EP0192212B1 - Spiral heat exchanger - Google Patents

Spiral heat exchanger Download PDF

Info

Publication number
EP0192212B1
EP0192212B1 EP86101948A EP86101948A EP0192212B1 EP 0192212 B1 EP0192212 B1 EP 0192212B1 EP 86101948 A EP86101948 A EP 86101948A EP 86101948 A EP86101948 A EP 86101948A EP 0192212 B1 EP0192212 B1 EP 0192212B1
Authority
EP
European Patent Office
Prior art keywords
spiral
heat exchanger
flow
streams
spiral heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86101948A
Other languages
German (de)
French (fr)
Other versions
EP0192212A1 (en
Inventor
Jürgen Prof. Dr.-Ing. Michele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heiner Grote Te Edewecht Bondsrepubliek Duitsland
Original Assignee
Grote Heiner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grote Heiner filed Critical Grote Heiner
Priority to AT86101948T priority Critical patent/ATE38093T1/en
Publication of EP0192212A1 publication Critical patent/EP0192212A1/en
Application granted granted Critical
Publication of EP0192212B1 publication Critical patent/EP0192212B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/398Spirally bent heat exchange plate

Definitions

  • the invention relates to a recuperative spiral heat exchanger with spiral-shaped partition walls bent from sheet metal strips standing upright next to each other between the fluid material flows which have a usable temperature gradient, of which two mutually adjacent partition walls each include a flow channel for one of the two material flows between them and the one located between two flow channels Spiral space forms the flow path for the other material flow. and with inlet and outlet openings for both material flows.
  • Such a spiral heat exchanger is known from GB-A-778 541.
  • the known spiral heat exchanger is limited by design to two courses of a spiral for each material flow.
  • a material flow is distributed over the two aisles.
  • One of the material flows flows from the periphery of the spiral to the center, while the other material flow flows from the center to the periphery.
  • Two spiral flow channels each carry an assigned material flow.
  • the two spiral flow channels for each material flow in the known heat exchanger must be relatively long. Long flow channels, however, have the disadvantage that high pressure losses occur.
  • the invention has for its object to design a spiral heat exchanger of the type mentioned so that any number of flow channels are possible.
  • This object has been achieved according to the invention in that it has two multi-start spirals arranged one behind the other in a closed housing with opposite directions of rotation and in that the inlet and outlet openings for the two material flows are arranged in the center of the spirals.
  • each material flow can be divided between the spiral arms, with the advantage that either the spiral flow channels between the inlet and outlet of the respective material flow are relatively short, or a correspondingly higher throughput is possible, both advantages without reducing the actual heat exchanger area can be achieved, the dimensions of which must be adapted to the achievable order of magnitude of the performance of a heat exchanger.
  • a spiral heat exchanger designed in accordance with the invention can thus achieve the full performance for which it is designed, owing to the given heat exchanger surface, without the disadvantages of conventional spiral heat exchangers of conventional design that have been accepted up to now.
  • a heat exchanger designed with a multi-course spiral also has the advantage that it can be manufactured easily since the individual flow channels are relatively short and consequently the bending of the partition walls into the spiral shape is also easy because the individual turns are only slightly intertwined.
  • each flow channel within one of the spirals can be short, since the total length of each flow channel can be predetermined by its course within both spirals.
  • the connection of two opposing spirals gives each flow channel an approximately S-shaped course, with the S-bends each lying within one of the spirals.
  • This type of spiral formation of the heat exchanger surfaces facilitates their manufacture and enables relatively inexpensive manufacture from sheet metal strips standing upright next to one another, two sheet metal strips each enclosing a flow channel between them, which is covered at the top and bottom by a cover, for. B.
  • the inflow and outflow openings are each arranged in a housing area corresponding to the center of the spirals.
  • Corresponding line connections e.g. B. connecting piece, can be provided.
  • the drawing shows a schematic sectional view of a spiral heat exchanger with a lower housing wall 1 and box-shaped side walls 2.
  • the heat exchanger surfaces are arranged spirally in the manner shown.
  • a material flow can be supplied via inflow openings 3-3 "'. Since there are four inflow openings and a flow channel 4-4'" is connected to each of the inflow openings 3-3 '", the supplied material flow is distributed over the four flow channels, which are delimited by two adjacent partition walls 5, 6, here referred to here using the example of the flow channel 4.
  • the flow channels 4-4 '" are arranged in a spiral manner and thus form a multi-course, clockwise spiral. There are free spiral spaces between the individual flow channels 4-4 "', which also serve as flow channels for a second stream of material which is passed through the opening 9.
  • This second stream of material is fed through a single inflow opening of larger diameter, which is arranged in the left, counterclockwise spiral and is designated by 7.
  • This second spiral has the outflow openings 8-8 '", via which the first material flow, which enters via the inflow openings 3-3"' of the right spiral, is discharged again.
  • the outflow opening 8 is thus located at the end of the flow channel 4, that goes from the inflow opening 3.
  • the remaining inflow and outflow openings 3'-3 "'and 8'-8"' assigned to each other each have the same index.
  • the second stream of material flowing in via the larger inflow opening 7 in the left spiral enters the spiral spaces between the flow channels in regions indicated schematically by arrows and flows through the spiral spaces to the right spiral and thus in counterflow to the stream of material supplied to the right spiral, where it flows through the outflow opening 9 located there emerges again from the housing of the heat exchanger.

