EP0201727A1 - Reflektorantenne - Google Patents

Reflektorantenne Download PDF

Info

Publication number
EP0201727A1
EP0201727A1 EP86104892A EP86104892A EP0201727A1 EP 0201727 A1 EP0201727 A1 EP 0201727A1 EP 86104892 A EP86104892 A EP 86104892A EP 86104892 A EP86104892 A EP 86104892A EP 0201727 A1 EP0201727 A1 EP 0201727A1
Authority
EP
European Patent Office
Prior art keywords
antenna
reflector
hood
stiffening ring
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP86104892A
Other languages
English (en)
French (fr)
Inventor
Marco C. Dr. Bernasconi
Karl Kotacka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP0201727A1 publication Critical patent/EP0201727A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors
    • H01Q15/163Collapsible reflectors inflatable

Definitions

  • the invention relates to a method for producing a reflector antenna, in particular a reflector antenna made parabolically from a deployable laminate sheet, consisting of an antenna hood that can be inflated into a shell body, a reflector and a stiffening ring.
  • the invention further relates to a reflector antenna manufactured by this method, the reflector of which is combined with an antenna hood to form a hollow body and is stabilized by a tubular stiffening ring.
  • antennas which are intended for spacecraft, for example, there are, in addition to the general requirements to be placed on such antennas, e.g. high dimensional accuracy of the antenna structure, other special requirements that arise due to the transport conditions to orbit, i.e. they should be as light as possible and foldable to the smallest possible storage volume.
  • the known mechanical construction antenna constructions intended for space conditions use rib and / or panel constructions with numerous details, such as hinges, supports, springs, tensioning cables, braking systems for controlled deployment and. Like. So that they are expensive to manufacture and due to their structure made up of many individual parts represent a compromise in terms of shape accuracy and / or the reliability of the reflector.
  • the invention is based on the object, starting from the state of the art of inflatable antennas, to improve the method and the antenna of the type mentioned in such a way that the antenna has, in addition to the basic advantages of its inflatable type, a more stable shape and a substantially longer service life.
  • This object is achieved essentially by the features specified in claims 1 and 4.
  • Curing can only be done under the influence of solar radiation by the antenna during the Curing is oriented towards the sun or with the additional action of a catalyst gas which is part of the gas used to manufacture the antenna shape.
  • the antenna according to the invention can be designed both as a centrally fed antenna and as an offset antenna.
  • Fig.l shows an overall designated 1 and designed as a centrally fed parabolic antenna Reflector antenna, which has an antenna tower 4 surrounded by a reflector 2 and an antenna hood 3 in a circle-symmetrical manner.
  • the antenna tower 4 consists essentially of an interface base part 5, with several rods 7 distributed around the circumference, determining its length and enclosed by a film 6, and from a feed head 8, it being possible for a feed reflector 8 to be provided in place of the feed head 8.
  • the interface base part 5 Through the interface base part 5, the mechanical and electrical connection to a spacecraft, not shown, can be established.
  • the antenna tower 4 In the area of the interface base part 5 and the feed head 8, the antenna tower 4, as shown in more detail in FIG. 4, is enclosed by a fastening ring 9, 10 with an outwardly projecting flange 11, 12 on which the reflector 2 and the antenna hood 3, e.g. fixed by gluing.
  • the reflector 2 and the antenna hood 3 are connected to one another via a tubular stiffening ring 13 which, together with the dimensioning of the surface size of the reflector 2 and the antenna hood 3, determines their shape under the influence of an internal gas pressure.
  • the antenna hood 3 is curved much more parabolically than the reflector 2, so that the fastening ring 10 for the antenna hood 3 has the desired position relative to the feed head 8.
  • the antenna hood 3 can also be symmetrical to the shape of the reflector, i.e. be arched like this, as shown by the embodiment of an offset antenna in FIG. 6.
  • the reflector 2, the antenna hood 3 (RADOM) and the outer jacket of the stiffening ring 13 (TORUS) are made from a fabric that is stiff by curing, which is preferably a laminate pigmented to control absorption.
