EP0192523B1 - Flexible electrical insulation material and method of manufacturing it - Google Patents

Flexible electrical insulation material and method of manufacturing it Download PDF

Info

Publication number
EP0192523B1
EP0192523B1 EP86400157A EP86400157A EP0192523B1 EP 0192523 B1 EP0192523 B1 EP 0192523B1 EP 86400157 A EP86400157 A EP 86400157A EP 86400157 A EP86400157 A EP 86400157A EP 0192523 B1 EP0192523 B1 EP 0192523B1
Authority
EP
European Patent Office
Prior art keywords
resin
support
flexible
mineral powder
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86400157A
Other languages
German (de)
French (fr)
Other versions
EP0192523A1 (en
Inventor
Jean-Paul Joubert
Pierre Mateu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D'exploitation Generale De Produits Industriels (seg) Ste
Original Assignee
D'exploitation Generale De Produits Industriels (seg) Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9315705&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0192523(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by D'exploitation Generale De Produits Industriels (seg) Ste filed Critical D'exploitation Generale De Produits Industriels (seg) Ste
Priority to AT86400157T priority Critical patent/ATE35094T1/en
Publication of EP0192523A1 publication Critical patent/EP0192523A1/en
Application granted granted Critical
Publication of EP0192523B1 publication Critical patent/EP0192523B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies

