507650 | 1985-05-10 | ||
FR8507650A FR2581558B1 (fr) | 1985-05-10 | 1985-05-10 | Procede de traitement d'un carburant compose d'un melange d'hydrocarbures et d'alcools, et produit d'adsorption selective d'eau |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0201955A1 EP0201955A1 (fr) | 1986-11-20 |
EP0201955B1 true EP0201955B1 (fr) | 1988-08-17 |
Family
ID=9319447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86200666A Expired EP0201955B1 (fr) | 1985-05-10 | 1986-04-21 | Procédé de traitement d'un carburant composé d'un mélange d'hydrocarbures et d'alcools, et produit d'adsorption selective d'eau |
Country Status (6)
Country | Link |
---|---|
US (1) | US4889537A (fr) |
EP (1) | EP0201955B1 (fr) |
JP (1) | JPS61263608A (fr) |
CA (1) | CA1270641A (fr) |
DE (1) | DE3660551D1 (fr) |
FR (1) | FR2581558B1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19902437C5 (de) * | 1999-01-22 | 2017-01-12 | General Electric Technology Gmbh | Verfahren und Vorrichtung zum schnellen Anfahren und zur schnellen Leistungssteigerung einer Gasturbinenanlage |
GB0425501D0 (en) * | 2004-11-19 | 2004-12-22 | Amersham Plc | Fluoridation process |
EP2619572A4 (fr) * | 2010-09-20 | 2016-07-20 | Butamax Tm Advanced Biofuels | Évaluation multimédia de carburants contenant du butanol |
JP2012142174A (ja) * | 2010-12-28 | 2012-07-26 | Jx Nippon Oil & Energy Corp | 燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法 |
CN103402596B (zh) * | 2011-02-21 | 2015-07-29 | 东洋纺株式会社 | 有机溶剂脱水装置 |
JP6024131B2 (ja) * | 2012-03-14 | 2016-11-09 | 東洋紡株式会社 | 有機溶剤脱水装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2861045A (en) * | 1954-11-15 | 1958-11-18 | Exxon Research Engineering Co | Catalytic metal-modified resin |
US2862979A (en) * | 1957-01-23 | 1958-12-02 | Exxon Research Engineering Co | Production of oxo dimer alcohols |
US3442924A (en) * | 1965-12-14 | 1969-05-06 | Toyo Ethyl Kk | Process for the preparation of mixed alkyl lead compounds |
US3988122A (en) * | 1971-06-25 | 1976-10-26 | Chevron Research Company | Motor fuel composition |
US4154580A (en) * | 1974-03-22 | 1979-05-15 | Mobil Oil Corporation | Method for producing a stabilized gasoline-alcohol fuel |
US4087471A (en) * | 1977-05-20 | 1978-05-02 | Petro-Tex Chemical Corporation | Fixed bed process for the production of t-butanol |
DE2944457A1 (de) * | 1979-11-03 | 1981-05-14 | EC Erdölchemie GmbH, 5000 Köln | Verfahren zur herstellung eines gemisches, bestehend im wesentlichen aus iso-buten-oligomeren und methyl-tert.-butyl-ether, seine verwendung und treibstoffe, enthaltend ein solches gemisch |
US4279620A (en) * | 1980-04-07 | 1981-07-21 | Texaco Inc. | Novel process for treating gasahol |
US4316724A (en) * | 1980-05-05 | 1982-02-23 | Texaco Inc. | Gasoline and alcohol blends |
US4383836A (en) * | 1980-05-23 | 1983-05-17 | Texaco Inc. | Method for treating an aqueous ethanol mixture |
DK148747C (da) * | 1980-06-09 | 1986-02-24 | Inst Francais Du Petrole | Motorbraendstof |
US4334890A (en) * | 1981-02-03 | 1982-06-15 | The Halcon Sd Group, Inc. | Process for gasoline blending stocks |
DE3120213A1 (de) * | 1981-05-21 | 1982-12-09 | Bayer Ag, 5090 Leverkusen | Verfahren zur durchfuehrung katalytischer reaktionen in waessrigen medien |
US4541836A (en) * | 1982-12-09 | 1985-09-17 | Union Carbide Corporation | Fuel compositions |
US4629710A (en) * | 1984-12-20 | 1986-12-16 | Smith Jr Lawrence A | Resin catalysts and method of preparation |
-
1985
- 1985-05-10 FR FR8507650A patent/FR2581558B1/fr not_active Expired
-
1986
- 1986-04-21 DE DE8686200666T patent/DE3660551D1/de not_active Expired
- 1986-04-21 EP EP86200666A patent/EP0201955B1/fr not_active Expired