  • the hardening constituent for example a hardening synthetic resin, is impregnated in a fabric layer of the laminate applied to the inside of the curvature of the reflector 2 and the antenna hood 3.
  • the synthetic resin comes into contact with a gaseous medium fed into the antenna cavity 15 via a feed line 24 and into the stiffening ring 13 via a feed line 25, in particular a catalyst gas which is a component of a gas used to inflate the antenna.
  • the fabric layer borders on the outside to a laminated plastic film that serves as a gas barrier during curing and also protects the impregnated fabric layer from UV radiation. It can also serve as a carrier layer for a special layer or a coating, for example as an electrically conductive layer for a microwave reflector.
  • the electrically conductive layer is, based on the curvature, on the outside of the plastic film, so that it also takes on a thermal control function and contributes to an increase in temperature and a more uniform temperature distribution during curing.
  • the radiation exchange between the antenna reflector 2 and the antenna cover 3 also contributes to the uniform temperature distribution over the entire surface of the parabolic antenna and thus to increased dimensional stability. It is advantageous here that the inside of the antenna has a high emission.
  • the aforementioned, electrically conductive, ie metallic layer brings about a shielding against thermal radiation which is advantageous for temperature compensation.
  • this is the reflector 2, the antenna hood 3 and the stiffening ring 13, flexible, so that the parts 2, 3 and 13 can be folded into the compact package shape shown in FIGS. 2 and 3 and space-saving in a not shown waste load covering of a launch vehicle or a "space shuttle "to be stowed.
  • the antenna sheath formed from the parts 2, 3 and 13 is folded around the antenna tower 4 and tightly against it, in the form of several longer and shorter folded positions 13, 17, 18.
  • the longer folding layers 17 of the reflector 2 extend over almost the entire length of the tower part located between the interface base part 5 and the feed head 8, while part of the antenna hood 3 in shorter folding positions 18 the upper area and the stiffening ring 13 as the folding position the lower Encloses area of the tower part.
  • a band 19 visible in FIG. 3 is wound helically around the folded layers 13, 17, 18 and thus holds them together as a package 20.
  • the release of the band 19 for unfolding the antenna 1 after reaching the orbit can be done mechanically or by local heating by means not shown, known per se.
  • the shell package 20 is surrounded by a plurality of circumferentially distributed and correspondingly adapted housing shells 21, which are mounted by means of joints 22 on the edge of the interface base 5 and can be unfolded in a bleeding-like manner.
  • the gaseous medium for generating the inflation pressure of the antenna 1 is fed to the antenna cavity 15 and the tubular stiffening ring 13 via hose lines 24, 25, the into the antenna cavity 15 Opening hose line 24, as shown in FIG. 4, opens out through a cylindrical part 27 of the fastening ring 9, while the hose line 25 leading to the fastening ring 13, as shown in FIG. 5, runs along the outside of the reflector 2 and accordingly over one arranged on the outside of the stiffening ring 13, angled coupling part 28 opens into the stiffening ring 13.
  • the pressure required is relatively low due to the lack of pressure in the surrounding space and is of the order of magnitude around 0.4 kp / m2. It is controlled by valves (not shown) in the feed lines.
  • Pressurized gas cylinders with sufficient content for maintaining the pressure during a relatively short curing time of the impregnated synthetic resin are arranged at a suitable point in the associated spacecraft, on the support arm of which the interface base 5 is fastened in a manner not shown.
  • the parabolic antenna is preferably kept facing the sun, so that the antenna surface is heated uniformly to a temperature at which rapid curing, possibly supported by a catalyst gas, takes place.
  • Epoxy resins for example, are suitable as the curing synthetic resin composition.
  • An offset antenna 1 ' is produced according to the same principle according to the invention by inflating the antenna hollow body consisting of a reflector 2', an antenna hood 3 '(RADOM) and a stiffening ring 13'.
  • An antenna arm 31 is attached at a point 30 to the stiffening ring 13 '.