Definitions

  • the present invention relates to a flexible electrical insulating material and to its manufacturing process, the aforementioned material being more specially adapted by its performance to use in the field of construction of electrical machines and in electro-mechanics in general.
  • flexible insulators are currently used to insulate conductors or groups of conductors inserted in the notches of the pole pieces of rotating machines, in particular these flexible insulators in the form of sheets or ribbons of appropriate dimensions being for example intended to ensure the separation and the insulation of groups of conductors each constituting a phase of the winding of the motor or of the rotary machine.
  • complex products comprising a support, generally a polyester film, on the faces of which are deposited polyester felts, calendered or non-calendered papers such as aromatic polyamides, or mats such as glass mats or glass fabric, the whole being optionally impregnated with a resin by varnishing.
  • a support generally a polyester film, varnished by means of an organic resin, and are especially used to allow the heat-weldability of the support.
  • the present invention overcomes the aforementioned drawbacks by implementing a method of manufacturing a material and a material whose performance is significantly improved.
  • the process for manufacturing a flexible electrical insulating material consists in depositing on a flexible support a resin loaded with mineral fillers, constituted by a finely divided mineral powder of particle size less than 40 ⁇ m in order to improve the thermal and dielectric properties of the latter, the resin prior to deposition, being formed by a complex obtained by mixing an organic binder material and mineral powder and the deposition of the resin on the support being effected by coating, the assembly consisting of the coated support resin, following the deposition of the resin on the support, being polymerized hot melt said polymerization being performed by progressively temperature stages between 100 ° C and 200 ° C.
  • the flexible electrical insulating material thus obtained comprises a central core, or flexible support, constituted by a plastic material, and a coating of the central core formed by a resin layer consisting of an organic material loaded with a mineral powder in proportions determined, said coating further comprising a bonding or coupling agent between the organic material and the mineral powder, the mineral powder being finely divided and of particle size less than 40 ⁇ m.
  • the invention finds application in the field of electrical or electro-mechanical construction, but also in the field of construction of electronic devices, in particular in industrial electronics.
  • FIG. 1 The process for manufacturing a flexible electrical insulating material of the invention will firstly be described by means of FIG. 1.
  • This process consists in depositing on a flexible support a resin loaded with mineral fillers in order to improve the thermal and dielectric properties of the latter.
  • the process without limitation, is shown in the form of a continuous manufacturing process.
  • the flexible support S formed in the form of a feed roller A and formed in a strip is conventionally engaged in a drive assembly constituted by drive rollers RE and guide rollers RG.
  • various stations are provided for carrying out the various stages of the method, hereinafter explained.
  • the support is, before depositing the resin, treated so as to make the faces of the support sufficiently rough.
  • this treatment is noted T.
  • This treatment can be either for example a mechanical treatment, or an electrical treatment. Electrical treatment will however be preferred to mechanical treatment.
  • the treatment carried out is a treatment of the CORONA effect treatment type.
  • the voltage applied to the CORONA effect treatment electrodes is determined as a function of the thickness of the support S or strip, and as a function of the speed of travel thereof.
  • the thickness of the support is determined as a function of the nature of the latter.
  • the thickness e of the support can be between 23 ⁇ . ⁇ .m and 350 wm.
  • the support can be constituted by a glass fabric of thickness e between 5/100 mm and 35/100 mm, the production of a glass fabric support allowing an improvement of the mechanical properties of the final material. , with regard to resistance to aging.
  • the support can also consist of an aromatic polyamide paper normally available on the market.
  • the thickness of the paper can be chosen between 5/100 mm and 13/100 mm for example.
  • the support S can also consist of a material of the fluoropolymer film type sold by the company HOECHST under the reference L 601.
  • the thickness of the support in the latter case can be taken between limits varying from 50 4 m to 100 ⁇ m.
  • the latter material because of its better temperature resistance, 170 ° C continuously, may be chosen for the production of a flexible insulating material with improved temperature resistance.
  • the strip is directed towards a coating unit denoted E making it possible to deposit the resin on the support.
  • the resin is formed by a complex obtained by mixing an organic binder material and a mineral powder.
  • the organic material consists of a polymerizable material based on acrylic material, polyurethane, epoxides or silicone.
  • the mineral powder is preferably finely divided, and with a particle size of less than 40 ⁇ m.
  • the above particle size values allow better homogeneity of the final material.
  • the mineral powder can consist of mica powder, which has the advantage of not generating an absorption phenomenon of the products constituting the resin, a phenomenon always detrimental to the mechanical and ultimately electrical qualities of the insulating material.
  • the mica powder can however be replaced by glass beads of the same particle size.
  • Coupling agents can also be added to the organic resin in order to allow a perfect bond between the latter and the mineral fillers.
  • the coupling agents can be constituted by silanes, carbon derivatives of silicon, and ensure a better bond between the grains of the mineral powder and the resin.
  • the resin can advantageously be prepared, but not necessary, from a solvent constituted for example by aromatic hydrocarbons.
  • a solvent constituted for example by aromatic hydrocarbons.
  • the resin a polyurethane resin for example, is first dissolved in the solvent.
  • the coupling agents mentioned above are added to the solution.
  • the mineral filler is added to the assembly, the resin being ready for application to the support.
  • an amount by weight of solvent an amount of polyurethane resin between 80 and 30% of the weight of the solvent will be dissolved in the solvent and an additional amount of mineral powder such as mica, between 20 and 70% by weight of solvent will then be added.
  • the loaded resin is ready to be deposited on the faces of the support.
  • the resin previously prepared is introduced into the coating assembly referenced E so as to forming a bath into which the support constituent strip is introduced and moved.
  • the deposition of the charged resin is thus carried out by coating. This deposition can moreover without disadvantage be carried out more commonly by projection or by means of a doctor blade.
  • the strip on which the charged resin has been deposited by crossing the bath is then introduced into a die referenced F.
  • the die F makes it possible to determine the thickness of charged resin which will be actually kept on each side of the tape. By way of nonlimiting example, this thickness for each face can be taken equal to 50 ⁇ m and advantageously between 20 JJ.m and 200 ⁇ m.
  • the final thickness of the layer of charged resin applied to the faces of the strip determines the mechanical properties of the final material.
  • the support being generally, in particular when it is made of polyester, more rigid than the charged resin, the thickness of the layers of charged resin applied to the faces of the support will be chosen to be small, that is to say in the vicinity of the aforementioned value of 20 ⁇ m, when the final material is intended for applications in which a more rigid insulation is sought.
  • the thickness of the layers of charged resin applied to the faces of the support will be chosen in the vicinity of the upper limit value of 200 ⁇ m, when the final material is intended for applications in which a more flexible insulator is sought.
  • the polymerization assembly P is for example constituted by a modular assembly, each of the modules being capable of carrying and maintaining a determined portion of strip at a determined temperature for a determined time, depending on the speed of travel of the strip.
  • the first module makes it possible to bring the strip coated with resin to a temperature of 100 ° C.
  • Successive assemblies make it possible, in successive temperature stages of the order of 20 ° C., to bring the strip to the level of a final module at a temperature of the order of 200 ° C.
  • the solvent present in the coating layers when this solvent has been used, is removed by evaporation at the first polymerization module.
  • the strip provided with its loaded resin coating is then gradually brought in increments of 20 ° C, to the temperature of 180 ° C at which the actual polymerization is started, the latter being completed in the final module at the temperature of 200 ° vs.
  • the final material can be conditioned after cooling in the form of a storage roller, referenced ST in FIG. 1. The gradual rise in temperature of the polymerization phase makes it possible to avoid the phenomenon of bubbling, that is to say creation of gas bubbles within the insulating material.
  • the resin thermoset which at the level of the final material resists the impregnation varnishes used in the construction of motors or electro-mechanical machines, and moreover resists the heating thereof during their operation.
  • the holding time of the strip coated with a layer of resin with a thickness of 50 ⁇ m per face at the temperature of 200 ° C. at the level of the last polymerization module is of the order of 1 min. for a tape running speed of 5 m / min.
  • the material produced in the form of a film comprises a central core 1 or flexible support.
  • the material can also be produced in the form of sheets, that is to say a strip of sufficient width, the strip then being cut into sheets or pieces of various shapes.
  • a coating of the central core 1, is formed by an upper 2 and lower 3 layer of resin constituted by the organic material or materials loaded with a mineral powder as described above.
  • the central core 1 is constituted by a plastic material such as a polyester (polyethylene terephthalate) or by a glass fabric, an aromatic polyamide or a fluoropolymer material.
  • the upper 2 and lower 3 layers consist of an organic material such as a polymerizable material based on acrylic material, polyurethane, epoxides or silicone.
  • the upper and lower layers 2 and 3 comprising inclusions formed by the mineral powder, which consists of mica powder or glass beads with a particle size of less than 40 J.Lm.
  • the inclusions 20 of the upper layer 2 or the inclusions 30 of the lower layer 3 are surrounded by a thin layer formed by the bonding agent ensuring the coupling between the organic material and the mineral powder.
  • the thin layer 21 is a mono-molecular or substantially mono-molecular layer, formed over the entire surface of the grain, forming inclusion, and lining it. The thin layer formed at each inclusion by the bonding agent prevents foreign chemical substances from being able to enter the interstices which may still exist between the grains of the mineral powder and the resin.
  • the upper and lower layers 2 and 3 thus make it possible to protect the support constituted for example by a polyester film from the heat attack and thus make it possible to increase the lifetime of the support and of the final material.
  • an aging test known as the curved electrode test was carried out under the conditions specified in the note published by the International Electro-technical Committee, under reference No. 370 year 1971.
  • This test carried out on a final material comprising a support of the polyester film type made it possible to note a temperature resistance clearly above 145 ° C. of the final material over a continuous period of 20,000 hours, while under similar test conditions , the temperature resistance of bare polyester does not exceed 130 ° C.

Abstract

1. Process for the manufacture of a flexible electrical insulating material, said process consisting of applying to a flexible support a resin charged with mineral charges made up of a finely divided mineral powder of granulometry less than 40 mu m, with the object of improving the thermal and dielectrical properties of the latter, the resin prior to application being formed by a complex obtained by mixing an organic bonding material and the mineral powder, and applying the resin to the support by means of induction, the entity constituted by the support coated in resin, following application of the resin to the support, being hot-polymerised, said hot polymerisation being carried out at stages of temperature between 100 degrees C and 200 degrees C.

Description

La présente invention est relative à un matériau isolant électrique souple et à son procédé de fabrication, le matériau précité étant plus spécialement adapté de par ses performances à une utilisation dans le domaine de la construction des machines électriques et en électro-mécanique en général.The present invention relates to a flexible electrical insulating material and to its manufacturing process, the aforementioned material being more specially adapted by its performance to use in the field of construction of electrical machines and in electro-mechanics in general.