Abstract

A recuperative or restorative spiral heat exchanger with separating walls spirally extending between fluid streams of medium having an exploitable temperature gradient. Each two adjacent separating walls enclose between themselves a flow duct for one of the two streams of medium and the spiral space between two flow ducts forms the path of flow for the other stream of medium. The spiral is provided in the form of a multiple or multi-channel spiral by arranging a plurality of flow ducts. In particular, the spiral heat exchanger consists of two multiple spirals with opposed directions of current.

Description

Die Erfindung betrifft einen rekuperativen Spiralwärmetauscher mit in Spiralform verlaufenden, aus hochkant nebeneinander stehenden Blechbändern gebogenen Trennwänden zwischen den das ausnutzbare Temperaturgefälle aufweisenden fluiden Stoffströmen, von denen zwei zueinander benachbarte Trennwände jeweils einen Strömungskanal für einen der beiden Stoffströme zwischen sich einschließen und der zwischen zwei Strömungskanälen befindliche Spiralraum den Strömungsweg für den jeweils anderen Stoffstrom bildet. und mit Zu- und Abströmöffnungen für beide Stoffströme.The invention relates to a recuperative spiral heat exchanger with spiral-shaped partition walls bent from sheet metal strips standing upright next to each other between the fluid material flows which have a usable temperature gradient, of which two mutually adjacent partition walls each include a flow channel for one of the two material flows between them and the one located between two flow channels Spiral space forms the flow path for the other material flow. and with inlet and outlet openings for both material flows.