  • the illustration according to FIG. 7 shows the structure of the antenna shell from numerous juxtaposed, cut and glued together material webs 32, the shape of which determines the shape of the antenna.
  • the thickness of the laminate used for the casing body is of the order of 0.1 mm with a correspondingly small thickness of the fabric layer.
  • the overall dimensions of an antenna according to the invention can be chosen within a wide range.
  • the centrally fed antenna is e.g. with a diameter in the order of approx. 22 m and a height of the antenna tower of approx. 6 m and the offset antenna with a diameter of approx. 12 m can be realized. It goes without saying that it can be expedient for antennas with a particularly large diameter to make the antenna tower telescopically in a manner known per se.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Eine, insbesondere für ein Raumfluggerät vorgesehene und parabolisch ausgebildete Reflektorantenne (1, 1') wird in zusammengefaltetem Zustand paketförmig in den Weltraum gebracht und dort durch den Druck eines mitgeführten gasförmigen Mediums aufgeblasen. Hierfür bilden der Antennenreflektor (2, 2') und eine Antennenhaube (3, 3') einen aufblasbaren Hohlraum (15, 15') der von einem Versteifungsring (13, 13') stabilisiert ist. Das Hüllenmaterial des Antennenreflektors. der Antennenhaube und des Versteifungsringes weist eine durch ein Kunstharz imprägnierte Gewebeschicht auf. Nach dem Aufblasen im Weltraum wird die Antenne (1) vorzugsweise so ausgerichtet, dass sie durch die Sonne gleichmässig erwärmt wird und das Kunstharz aushärtet. Im ausgehärteten Zustand muss die erfindungsgemässe Reflektorantenne im Gegensatz zu den bekannten Antennen nicht mehr durch Gasdruck in ihrer Form gehalten werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer Reflektorantenne, insbesondere einer aus einem entfaltbaren Laminat-Flächengebilde parabolisch ausgebildeten Reflektorantenne, bestehend aus einer zu einem Hüllenkörper aufblasbaren Antennenhaube, einem Reflektor und einem Versteifungsring.
  • Die Erfindung betrifft weiterhin eine nach diesem Verfahren hergestellte Reflektorantenne, deren Reflektor mit einer Antennenhaube zu einem Hohlkörper vereinigt und von einem rohrförmigen Versteifungsring stabilisiert ist.
  • Für derartige Antennen, die beispielsweise für Raumflugkörper vorgesehen sind, bestehen neben den allgemeinen Anforderungen, die an solche Antennen zu stellen sind, wie z.B. hohe Formgenauigkeit der Antennenstruktur, noch weitere besondere Anforderungen, die sich aufgrund der Transportbedingungen zum Orbit ergeben, d.h., sie sollen möglichst leicht sein und sich auf ein möglichst kleines Stauvolumen zusammenfalten lassen.
  • Die bekannten, für Weltraumbedingungen vorgesehenen Antennenkonstruktionen mechanischer Bauweise verwenden Rippen- und/oder Panelkonstruktionen mit zahlreichen Einzelheiten, wie Scharniere, Stützen, Federn, Spannseile, Bremssysteme für eine kontrollierte Entfaltung u. dgl., so dass sie aufwendig herzustellen sind und aufgrund ihrer aus vielen Einzelteilen aufgebauten Struktur einen Kompromiss hinsichtlich der Formgenauigkeit und/oder der Zuverlässigkeit des Reflektors darstellen.
  • Die Problematik solcher mechanisch entfaltbarer Parabolantennen ist beispielsweise in dem Artikel "Stand der Technik auf dem Gebiet grösserer entfaltbarer Parabolantennen-Strukturen für Raumfluggeräte" von W.Schäfer (Z. Flugwissenschaftliche Weltraumforschung 4, 1980, Heft 5) ausführlich dargelegt.
  • Daneben ist seit langem auch eine ständig unter dem Druck eines Gases in ihrer formgebenden Ausgestaltung gehaltene, d.h. aufblasbare Parabolantenne bekannt (American Institut of Aeronautics and Astronautics, Januar 1980), die bei verhältnismässig kleinem Gewicht und geringem Stauvolumen besonders grosse Durchmesser aufweisen kann, wobei der verwendete Gasdruck eine hohe Formgenauigkeit des Reflektors gewährleistet. Eine solche Antenne ist jedoch durch Meteorite gefährdet, hat eine entsprechend geringere Lebensdauer und erfordert die Mitführung von Gas zum Nachfülle& für die Aufrechterhaltung des Innendrucks der Antenne, d.h. um Gasverlust aufgrund von Undichtigkeiten an den Nähten und durch Meteoriteneinschlag auszugleichen.
  • Der Erfindung liegt die Aufgabe zugrunde, ausgehend von dem Stand der Technik aufblasbarer Antennen, das Verfahren und die Antenne der eingangsgenannten Art derart zu verbessern, dass die Antenne zusätzlich zu den grundsätzlichen Vorteilen ihrer aufblasbaren Art, eine stabilere Form und eine wesentlich höhere Lebensdauer aufweist. Die Lösung dieser Aufgabe erfolgt im wesentlichen durch die in den Patentansprüchen 1 und 4 angegebenen Merkmale.