Dans le domaine technique de la construction électrique ou électro-mécanique on utilise actuellement des isolants souples destinés à assurer l'isolation de conducteurs ou groupes de conducteurs insérés dans les encoches des pièces polaires des machines tournantes notamment, ces isolants souples en forme de feuilles ou de rubans de dimensions appropriées étant par exemple destinés à assurer la séparation et l'isolation de groupes de conducteurs constituant chacun une phase de l'enroulement du moteur ou de la machine tournante.In the technical field of electrical or electro-mechanical construction, flexible insulators are currently used to insulate conductors or groups of conductors inserted in the notches of the pole pieces of rotating machines, in particular these flexible insulators in the form of sheets or ribbons of appropriate dimensions being for example intended to ensure the separation and the insulation of groups of conductors each constituting a phase of the winding of the motor or of the rotary machine.

Parmi les isolants souples utilisés à ce jour, on connaît des produits dits complexes comportant un support, généralement un film polyester, sur les faces duquel sont déposés des feutres de polyester, des papiers calandrés ou non tels des polyamides aromatiques, ou des mats tels que des mats de verre ou tissu de verre le tout étant éventuellement imprégné d'une résine par vernissage.Among the flexible insulators used to date, so-called complex products are known comprising a support, generally a polyester film, on the faces of which are deposited polyester felts, calendered or non-calendered papers such as aromatic polyamides, or mats such as glass mats or glass fabric, the whole being optionally impregnated with a resin by varnishing.

D'autres matériaux souples, isolants, sont constitués à partir d'un support, généralement un film de polyester, verni au moyen d'une résine organique, et sont surtout utilisés pour permettre en fait la thermosoudabilité du support.Other flexible, insulating materials are made from a support, generally a polyester film, varnished by means of an organic resin, and are especially used to allow the heat-weldability of the support.

Des matériaux de la première catégorie qui sont normalement disponibles dans le commerce ont fait notamment l'objet d'une description, relativement à leur procédé de mise en œuvre, dans le brevet d'invention FR-A-881 120 déposé le 6 décembre 1961.Materials of the first category which are normally commercially available have in particular been described, relative to their method of implementation, in patent invention FR-A-881,120 filed on December 6, 1961 .

Certains des matériaux précédemment décrits présentent normalement les inconvénients suivants :

  • - mauvaise résistance à de nombreux agents chimiques ou aux solvants des vernis d'imprégnation utilisés lors de l'imprégnation des circuits électriques des moteurs en raison de clivages des complexes obtenus par contre-collage notamment ou de la dissolution de la résine de vernissage,
  • - absorption d'humidité des couches contrecollées parfois bien supérieure à celle du support,
  • - propriétés diélectriques de surface de ces matériaux parfois médiocres conduisant notamment, à des performances modestes en ce qui concerne le risque de contournement de matériau isolant dans des conditions sévères d'utilisation,
  • - faible pouvoir d'évacuation des calories par ce type de matériau.
Some of the materials described above normally have the following drawbacks:
  • poor resistance to many chemical agents or to the solvents of the impregnation varnishes used during the impregnation of the electrical circuits of the motors due to cleavage of the complexes obtained by lamination in particular or of the dissolution of the varnishing resin,
  • - moisture absorption of the laminated layers sometimes much higher than that of the support,
  • - dielectric surface properties of these sometimes mediocre materials, leading in particular to modest performance with regard to the risk of circumvention of insulating material under severe conditions of use,
  • - low heat dissipation power by this type of material.

D'autres matériaux isolants électriques, ainsi que décrit dans la demande de brevet EP-A-0 041 824 ont été obtenus par la mise en oeuvre de particules isolantes de faibles diamètre de l'ordre de 50 ¡.¡.m et d'un vernis, lesquels sont appliqués par pulvérisation simultanément ou successivement, un mélange de particules isolantes et de vernis pouvant également être pulvérisé, sur l'élément à isoler ou destiné à constituer le matériau isolant.Other electrical insulating materials, as described in patent application EP-A-0 041 824, have been obtained by the use of insulating particles of small diameter of the order of 50 ¡.¡.m and a varnish, which are applied by spraying simultaneously or successively, a mixture of insulating particles and varnish which can also be sprayed, on the element to be insulated or intended to constitute the insulating material.

Cette technique bien que paraissant particulièrement adaptée à l'isolation de conducteurs électriques nus déjà mis en forme, par pulvérisation des constituants du revêtement ou de leur mélange ne permet cependant pas d'obtenir des couches de revêtement isolant de grande homogénéité ni propriétés de rigidité diélectrique correspondantes dans le cas du dépôt par pulvérisation sur un support destiné à constituer matériau isolant, en raison, notamment, de la réalisation de la polymérisation de la résine à partir du seul préchauffage de ce support.This technique, although it appears to be particularly suitable for insulating naked electrical conductors already shaped, by spraying the constituents of the coating or their mixture, does not however make it possible to obtain layers of insulating coating of high homogeneity or dielectric strength properties. corresponding in the case of spray deposition on a support intended to constitute insulating material, due, in particular, to the achievement of the polymerization of the resin from the only preheating of this support.

La présente invention permet de remédier aux inconvénients précités par la mise en oeuvre d'un procédé de fabrication d'un matériau et d'un matériau dont les performances sont sensiblement améliorées.The present invention overcomes the aforementioned drawbacks by implementing a method of manufacturing a material and a material whose performance is significantly improved.

Le procédé de fabrication d'un matériau isolant électrique souple consiste à déposer sur un support souple une résine chargée avec des charges minérales, constituées par une poudre minérale finement divisée de granulométrie inférieure à 40 µm en vue d'améliorer les propriétés thermiques et diélectriques de ce dernier, la résine préalablement au dépôt, étant formée par un complexe obtenu par mélange d'un matériau liant organique et de la poudre minérale et le dépôt de la résine sur le support étant effectué par enduction, l'ensemble constitué par le support revêtu de résine, suite au dépôt de la résine sur le support, étant polymérisé à chaud, ladite polymérisation à chaud étant effectuée progressivement par paliers de température compris entre 100 OC et 200°C.The process for manufacturing a flexible electrical insulating material consists in depositing on a flexible support a resin loaded with mineral fillers, constituted by a finely divided mineral powder of particle size less than 40 μm in order to improve the thermal and dielectric properties of the latter, the resin prior to deposition, being formed by a complex obtained by mixing an organic binder material and mineral powder and the deposition of the resin on the support being effected by coating, the assembly consisting of the coated support resin, following the deposition of the resin on the support, being polymerized hot melt said polymerization being performed by progressively temperature stages between 100 ° C and 200 ° C.