- 1986-05-09 JP JP61105078A patent/JPS61263608A/ja active Pending
- 1986-05-09 CA CA000508766A patent/CA1270641A/fr not_active Expired - Fee Related
- 1986-05-12 US US06/861,971 patent/US4889537A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US4889537A (en) | 1989-12-26 |
DE3660551D1 (en) | 1988-09-22 |
EP0201955A1 (fr) | 1986-11-20 |
JPS61263608A (ja) | 1986-11-21 |
FR2581558A1 (fr) | 1986-11-14 |
CA1270641A (fr) | 1990-06-26 |
FR2581558B1 (fr) | 1987-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4835338A (en) | Process for removal of carbonyl sulfide from organic liquid by adsorption using alumina adsorbent capable of regeneration | |
Teo et al. | Adsorption of water from aqueous ethanol using 3-. ANG. molecular sieves | |
US2425535A (en) | Separation of normal paraffins from iso-paraffins by means of activated cocoanut charcoal | |
US5891324A (en) | Acid-containing activated carbon for adsorbing mercury from liquid hydrocarbons | |
EP0196173B1 (fr) | Elimination des composés iodures des milieux non-aqueux organiques | |
US4795545A (en) | Process for pretreatment of light hydrocarbons to remove sulfur, water, and oxygen-containing compounds | |
EP0878454B1 (fr) | Procédé de purification de liquides organiques quasi anhydres | |
EP0755994B1 (fr) | Méthode pour l'élimination de mercure dans les hydrocarbures liquides | |
EP0201955B1 (fr) | Procédé de traitement d'un carburant composé d'un mélange d'hydrocarbures et d'alcools, et produit d'adsorption selective d'eau | |
US4319057A (en) | Regeneration of molecular sieves | |
WO2002081047A1 (fr) | Procede d'elimination des molecules oxygenees organiques presentes dans un effluent organique, utilisant des agglomeres d'alumine | |
US3055825A (en) | Process for the treatment of hydrocarbon oils | |
JPH11276801A (ja) | 混合液体精製方法及び混合液体精製装置 | |
US4543432A (en) | Separation of isopropyl alcohol from tertiary butyl alcohol by selective adsorption | |
US9012712B1 (en) | Adsorption of acid gases | |
US4582645A (en) | Carbonate production | |
US4956095A (en) | Water or gas purification by bulk absorption | |
US4374647A (en) | Oxygenated fuel dehydration | |
GB2049468A (en) | Gas purification | |
US2981681A (en) | Mass transfer process | |
US5057629A (en) | Process for reducing isopropyl alcohol in diisopropyl ether | |
JP2022146488A (ja) | アルカンの吸着剤およびイソオクタンの分離方法 | |
SU1444307A1 (ru) | Способ концентрировани нефтепродуктов из водных сред | |
JPH1180038A (ja) | 炭化水素流から酸化合物を除去する方法 | |
Al-Ameeri et al. | An improved process for purification of liquid n-paraffins by selective adsorption on type X zeolites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE GB IT NL |
|
17P | Request for examination filed |
Effective date: 19861013 |
|
17Q | First examination report despatched |
Effective date: 19870817 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3660551 Country of ref document: DE Date of ref document: 19880922 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
R20 | Corrections of a patent specification |
Effective date: 19881024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900409 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900425 Year of fee payment: 5 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900430 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900629 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19910421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19910430 |
|
BERE | Be: lapsed |
Owner name: ELF FRANCE Effective date: 19910430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19911101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050421 |