  • Das Aushärten kann allein unter der Einwirkung der Sonnenbestrahlung erfolgen, indem die Antenne während der Aushärtung zur Sonne hin ausgerichtet wird oder unter zusätzlicher Einwirkung eines Katalysatorgases, das Bestandteil des zum Herstellen der Antennenform verwendeten Gases ist.
  • Die erfindungsgemässe Antenne kann sowohl als zentralgespeiste Antenne als auch als Offset-Antenne ausgeführt sein.
  • Weitere Ausführungsformen und Vorteile der Erfindung ergeben sich aus der folgenden näheren Beschreibung und der Zeichnung. Es zeigt:
    • Fig.l eine Schnittansicht durch eine parabolische Reflektorantenne in vereinfachter Darstellung,
    • Fig.2 einen schematisch dargestellten Querschnitt durch die Antenne nach Fig.1 im zusammengefaltenen Zustand und einseitiger Andeutung der entfalteten Antennenform,
    • Fig.3 eine Ansicht der zusammengefalteten und von mehreren Gehäuseschalen gehaltene Antenne,
    • Fig.4 einen Teilquerschnitt durch einen zentralen Bereich der Antenne nach den Fig.1 bis 3, in grösserem Massstab,
    • Fig.5 ein Detail des Reflektors und des Versteifungsringes mit seinem Gasanschluss,
    • Fig.6 eine Ansicht einer parabolischen Offset-Antenne, und
    • Fig.7 die in Draufsicht dargestellte Antenne nach Fig.6.
  • Fig.l zeigt eine in der Gesamtheit mit 1 bezeichnete und als zentral gespeiste Parabolantenne ausgebildete Reflektorantenne, welche einen von einem Reflektor 2 und einer Antennenhaube 3 kreissymmetrisch umschlossenen Antennenturm 4 hat. Der Antennenturm 4 besteht im wesentlichen aus einem Interface-Sockelteil 5, mit mehreren am Umfang verteilten, seine Länge bestimmenden und von einer Folie 6 umschlossenen Stäben 7 sowie aus einem Speisekopf 8, wobei an Stelle des Speisekopfes 8 auch ein Subreflektor vorgesehen sein kann. Durch den Interface-Sockelteil 5 kann die mechanische und elektrische Verbindung zu einem nicht dargestellten Raumflugkörper hergestellt werden.
  • Im Bereich des Interface-Sockelteils 5 und des Speisekopfs 8 ist der Antennenturm 4, wie in Fig.4 näher dargestellt, von je einem Befestigungsring 9,10 mit einem nach aussen abstehenden Flansch 11,12 umschlossen, an denen der Reflektor 2 und die Antennenhaube 3, z.B. durch Kleben, befestigt sind. Entlang ihres Aussenumfanges sind der Reflektor 2 und die Antennenhaube 3 über einen rohrförmigen Versteifungsring 13 miteinander verbunden, der zusammen mit der Dimensionierung der Oberflächengrösse des Reflektors 2 und der Antennenhaube 3 deren Form unter dem Einfluss eines inneren Gasdrucks bestimmt. Im dargestellten Ausführungsbeispiel ist die Antennenhaube 3 wesentlich flacher parabolisch gewölbt als der Reflektor 2, so dass der Befestigungsring 10 für die Antennenhaube 3 die gewünschte Position relativ zu dem Speisekopf 8 hat. Die Antennenhaube 3 kann auch symmetrisch zur Form des Reflektors, d.h. gleich gewölbt wie dieser ausgeführt sein, wie es das Ausführungsbeispiel einer Offset-Antenne in Fig. 6 zeigt.
  • Der Reflektor 2, die Antennenhaube 3 (RADOM) und der äussere Mantel des Versteifungsrings 13 (TORUS) bestehen aus einem durch Aushärtung steifen Flächengebilde, das vorzugsweise ein zur Steuerung der Absorption pigmentiertes Laminat darstellt. Der die Aushärtung ermöglichende Bestandteil, z.B. ein aushärtender Kunstharz, ist in einer auf der Krümmungsinnenseite des Reflektors 2 und der Antennenhaube 3 aufgebrachten Gewebeschicht des Laminats imprägniert. Das Kunstharz gelangt zur Aushärtung in Kontakt mit einem in den Antennenhohlraum 15 über eine Zuführleitung 24 und in den Versteifungsring 13 über eine Zuführleitung 25 zugeführten gasförmigen Medium, insbesondere einem Katalysatorgas, welches Bestandteil eines zum Aufblasen der Antenne verwendeten Gases ist. Die Gewebeschicht grenzt nach aussen an eine auflaminierte Kunststoffolie an, die als Gassperre während der Aushärtung dient und ausserdem die imprägnierte Gewebeschicht vor UV-Bestrahlung schützt. Sie kann auch als Trägerschicht für eine spezielle Schicht oder einen Ueberzug, z.B. als eine elektrisch leitfähige Schicht für einen Mikrowellenreflektor dienen. Die elektrisch leitfähige Schicht befindet sich, bezogen auf die Krümmung, an der Aussenseite der Kunststoffolie, so dass sie auch eine thermische Steuerfunktion übernimmt und zu einer Temperaturerhöhung und gleichmässigeren Temperaturverteilung während der Aushärtung beiträgt. Zur gleichmässigen Temperaturverteilung über die gesamte Oberfläche der Parabolantenne und damit für eine erhöhte Formstabilität.trägt auch der Strahlungsaustausch zwischen dem Antennenreflektor 2 und der Antennenabdeckung 3 bei. Hierbei ist es von Vorteil, dass die Antennen-Innenseite eine hohe Emission aufweist. Die erwähnte, äussere elektrisch leitfähige, d.h. metallische Schicht bewirkt eine für den Temperaturausgleich vorteilhafte Abschirmung gegen Wärmestrahlung.