Le matériau isolant électrique souple ainsi obtenu comporte une âme centrale, ou support souple, constituée par un matériau plastique, et un revêtement de l'âme centrale formé par une couche de résine constituée d'un matériau organique chargé avec une poudre minérale dans des proportions déterminées, ledit revêtement comportant en outre un agent de liaison ou de couplage entre le matériau organique et la poudre minérale, la poudre minérale étant finement divisée et de granulométrie inférieure à 40 µm.The flexible electrical insulating material thus obtained comprises a central core, or flexible support, constituted by a plastic material, and a coating of the central core formed by a resin layer consisting of an organic material loaded with a mineral powder in proportions determined, said coating further comprising a bonding or coupling agent between the organic material and the mineral powder, the mineral powder being finely divided and of particle size less than 40 μm.

L'invention trouve application dans le domaine de la construction électrique ou électro-mécanique, mais également dans le domaine de la construction d'appareils électroniques, notamment en électronique industrielle.The invention finds application in the field of electrical or electro-mechanical construction, but also in the field of construction of electronic devices, in particular in industrial electronics.

L'invention sera mieux comprise à la lecture de la description et à l'observation des dessins ci-après dans lesquels :

  • - la figure 1 représente un agencement général illustratif des différentes phases du procédé de l'invention,
  • - la figure 2 représente respectivement en 2a, 2b une vue en coupe d'un film de matériau isolant électrique de l'invention et une vue agrandie d'une partie de cette coupe.
The invention will be better understood on reading the description and on observing the drawings below in which:
  • - Figure 1 shows a general arrangement illustrating the different phases of the process the invention,
  • - Figure 2 shows respectively in 2a, 2b a sectional view of a film of electrical insulating material of the invention and an enlarged view of part of this section.

Le procédé de fabrication d'un matériau isolant électrique souple de l'invention sera tout d'abord décrit au moyen de la figure 1. Ce procédé consiste à déposer sur un support souple une résine chargée avec des charges minérales en vue d'améliorer les propriétés thermiques et diélectriques de ce dernier. Sur la figure 1, le procédé, de manière non limitative, est représenté sous la forme d'un procédé de fabrication en continu. Le support souple S constitué sous forme d'un rouleau d'alimentation A et formé selon une bande est engagé de manière classique dans un ensemble d'entraînement constitué par des rouleaux d'entraînement RE et des rouleaux de guidage RG. Tout au long du trajet de la bande constituant le support, différents postes sont prévus permettant la réalisation des différentes étapes du procédé, ci-après explicitées.The process for manufacturing a flexible electrical insulating material of the invention will firstly be described by means of FIG. 1. This process consists in depositing on a flexible support a resin loaded with mineral fillers in order to improve the thermal and dielectric properties of the latter. In Figure 1, the process, without limitation, is shown in the form of a continuous manufacturing process. The flexible support S formed in the form of a feed roller A and formed in a strip is conventionally engaged in a drive assembly constituted by drive rollers RE and guide rollers RG. Throughout the path of the strip constituting the support, various stations are provided for carrying out the various stages of the method, hereinafter explained.

Afin d'assurer une adhérence parfaite de la résine chargée sur le support S, le support est, préalablement au dépôt de la résine, traité de manière à rendre les faces du support suffisamment rugueuses. Sur la figure 1, ce traitement est noté T. Ce traitement peut être soit par exemple un traitement mécanique, soit un traitement électrique. Un traitement électrique sera cependant préféré à un traitement mécanique. Dans le cas d'un traitement électrique, le traitement effectué est un traitement du type traitement à effet CORONA. La tension appliquée sur les électrodes de traitement par effet CORONA, est déterminée en fonction de l'épaisseur du support S ou bande, et en fonction de la vitesse de défilement de celle-ci. De manière avantageuse, l'épaisseur du support est déterminée en fonction de la nature de celui-ci. Dans le cas d'un support constitué par un matériau plastique tel qu'un polyester (polytérephtalate d'étylène glycol), l'épaisseur e du support peut être comprise entre 23 ¡.¡.m et 350 wm.In order to ensure perfect adhesion of the loaded resin to the support S, the support is, before depositing the resin, treated so as to make the faces of the support sufficiently rough. In FIG. 1, this treatment is noted T. This treatment can be either for example a mechanical treatment, or an electrical treatment. Electrical treatment will however be preferred to mechanical treatment. In the case of an electrical treatment, the treatment carried out is a treatment of the CORONA effect treatment type. The voltage applied to the CORONA effect treatment electrodes is determined as a function of the thickness of the support S or strip, and as a function of the speed of travel thereof. Advantageously, the thickness of the support is determined as a function of the nature of the latter. In the case of a support constituted by a plastic material such as a polyester (polyethylene terephthalate), the thickness e of the support can be between 23 ¡.¡.m and 350 wm.

A titre d'exemple non limitatif, d'autres matériaux peuvent être utilisés pour constituer le support. Ainsi, celui-ci peut être constitué par un tissu de verre d'épaisseur e comprise entre 5/100 de mm et 35/100 de mm, la réalisation d'un support en tissu de verre permettant une amélioration des propriétés mécaniques du matériau final, en ce qui concerne la résistance au vieillissement.By way of nonlimiting example, other materials can be used to constitute the support. Thus, it can be constituted by a glass fabric of thickness e between 5/100 mm and 35/100 mm, the production of a glass fabric support allowing an improvement of the mechanical properties of the final material. , with regard to resistance to aging.

Le support peut également être constitué par un papier polyamide aromatique normalement disponible dans le commerce. Dans ce cas, l'épaisseur du papier peut être choisie entre 5/100 de mm et 13/100 de mm par exemple.The support can also consist of an aromatic polyamide paper normally available on the market. In this case, the thickness of the paper can be chosen between 5/100 mm and 13/100 mm for example.