  • Vor der Aushärtung des Kunstharzbestandteiles des Hüllenkörpers ist dieser, d.h. der Reflektor 2, die Antennenhaube 3 und der Versteifungsring 13, flexibel, so dass die Teile 2,3 und 13 zu der in den Fig.2 und 3 dargestellten kompakten Paketform zusammenfaltbar und raumsparend in einer nicht dargestellten Mutzlastverkleidung einer Trägerrakete oder eines "Space Shuttle" zu verstauen sind. In dieser Paketform ist die aus den Teilen 2,3 und 13 gebildete Antennenhülle um den Antennenturm 4 herum und eng an diesem anliegend, in Form von mehreren längeren und kürzeren Faltlagen 13,17,18 zusammengelegt. Dabei erstrecken sich die längeren Faltlagen 17 des Reflektors 2 über nahezu die gesamte Länge des zwischen dem Interface-Sockelteil 5 und dem Speisekopf 8 befindlichen Turmteils, während ein Teil der Antennenhaube 3 in kürzeren Faltlagen 18 den oberen Bereich und der Versteifungsring 13 als Faltlage den unteren Bereich des Turmteils anliegend umschliesst. Ein in Fig.3 sichtbares Band 19 ist um die Faltlagen 13,17,18 schraubenlinienartig herumgewickelt und hält sie somit als Hüllenpaket 20 zusammen. Das Lösen des Bandes 19 zum Auffalten der Antenne 1 nach Erreichen des Orbits kann mechanisch oder durch örtliches Erhitzen durch nichtdargestellte, an sich bekannte Mittel erfolgen. Ausserdem ist das Hüllenpaket 20 von mehreren am Umfang verteilten und entsprechend angepassten Gehäuseschalen 21 umschlossen, die mittels Gelenke 22 am Rand des Interface-Sockels 5 gelagert und blutenartig entfaltbar aufklappbar sind.
  • Das gasförmige Medium zum Erzeugen des Aufblasdruckes der Antenne 1 wird dem Antennenhohlraum 15 und dem rohrförmigen Versteifungsring 13 über Schlauchleitungen 24,25 zugeführt, wobei die in den Antennenhohlraum 15 mündende Schlauchleitung 24, wie in Fig.4 dargestellt, durch einen zylindrischen Teil 27 des Befestigungsringes 9 mündet, während die zu dem Befestigungsring 13 führende Schlauchleitung 25, wie in Fig.5 dargestellt, an der Aussenseite des Reflektors 2 entlang verläuft und entsprechend über ein aussen an dem Versteifungsring 13 angeordnetes, winkelförmiges Kupplungsteil 28 in den Versteifungsring 13 mündet. Der erforderliche Druck ist aufgrund der Drucklosigkeit im umgebenden Weltraum verhältnismässig gering und liegt in der Grössenordnung bei etwa 0,4 kp/m2. Er wird durch nichtdargestellte Ventile in den Zuführleitungen gesteuert. Druckgasflaschen mit für die Druckhaltung während einer verhältnismässig kurzen Aushärtungszeit des imprägnierten Kunstharzes ausreichendem Inhalt sind an geeigneter Stelle im zugehörigen Raumfluggerät angeordnet, an dessen Trägerarm der Interface-Sockel 5 in nicht dargestellter Weise befestigt ist. Während der für die Aushärtung erforderlichen Zeit wird die Parabolantenne vorzugsweise zur Sonne hin ausgerichtet gehalten, so dass die Antennenoberfläche gleichmässig auf eine Temperatur erwärmt wird, bei der eine schnelle Aushärtung, eventuell unterstützt durch ein Katalysatorgas, erfolgt. Als aushärtende Kunstharzmasse sind beispielsweise Epoxyharze geeignet.
  • Eine Offset-Antenne 1' gemäss den Figuren 6 und 7 ist nach dem gleichen erfindungsgemässen Prinzip durch Aufblasen des aus einem Reflektor 2', einer Antennenhaube 3' (RADOM) und einem Versteifungsring 13' bestehenden Antennenhohlkörpers hergestellt. Ein Antennenarm 31 ist an einer Stelle 30 an dem Versteifungsring 13' befestigt. Die Darstellung nach Fig.7 zeigt den Aufbau der Antennenhülle aus zahlreichen nebeneinanderverlaufenden, zugeschnittenen und miteinander verklebten Materialbahnen 32, durch deren Zuschnittsform die Form der Antenne bestimmt wird.
  • Die Dicke des für den Hüllenkörper verwendeten Laminats liegt in der Grössenordnung von 0,lmm mit entsprechend geringer Dicke der Gewebeschicht. Die Gesamtabmessungen einer erfindungsgemässen Antenne können in weitem Rahmen gewählt werden. Die zentralgespeiste Antenne ist z.B. mit einem Durchmesser in der Grössenordnung von ca. 22 m und einer Höhe des Antennenturms von ca. 6 m und die Offset-Antenne mit einem Durchmesser von ca. 12 m realisierbar. Es versteht sich, dass es für Antennen mit besonders grossem Durchmesser zweckmässig sein kann, den Antennenturm in an sich bekannter Weise teleskopartig auszuführen.