Le support S peut également être constitué par un matériau du type film de polymère fluoré commercialisé par la Société HOECHST sous la référence L 601. L'épaisseur du support dans ce dernier cas, peut être prise entre des limites variant de 50 4m à 100 µm. Ce dernier matériau, en raison de sa meilleure tenue en température, 170 °C en continu, pourra être choisi pour la réalisation d'un matériau isolant souple à tenue en température améliorée.The support S can also consist of a material of the fluoropolymer film type sold by the company HOECHST under the reference L 601. The thickness of the support in the latter case can be taken between limits varying from 50 4 m to 100 µm. The latter material, because of its better temperature resistance, 170 ° C continuously, may be chosen for the production of a flexible insulating material with improved temperature resistance.

Après le traitement mécanique ou électrique précité, la bande est dirigée vers un ensemble d'enduction noté E permettant d'effectuer le dépôt de la résine sur le support. Préalablement au dépôt proprement dit, la résine est formée par un complexe obtenu par mélange d'un matériau liant organique et d'une poudre minérale.After the aforementioned mechanical or electrical treatment, the strip is directed towards a coating unit denoted E making it possible to deposit the resin on the support. Prior to actual deposition, the resin is formed by a complex obtained by mixing an organic binder material and a mineral powder.

A titre d'exemple non limitatif, le matériau organique est constitué par un matériau polymérisable à base de matériau acrylique, de polyuréthane, d'époxydes ou de silicone.By way of nonlimiting example, the organic material consists of a polymerizable material based on acrylic material, polyurethane, epoxides or silicone.

La poudre minérale est de préférence finement divisée, et de granulométrie inférieure à 40 ¡.¡.m. Les valeurs de granulométrie précitée permettent une meilleure homogénéité du matériau final. La poudre minérale peut être constituée par de la poudre de mica laquelle présente l'avantage de ne pas engendrer de phénomène d'absorption des produits constitutifs de la résine, phénomène toujours préjudiciable aux qualités mécaniques et en définitive électriques du matériau isolant. La poudre de mica peut cependant être remplacée par des billes de verre de même granulométrie.The mineral powder is preferably finely divided, and with a particle size of less than 40 µm. The above particle size values allow better homogeneity of the final material. The mineral powder can consist of mica powder, which has the advantage of not generating an absorption phenomenon of the products constituting the resin, a phenomenon always detrimental to the mechanical and ultimately electrical qualities of the insulating material. The mica powder can however be replaced by glass beads of the same particle size.

Des agents de couplage peuvent en outre être ajoutés à la résine organique afin de permettre une parfaite liaison entre celle-ci et les charges minérales. Les agents de couplage peuvent être constitués par des silanes, dérivés carbonés du silicium, et assurent une meilleure liaison entre les grains de la poudre minérale et la résine.Coupling agents can also be added to the organic resin in order to allow a perfect bond between the latter and the mineral fillers. The coupling agents can be constituted by silanes, carbon derivatives of silicon, and ensure a better bond between the grains of the mineral powder and the resin.

La résine peut être préparée avantageusement mais de manière non nécessaire, à partir d'un solvant constitué par exemple par des hydrocarbures aromatiques. La résine, une résine polyuréthane par exemple, est tout d'abord dissoute dans le solvant. Les agents de couplage précédemment cités sont ajoutés à la solution. Enfin, la charge minérale est ajoutée à l'ensemble, la résine étant prête pour application sur le support. A titre d'exemple non limitatif, pour une quantité en poids de solvant, une quantité de résine polyuréthane comprise entre 80 et 30 % du poids du solvant sera dissoute dans le solvant et une quantité complémentaire de poudre minérale telle que le mica, comprise entre 20 et 70 % en poids de solvant, sera ensuite ajoutée.The resin can advantageously be prepared, but not necessary, from a solvent constituted for example by aromatic hydrocarbons. The resin, a polyurethane resin for example, is first dissolved in the solvent. The coupling agents mentioned above are added to the solution. Finally, the mineral filler is added to the assembly, the resin being ready for application to the support. By way of nonlimiting example, for an amount by weight of solvent, an amount of polyurethane resin between 80 and 30% of the weight of the solvent will be dissolved in the solvent and an additional amount of mineral powder such as mica, between 20 and 70% by weight of solvent will then be added.

On a ainsi constaté au cours des essais de fabrication de matériaux isolants de l'invention que le choix des pourcentages en poids de résine et de poudre minérale permettait d'influer sur les propriétés mécaniques et thermiques du matériau final obtenu. Ainsi, l'augmentation en pourcentage de poudre minérale, telle que le mica, a pour effet d'augmenter la rigidité de l'ensemble. La diminution du pourcentage de poudre minérale a au contraire pour effet d'augmenter la souplesse du matériau final.It was thus found during the tests for manufacturing insulating materials of the invention that the choice of the percentages by weight of resin and mineral powder made it possible to influence the mechanical and thermal properties of the final material obtained. Thus, the increase in percentage of mineral powder, such as mica, has the effect of increasing the rigidity of the whole. On the contrary, the decrease in the percentage of mineral powder has the effect of increasing the flexibility of the final material.

Après les préparatifs précités, la résine chargée est prête à être déposée sur les faces du support.After the aforementioned preparations, the loaded resin is ready to be deposited on the faces of the support.

Ainsi que représenté en figure 1, la résine préalablement préparée, est introduite dans l'ensemble d'enduction référencé E de manière à former un bain dans lequel la bande constituant support est introduite et déplacée. Le dépôt de la résine chargée est ainsi effectué par enduction. Ce dépôt peut en outre sans inconvénient être effectué de manière plus courante par projection ou au moyen d'une râcle. Dans le mode de réalisation du procédé représenté en figure 1, la bande sur laquelle la résine chargée a été déposée par traversée du bain, est ensuite introduite dans une filière référencée F. La filière F permet de déterminer l'épaisseur de résine chargée qui sera effectivement conservée sur chaque face de la bande. A titre d'exemple non limitatif, cette épaisseur pour chaque face, peut être prise égale à 50 µm et avantageusement comprise entre 20 JJ.m et 200 µm.As shown in FIG. 1, the resin previously prepared is introduced into the coating assembly referenced E so as to forming a bath into which the support constituent strip is introduced and moved. The deposition of the charged resin is thus carried out by coating. This deposition can moreover without disadvantage be carried out more commonly by projection or by means of a doctor blade. In the embodiment of the method represented in FIG. 1, the strip on which the charged resin has been deposited by crossing the bath, is then introduced into a die referenced F. The die F makes it possible to determine the thickness of charged resin which will be actually kept on each side of the tape. By way of nonlimiting example, this thickness for each face can be taken equal to 50 μm and advantageously between 20 JJ.m and 200 μm.

On a également constaté, que l'épaisseur finale de la couche de résine chargée appliquée sur les faces de la bande, détermine les propriétés mécaniques du matériau final. Le support étant de manière générale, en particulier lorsqu'il est constitué par du polyester, plus rigide que la résine chargée, l'épaisseur des couches de résine chargée appliquée sur les faces du support sera choisie faible, c'est-à-dire au voisinage de la valeur de 20 µm précitée, lorsque le matériau final sera destiné des applications dans lesquelles un isolant plus rigide est recherché. Au contraire, l'épaisseur des couches de résine chargée appliquée sur les faces du support sera choisie au voisinage de la valeur limite supérieure de 200 µm, lorsque le matériau final sera destiné à des applications dans lesquelles un isolant plus souple est recherché.It has also been found that the final thickness of the layer of charged resin applied to the faces of the strip determines the mechanical properties of the final material. The support being generally, in particular when it is made of polyester, more rigid than the charged resin, the thickness of the layers of charged resin applied to the faces of the support will be chosen to be small, that is to say in the vicinity of the aforementioned value of 20 μm, when the final material is intended for applications in which a more rigid insulation is sought. On the contrary, the thickness of the layers of charged resin applied to the faces of the support will be chosen in the vicinity of the upper limit value of 200 μm, when the final material is intended for applications in which a more flexible insulator is sought.

Le support S muni de son revêtement de résine chargée, d'épaisseur appropriée sur chacune de ses faces, est ensuite polymérisé à chaud dans un ensemble de polymérisation noté P sur la figure 1. L'ensemble de polymérisation P est par exemple constitué par un ensemble modulaire, chacun des modules étant susceptible de porter et de maintenir une portion déterminée de bande à une température déterminée pendant un temps déterminé, fonction de la vitesse de défilement de la bande. A titre d'exemple de réalisation, le premier module permet de porter la bande revêtue de résine à une température de 100 °C. Des ensembles successifs permettent, par paliers successifs de température de l'ordre de 20 °C, de porter la bande au niveau d'un module final à une température de l'ordre de 200 °C. Au cours de la polymérisation, le solvant présent dans les couches de revêtement, lorsque ce solvant a été utilisé, est éliminé par évaporation au niveau du premier module de polymérisation. La bande munie de son revêtement de résine chargée est ensuite portée progressivement par palier de 20 °C, à la température de 180 °C à laquelle la polymérisation proprement dite est commencée, cette dernière étant achevée dans le module final à la température de 200 °C. Le matériau final peut être après refroidissement conditionné sous forme de rouleau de stockage, référencé ST sur la figure 1. L'élévation progressive de température de la phase de polymérisation, permet d'éviter le phénomène de bullage, c'est-à-dire de création de bulles de gaz au sein même du matériau isolant. La polymérisation proprement dite rend la résine thermodurcie, laquelle au niveau du matériau final résiste aux vernis d'imprégnation utilisés dans la construction des moteurs ou machines électro-mécaniques, et résiste en outre à l'échauffement de ceux-ci pendant leur fonctionnement. A titre d'exemple non limitatif, le temps de maintien de la bande revêtue de couche de résine d'épaisseur 50 µm par face à la température de 200 °C au niveau du dernier module de polymérisation, est de l'ordre de 1 mn pour une vitesse de défilement de bande de 5 m/mn.The support S provided with its coating of charged resin, of appropriate thickness on each of its faces, is then hot polymerized in a polymerization assembly denoted P in FIG. 1. The polymerization assembly P is for example constituted by a modular assembly, each of the modules being capable of carrying and maintaining a determined portion of strip at a determined temperature for a determined time, depending on the speed of travel of the strip. As an exemplary embodiment, the first module makes it possible to bring the strip coated with resin to a temperature of 100 ° C. Successive assemblies make it possible, in successive temperature stages of the order of 20 ° C., to bring the strip to the level of a final module at a temperature of the order of 200 ° C. During the polymerization, the solvent present in the coating layers, when this solvent has been used, is removed by evaporation at the first polymerization module. The strip provided with its loaded resin coating is then gradually brought in increments of 20 ° C, to the temperature of 180 ° C at which the actual polymerization is started, the latter being completed in the final module at the temperature of 200 ° vs. The final material can be conditioned after cooling in the form of a storage roller, referenced ST in FIG. 1. The gradual rise in temperature of the polymerization phase makes it possible to avoid the phenomenon of bubbling, that is to say creation of gas bubbles within the insulating material. The actual polymerization makes the resin thermoset, which at the level of the final material resists the impregnation varnishes used in the construction of motors or electro-mechanical machines, and moreover resists the heating thereof during their operation. By way of nonlimiting example, the holding time of the strip coated with a layer of resin with a thickness of 50 μm per face at the temperature of 200 ° C. at the level of the last polymerization module, is of the order of 1 min. for a tape running speed of 5 m / min.