Claims (9)

1. Verfahren zur Herstellung einer Reflektorantenne, insbesondere einer aus einem entfaltbaren Laminat-Flächengebilde parabolisch ausgebildeten Reflektorantenne (1,1'), bestehend aus einer zu einem Hüllenkörper aufblasbaren Antennenhaube (3,3'), einem Reflektor (2,2') und einem Versteifungsring (13,13'), dadurch gekennzeichnet, dass zumindest für die Teile (2,2' und 3,3') ein mit einer aushärtbaren Komponente versehenes Hüllenmaterial verwendet wird, dass nach und/oder während des Aufblasens der Hülleneinheit ausgehärtet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem zum Aufblasen der Antenne verwendeten, gasförmigen Medium ein Katalysatorgas für die Aushärtung des Hüllenkörpers zugegeben wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Antenne zum Aushärten des Hüllenkörpers durch Sonnenenergie während des Aushärtens zur Sonne hin ausgerichtet gehalten wird.
4. Reflektorantenne, hergestellt nach dem Verfahren gemäss Anspruch 1, deren Reflektor (2,2') mit einer Antennenhaube (3,3') zu einem Hohlkörper vereinigt und von einem rohrförmigen Versteifungsring (13,13') stabilisiert ist, dadurch gekennzeichnet, dass die Antennenteile (2,2' 3,3' und 13,13') aus einem durch Aushärtung starren Laminat-Flächengebilde bestehen, wobei ein durch Aufblasen von den Teilen (2,2' und 3,3') gebildeter Antennenhohlraum (15,15') und der Versteifungsring (13,13') mit einer Druckgasquelle in Wirkverbindung stehen und für die Erzeugung und Aufrechterhaltung der Antennenform bis zur Aushärtung unter Druck gehalten sind.
5. Reflektorantenne nach Anspruch 4, dadurch gekennzeichnet, dass das Flächengebilde eine kunstharzimprägnierte textile Laminatschicht und an seiner Krümmungsaussenseite eine auflaminierte, gasdichte Kunststoffolie aufweist, und dass die Kunststoffolie für den Antennenreflektor (2,2') aussenseitig mit elektrisch gut leitfähigem Material beschichtet ist.
6. Reflektorantenne nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass sie zentral gespeist ist, wobei der Antennenreflektor (2) und die Antennenhaube (3) an einem zentralen Antennenturm (4) befestigt sind.
7. Reflektorantenne nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass sie als Offset-Antenne (1') ausgeführt ist und der Befestigungsring (13') eine Befestigungsstelle (30) für einen Antennenarm (31) aufweist.
8. Antennenpaket für die Herstellung einer Reflektorantenne nach Anspruch 4, dadurch gekennzeichnet, dass es die Antennenhülle in Form von flexiblen, dünnwandigen Flä.chengebilden, zusammengelegt in mehreren Faltlagen (17,18) einschliesst, die eine durch aushärtbares Kunststoffmaterial imprägnierte textile Laminatschicht aufweisen.
9. Antennenpaket nach Anspruch 8, dadurch gekennzeichnet, dass es turmartig gepackt ist und von mehreren Gehäuseschalen (21) umschlossen ist, die durch Gelenke (22) am Sockelteil (5) eines von der Antennenhülle eingeschlossenen Antennenturms (4) ausschwenkbar befestigt sind.
EP86104892A 1985-05-15 1986-04-10 Reflektorantenne Ceased EP0201727A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2077/85 1985-05-15
CH207785 1985-05-15