Le matériau isolant électrique souple de l'invention sera maintenant décrit au moyen des figures 2a et 2b. Ainsi que représenté en figure 2a, le matériau réalisé sous forme de film comporte une âme centrale 1 ou support souple. Bien entendu, le matériau peut également être produit sous forme de feuilles c'est-à-dire de bande de largeur suffisante, la bande étant ensuite débitée en feuilles ou en pièces de formes diverses. Un revêtement de l'âme centrale 1, est formé par une couche supérieure 2 et inférieure 3 de résine constituée par le ou les matériaux organiques chargés avec une poudre minérale tel que décrit précédemment. L'âme centrale 1 est constituée par un matériau plastique tel qu'un polyester (polytérephtalate d'éthylène glycol) ou par un tissu de verre, un polyamide aromatique ou un matériau polymère fluoré. Les couches supérieure 2 et inférieure 3 sont constituées par un matériau organique tel qu'un matériau polymérisable à base de matériau acrylique, de polyuréthane, d'époxydes ou de silicone. Les couches supérieure et inférieure 2 et 3 comportant des inclusions formées par la poudre minérale, laquelle est constituée par de la poudre de mica ou des billes de verre de granulométrie inférieure à 40 J.Lm. Ainsi qu'il apparaît en outre en figure 2b, les inclusions 20 de la couche supérieure 2 ou les inclusions 30 de la couche inférieure 3 sont entourées par une couche mince formée par l'agent de liaison assurant le couplage entre le matériau organique et la poudre minérale. La couche mince 21 est une couche mono-moléculaire ou sensiblement mono-moléculaire, formée sur toute la surface du grain, formant inclusion, et tapissant celui-ci. La couche mince formée au niveau de chaque inclusion par l'agent de liaison, empêche que des substances chimiques étrangères puissent s'introduire dans les interstices pouvant toujours exister entre les grains de la poudre minérale et la résine.The flexible electrical insulating material of the invention will now be described by means of FIGS. 2a and 2b. As shown in FIG. 2a, the material produced in the form of a film comprises a central core 1 or flexible support. Of course, the material can also be produced in the form of sheets, that is to say a strip of sufficient width, the strip then being cut into sheets or pieces of various shapes. A coating of the central core 1, is formed by an upper 2 and lower 3 layer of resin constituted by the organic material or materials loaded with a mineral powder as described above. The central core 1 is constituted by a plastic material such as a polyester (polyethylene terephthalate) or by a glass fabric, an aromatic polyamide or a fluoropolymer material. The upper 2 and lower 3 layers consist of an organic material such as a polymerizable material based on acrylic material, polyurethane, epoxides or silicone. The upper and lower layers 2 and 3 comprising inclusions formed by the mineral powder, which consists of mica powder or glass beads with a particle size of less than 40 J.Lm. As it also appears in FIG. 2b, the inclusions 20 of the upper layer 2 or the inclusions 30 of the lower layer 3 are surrounded by a thin layer formed by the bonding agent ensuring the coupling between the organic material and the mineral powder. The thin layer 21 is a mono-molecular or substantially mono-molecular layer, formed over the entire surface of the grain, forming inclusion, and lining it. The thin layer formed at each inclusion by the bonding agent prevents foreign chemical substances from being able to enter the interstices which may still exist between the grains of the mineral powder and the resin.

Les couches supérieure et inférieure 2 et 3 permettent ainsi de protéger le support constitué par exemple par un film polyester de l'atteinte de la chaleur et permettent ainsi d'augmenter la durée de vie du support et du matériau final. A titre d'exemple, un test de vieillissement connu sous le nom de test de l'électrode courbe a été effectué dans les conditions précisées par la note éditée par le Comité Electro-technique International, sous la référence n° 370 année 1971. Ce test effectué sur un matériau final comportant un support du type film polyester a permis de constater une tenue en température nettement supérieure à 145 °C du matériau final sur une durée, en continu, de 20 000 heures, alors que dans des conditions analogues d'essai, la tenue en température du polyester nu ne dépasse pas 130°C.The upper and lower layers 2 and 3 thus make it possible to protect the support constituted for example by a polyester film from the heat attack and thus make it possible to increase the lifetime of the support and of the final material. By way of example, an aging test known as the curved electrode test was carried out under the conditions specified in the note published by the International Electro-technical Committee, under reference No. 370 year 1971. This test carried out on a final material comprising a support of the polyester film type made it possible to note a temperature resistance clearly above 145 ° C. of the final material over a continuous period of 20,000 hours, while under similar test conditions , the temperature resistance of bare polyester does not exceed 130 ° C.

En outre, des divers types de matériaux réalisés au moyen du procédé de l'invention, permettent une meilleure évacuation des calories, en raison de la présence dans la résine des charges minérales.In addition, various types of material produced by the process of the invention allow better heat removal, due to the presence in the resin of mineral fillers.

Il a en outre été observé une amélioration sensible des propriétés diélectriques de surface du matériau final de l'invention. Des échantillons des différents matériaux réalisés selon le procédé précédemment décrit, ont été soumis à un test de résistance au cheminement électrique, c'est-à-dire à un test de contournement de l'isolant, constitué en feuilles, par des lignes de courant. Toutes choses égales par ailleurs, il a été observé, par rapport aux matériaux isolants souples de la technique antérieure obtenus par contre-collage, que les tensions électriques nécessaires pour provoquer le contournement étaient nettement supérieures aux tensions provoquant, dans les mêmes conditions, le contournement des matériaux de l'art antérieur. Cette amélioration des propriétés diélectriques de surface du matériau isolant souple de l'invention, est due à la présence des charges minérales dans la résine, lesquelles provoquent une augmentation notable de la résistance au cheminement électrique.In addition, a significant improvement in the dielectric surface properties of the final material of the invention has been observed. Samples of the various materials produced according to the method described above, were subjected to a test of resistance to electrical tracking, that is to say a test of circumvention of the insulator, constituted in sheets, by current lines. . All other things being equal, it has been observed, with respect to the flexible insulating materials of the prior art obtained by lamination, that the electrical voltages necessary to cause the bypass were significantly higher than the voltages causing, in the same conditions, the bypass. materials of the prior art. This improvement in the dielectric surface properties of the flexible insulating material of the invention is due to the presence of mineral charges in the resin, which cause a significant increase in the resistance to electrical tracking.