Publications (1)

Publication Number Publication Date
EP0201727A1 true EP0201727A1 (de) 1986-11-20

Family

ID=4225361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86104892A Ceased EP0201727A1 (de) 1985-05-15 1986-04-10 Reflektorantenne

Country Status (3)

Country Link
US (1) US4755819A (de)
EP (1) EP0201727A1 (de)
JP (1) JPS61264901A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014417A1 (fr) * 2013-12-10 2015-06-12 Eads Europ Aeronautic Defence Nouvelle architecture de vehicule spatial

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591153B2 (ja) * 1989-04-28 1997-03-19 日本電気株式会社 インフレータブルアンテナ
US5920294A (en) * 1997-06-30 1999-07-06 Harris Corporation Tensioned cord attachment of antenna reflector to inflated support structure
US6219009B1 (en) 1997-06-30 2001-04-17 Harris Corporation Tensioned cord/tie attachment of antenna reflector to inflatable radial truss support structure
US5990851A (en) * 1998-01-16 1999-11-23 Harris Corporation Space deployable antenna structure tensioned by hinged spreader-standoff elements distributed around inflatable hoop
US6115003A (en) * 1998-03-11 2000-09-05 Dennis J. Kozakoff Inflatable plane wave antenna
US6313811B1 (en) 1999-06-11 2001-11-06 Harris Corporation Lightweight, compactly deployable support structure
US6618025B2 (en) 1999-06-11 2003-09-09 Harris Corporation Lightweight, compactly deployable support structure with telescoping members
WO2001022530A1 (en) * 1999-09-21 2001-03-29 The Johns Hokpins University Hybrid inflatable antenna
WO2001054228A1 (en) * 2000-01-18 2001-07-26 Medzmariashvili Elgudja V Expandable parabolic antenna
US6512496B2 (en) 2001-01-17 2003-01-28 Asi Technology Corporation Expandible antenna
KR100675783B1 (ko) * 2001-05-30 2007-01-29 존 알. 주니어 에시그 팽창 가능한 다기능 포물형 반사기 장치 및, 그것의 제조방법
US7382332B2 (en) * 2001-05-30 2008-06-03 Essig Jr John Raymond Modular inflatable multifunction field-deployable apparatus and methods of manufacture
FR2841047A1 (fr) * 2002-10-09 2003-12-19 Agence Spatiale Europeenne Reflecteur d'antenne pliable et depliable, notamment pour une antenne de grande envergure destinee a des applications de telecommunications spatiales
US7138958B2 (en) * 2004-02-27 2006-11-21 Andrew Corporation Reflector antenna radome with backlobe suppressor ring and method of manufacturing
FR2887523B1 (fr) * 2005-06-22 2008-11-07 Eads Astrium Sas Soc Par Actio Structure legere deployable et rigidifiable apres deploiement, son procede de realisation, et son application a l'equipement d'un vehicule spatial
US20100313880A1 (en) * 2007-11-13 2010-12-16 Feng Shi Solar Concentrator
ES2441070T3 (es) * 2008-08-07 2014-01-31 Thales Alenia Space Italia S.P.A. Dispositivo de blindaje para aparatos ópticos y/o electrónicos, y vehículo espacial que comprende dicho dispositivo
US8794229B2 (en) 2011-06-15 2014-08-05 Feng Shi Solar concentrator
US9899743B2 (en) 2014-07-17 2018-02-20 Cubic Corporation Foldable radio wave antenna deployment apparatus for a satellite
US9960498B2 (en) 2014-07-17 2018-05-01 Cubic Corporation Foldable radio wave antenna
US9912070B2 (en) 2015-03-11 2018-03-06 Cubic Corporation Ground-based satellite communication system for a foldable radio wave antenna
US10916859B2 (en) * 2019-03-15 2021-02-09 Massachusetts Institute Of Technology Inflatable reflector antenna and related methods
RU201366U1 (ru) * 2020-02-04 2020-12-11 Александр Витальевич Лопатин Параболический трансформируемый торовый рефлектор
RU203899U1 (ru) * 2020-09-21 2021-04-26 Александр Витальевич Лопатин Надувное устройство раскрытия трансформируемого рефлектора зонтичного типа

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996212A (en) * 1959-08-20 1961-08-15 Jr William John O'sullivan Self supporting space vehicle
US3282533A (en) * 1962-08-07 1966-11-01 Raymond G Spain Rigidizable expandable structures and system
US3324000A (en) * 1964-06-18 1967-06-06 Colgate Palmolive Co 1, 4-benzodioxyl carbamates in skeletal muscle relaxation
US3354458A (en) * 1966-05-20 1967-11-21 Goodyear Aerospace Corp Wire-film space satellite
US3391882A (en) * 1964-03-11 1968-07-09 Keltec Ind Inc Erectable structure for a space environment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224000A (en) * 1963-03-18 1965-12-14 Goodyear Aerospace Corp Communication satellite and method for making same
US3916418A (en) * 1972-06-22 1975-10-28 Itt Fiber-reinforced molded reflector with metallic reflecting layer
US4191604A (en) * 1976-01-07 1980-03-04 General Dynamics Corporation Pomona Division Method of constructing three-dimensionally curved, knit wire reflector
US4364053A (en) * 1980-09-18 1982-12-14 William Hotine Inflatable stressed skin microwave antenna
US4475109A (en) * 1982-01-25 1984-10-02 Rockwell International Corporation Inflatable antenna
US4550319A (en) * 1982-09-22 1985-10-29 Rca Corporation Reflector antenna mounted in thermal distortion isolation
JPS5997205A (ja) * 1982-11-26 1984-06-05 General Res Obu Erekutoronitsukusu:Kk サテライト・アンテナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996212A (en) * 1959-08-20 1961-08-15 Jr William John O'sullivan Self supporting space vehicle
US3282533A (en) * 1962-08-07 1966-11-01 Raymond G Spain Rigidizable expandable structures and system
US3391882A (en) * 1964-03-11 1968-07-09 Keltec Ind Inc Erectable structure for a space environment
US3324000A (en) * 1964-06-18 1967-06-06 Colgate Palmolive Co 1, 4-benzodioxyl carbamates in skeletal muscle relaxation
US3354458A (en) * 1966-05-20 1967-11-21 Goodyear Aerospace Corp Wire-film space satellite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NASA CONTRACTOR REPORT, CR-1688, Band III, Februar 1971, Seiten 262,263,263a, Washington, US; "Antennas for space communication - deployable paraboloids" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014417A1 (fr) * 2013-12-10 2015-06-12 Eads Europ Aeronautic Defence Nouvelle architecture de vehicule spatial
WO2015086970A1 (fr) * 2013-12-10 2015-06-18 Airbus Group Sas Nouvelle architecture de véhicule spatial
US10450092B2 (en) 2013-12-10 2019-10-22 Airbus Group Sas Spacecraft architecture having torus-shaped solar concentrator

Also Published As

Publication number Publication date
JPS61264901A (ja) 1986-11-22
US4755819A (en) 1988-07-05

Similar Documents

Publication Publication Date Title
EP0201727A1 (de) Reflektorantenne
US5579609A (en) Rigidizable inflatable structure
DE1804950C3 (de) Solarzellenanordnung
US6920722B2 (en) Elongated truss boom structures for space applications
WO1988010211A1 (en) Inflatable folding structure and process for manufacturing folding structures
US6343442B1 (en) Flattenable foldable boom hinge
US6910308B2 (en) Inflatable rigidizable boom
US5990851A (en) Space deployable antenna structure tensioned by hinged spreader-standoff elements distributed around inflatable hoop
US6568640B1 (en) Inflatable satellite design
US9120583B1 (en) Space solar array architecture for ultra-high power applications
DE19715788C1 (de) Solargenerator für Satelliten
DE202010013085U1 (de) Selbstentfaltende Helixantenne
EP0182274A2 (de) Aufblasbarer Radarreflektor
US20080111031A1 (en) Deployable flat membrane structure
WO2003062565A1 (en) Open-lattice, foldable, self-deployable structure
DE1199017B (de) Spiegel fuer den Gebrauch im Weltraum
DE1257593B (de) Ausleger fuer Raumflugkoerper
AT7582U1 (de) Doppelwandiges behältnis für kryogene flüssigkeiten
CA2241487A1 (en) Tensioned cord attachment of antenna reflector to inflated support structure
US3606211A (en) Outrigger construction
DE19945586A1 (de) Thermalschutzsystem
CN106887714A (zh) 充气展开式索网反射面天线反射器
US3112221A (en) Electro-magnetic wave reflecting laminate and method of making it
Reibaldi et al. QUASAT program: the ESA reflector
WO2001054228A1 (en) Expandable parabolic antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870312

17Q First examination report despatched

Effective date: 19890929

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON-CONTRAVES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19920224

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERNASCONI, MARCO C., DR.

Inventor name: KOTACKA, KARL