Claims (9)

1. Process for the manufacture of a flexible electrical insulating material, said process consisting of applying to. a flexible support a resin charged with mineral charges made up of a finely divided mineral powder of granulometry less than 40 µm, with the object of improving the thermal and dielectrical properties of the latter, the resin prior to application being formed by a complex obtained by mixing an organic bonding material and the mineral powder, and applying the resin to the support by means of induction, the entity constituted by the support coated in resin, following application of the resin to the support, being hot-polymerised, said hot polymerisation being carried out at stages of temperature between 100°C and 200 °C.
2. Process according to Claim 1, wherein the support is treated electrically prior to application of the resin.
3. Process according to Claim 1, wherein the support is treated mechanically prior to application of the resin.
4. Process according to one of Claims 1 to 3, characterised in that coupling agents are added to the organic resin to permit a perfect bond between the resin and the mineral charges.
5. Flexible electrical insulating material con- prising :
- a central core (1) or flexible support, constituted by a plastic material, a glass cloth or an aromatic polyamide paper.
- a coating (2, 3) of the central core, formed by a layer of resin comprising an organic material charged with a mineral powder in fixed proportions, said coating also comprising a bonding or
coupling agent between the organic material and the mineral powder, the mineral powder being finely divided and of granulometry less than 40 µm.
6. Flexible insulating material according to Claim 5, wherein the central core (1) is constituted by a plastic material such as a polyester (ethylene glycol polyterephthalate).
7. Flexible insulating material according to one of Claims 5 of 6, wherein the organic material is constituted by a polymerisable material with a base of acrylic material, polyurethane, epoxys or silicon.
8. Flexible insulating material according to one of Claims 5 to 7, wherein the mineral powder is a mica powder.
EP86400157A 1985-01-29 1986-01-27 Flexible electrical insulation material and method of manufacturing it Expired EP0192523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86400157T ATE35094T1 (en) 1985-01-29 1986-01-27 FLEXIBLE ELECTRICAL INSULATION MATERIAL AND METHOD OF PRODUCTION THEREOF.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8501199A FR2576545B1 (en) 1985-01-29 1985-01-29 METHOD FOR MANUFACTURING FLEXIBLE ELECTRICAL INSULATING MATERIAL AND FLEXIBLE ELECTRICAL INSULATING MATERIAL OBTAINED BY THIS PROCESS
FR8501199 1985-01-29

Publications (2)

Publication Number Publication Date
EP0192523A1 EP0192523A1 (en) 1986-08-27
EP0192523B1 true EP0192523B1 (en) 1988-06-15

Family

ID=9315705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400157A Expired EP0192523B1 (en) 1985-01-29 1986-01-27 Flexible electrical insulation material and method of manufacturing it

Country Status (5)

Country Link
EP (1) EP0192523B1 (en)
AT (1) ATE35094T1 (en)
DE (1) DE3660300D1 (en)
ES (2) ES8706287A1 (en)
FR (1) FR2576545B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4244298C2 (en) * 1992-12-28 2003-02-27 Alstom Electrical tape and process for its manufacture
US6242825B1 (en) * 1998-11-25 2001-06-05 Hitachi, Ltd. Electric rotating machine with reduced thickness and volume of insulation
JP2002030212A (en) * 2000-06-29 2002-01-31 Three M Innovative Properties Co Thermally conductive sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041824A1 (en) * 1980-06-11 1981-12-16 Associated Electrical Industries Limited A method of manufacturing electrical insulation

Also Published As

Publication number Publication date
FR2576545A1 (en) 1986-08-01
EP0192523A1 (en) 1986-08-27
ES551339A0 (en) 1987-06-16
DE3660300D1 (en) 1988-07-21
ES8706287A1 (en) 1987-06-16
ATE35094T1 (en) 1988-07-15
ES296169U (en) 1988-02-16
FR2576545B1 (en) 1987-05-22
ES296169Y (en) 1988-11-01

Similar Documents

Publication Publication Date Title
CH646813A5 (en) MICA ELECTRICAL INSULATION STRIP.
EP2557572B1 (en) Electric cable resistant to partial discharges
US10014757B2 (en) Polymer-based layer structure with an oleophobic/hydrophobic surface, and electric machine comprising such a layer structure
WO2000058029A1 (en) Vacuum deposition and curing of oligomers and resins
EP0053531B1 (en) Feed bus made of a stack of 2 n dielectric layers disposed alternately with 2n metallic layers
US3783480A (en) Method of making a capacitor
EP0192523B1 (en) Flexible electrical insulation material and method of manufacturing it
EP1627017B1 (en) Electric conductor provided with an adherent layer and method for the production of said electric conductor
EP0756540B1 (en) Composite article and method for making same
EP2564412B1 (en) Electrode for dbd plasma process
EP1605474B1 (en) Cable comprising a plurality of insulated conductors contained in the same jacket and manufacturing method of the cable.
EP0140746B1 (en) Method for the heat treatment of electrical conducting coatings on dielectric substrates by microwaves
FR2938967A1 (en) OVERMOULING FOR VACUUM BULB OF SMC OR BMC COMPOSITE MATERIAL
FR2888390A1 (en) METHOD FOR MANUFACTURING MAGNETIC LAMINATE CIRCUIT
BE1026867B1 (en) Multilayer cable protection material for high temperatures
EP0568415B1 (en) Insulating method of an electrical conductor and insulated electrical wire obtained by this method
FR3109848A1 (en) Insulated conductor suitable for use in winding, bypass winding and corresponding manufacturing processes.
EP3692624A1 (en) Multi-layered connector with conductors insulated by enamelling
EP1594143A1 (en) Hot bonding composition for winding wire
EP2229040B1 (en) Method for applying an electrically conductive product, which is liquid at the time of application, on a support in order to connect two electrically conductive elements
EP3692625B1 (en) Multilayer connector isolated by resin impregnation
FR2538943A2 (en) NOVEL COMPOSITE SEPARATOR FOR ELECTROLYTIC CAPACITORS AND ELECTROLYTIC CAPACITOR COMPRISING SUCH A SEPARATOR
EP2984659B1 (en) Manufacture of coils for electrotechnical components using strips of unsealed anodised aluminium
EP0351299A1 (en) Process for fabricating an electrical high tension capacitor and capacitor
FR3087992A1 (en) HEAT SHRINKABLE SYSTEM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860718

17Q First examination report despatched

Effective date: 19870427

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 35094

Country of ref document: AT

Date of ref document: 19880715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3660300

Country of ref document: DE

Date of ref document: 19880721

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT,FRANKFURT(MAIN)

Effective date: 19890314

NLR1 Nl: opposition has been filed with the epo

Opponent name: HOECHST AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910115

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910121

Year of fee payment: 6

Ref country code: GB

Payment date: 19910121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910126

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910131

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910214

Year of fee payment: 6

EPTA Lu: last paid annual fee
RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19910224

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition
BERE Be: lapsed

Owner name: SOC. D'EXPLOITATION GENERALE DE PRODUITS INDUSTRIE

Effective date: 19920131

EUG Se: european patent has lapsed

Ref document number: 86400157.3

Effective date: 19910710