Ein solcher Spiralwärmetauscher ist nach der GB-A-778 541 bekannt. Der bekannte Spiralwärmetauscher ist bauartbedingt auf zwei Gänge einer Spirale für jeden Stoffstrom beschränkt. Auf die beiden Gänge verteilt sich jeweils ein Stoffstrom. Einer der Stoffströme strömt jeweils von der Peripherie der Spirale zum Zentrum, während der jeweils andere Stoffstrom vom Zentrum zur Peripherie strömt. Zwei spiralförmige Strömungskanäle führen jeweils einen zugeordneten Stoffstrom. Damit die Wärmetauscherflächen eine für die Leistung, für die der Wärmetauscher ausgelegt ist, ausreichende Größenordnung aufweisen, müssen die beiden spiralförmigen Strömungskanäle für jeden Stoffstrom bei dem bekannten Wärmetauscher verhältnismäßig lang sein. Lange Strömungskanäle haben jedoch den Nachteil, daß hohe Druckverluste auftreten. Soll bei vorgegebener Wärmetauscherfläche bei dem bekannten Spiralwärmetauscher ein höherer Durchsatz der Stoffströme erreicht werden, ist dies nur möglich durch 'Vergrößerung der Abstände zwischen den Trennwänden, d. h. durch entsprechende Breite der einzelnen Strömungskanäle. Daraus ergeben sich wiederum konstruktive Schwierigkeiten, denn breiter gehaltene Strömungskanäle führen zu jeweils vergrößertem. Durchmesser der Spiralarme, aus dem wiederum längere und damit größere Wärmetauscherflächen resultieren. Die technische Anwendung des als zweigängige Spirale für jeden Stoffstrom ausgebildeten bekannten Spiralwärmetauschers erfordert somit erheblichen und folglich kostenintensiven Konstruktions- und Bauaufwand.Such a spiral heat exchanger is known from GB-A-778 541. The known spiral heat exchanger is limited by design to two courses of a spiral for each material flow. A material flow is distributed over the two aisles. One of the material flows flows from the periphery of the spiral to the center, while the other material flow flows from the center to the periphery. Two spiral flow channels each carry an assigned material flow. In order for the heat exchanger surfaces to be of an order of magnitude sufficient for the output for which the heat exchanger is designed, the two spiral flow channels for each material flow in the known heat exchanger must be relatively long. Long flow channels, however, have the disadvantage that high pressure losses occur. If, in the known spiral heat exchanger, a higher throughput of the material flows is to be achieved for a given heat exchanger surface, this is only possible by increasing the distances between the partition walls, ie. H. by appropriate width of the individual flow channels. This in turn leads to design difficulties, because wider flow channels lead to larger ones. Diameter of the spiral arms, which in turn results in longer and thus larger heat exchanger surfaces. The technical application of the known spiral heat exchanger designed as a two-course spiral for each material flow thus requires considerable and consequently cost-intensive design and construction work.

Nach der US-A-19 78 639 ist ein Wärmetauscher einer anderen Gattung bekannt, bei dem achtförmig verlegte Rohrschlangen eingesetzt werden, die sich relativ einfach kreuzen lassen. Eine Vielzahl von einzelnen Rohren zur Führung jeweils eines Stoffstromes läuft dort, achtförmig verlegt, parallel zueinander. Bei einem Spiralwärmetauscher der hier in Rede stehenden Gattung, bei dem die Strömungskanäle aus hochkant stehenden Blechbändern gebildet sind, sind für eine Vielzahl von Strömungskanälen notwendige Kreuzungsbereiche, wie sie in der US-A-19 78 639 offenbart sind, nicht zu verwirklichen.According to US-A-19 78 639 a heat exchanger of another type is known, in which eight-shaped coils are used, which can be crossed relatively easily. A large number of individual pipes for guiding a material flow each run there, laid in an eight shape, parallel to one another. In the case of a spiral heat exchanger of the type in question, in which the flow channels are formed from sheet metal strips standing upright, it is not possible to implement crossing areas necessary for a large number of flow channels, as disclosed in US Pat. No. 19 78 639.

Der Erfindung liegt die Aufgabe zugrunde, einen Spiralwärmetauscher der eingangs genannten Gattung so auszubilden, daß beliebig viele Strömungskanäle möglich sind.The invention has for its object to design a spiral heat exchanger of the type mentioned so that any number of flow channels are possible.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst worden, daß er zwei in einem geschlossenen Gehäuse hintereinander angeordnete mehrgängige Spiralen mit einander entgegengesetztem Drehsinn aufweist und daß die Zu- und Abströmöffnungen für die beiden Stoffströme im Zentrum der Spiralen angeordnet sind.This object has been achieved according to the invention in that it has two multi-start spirals arranged one behind the other in a closed housing with opposite directions of rotation and in that the inlet and outlet openings for the two material flows are arranged in the center of the spirals.

Bei einem derartig ausgebildeten Spiralwärmetauscher kann jeder Stoffstrom auf die Spiralarme aufgeteilt werden, mit dem Vorteil, daß entweder die spiralförmigen Strömungskanäle zwischen Eintritt und Austritt des jeweiligen Stoffstroms relativ kurz sind, oder ein entsprechend höherer Durchsatz möglich ist, wobei beide Vorteile ohne Verkleinerung der eigentlichen Wärmeaustauscherfläche erreicht werden, deren Abmessung der erreichbaren Größenordnung der Leistung eines Wärmetauschers angepaßt sein muß. Ein erfindungsgemäß ausgebildeter Spiralwärmetauscher kann somit die volle Leistung, für die er ausgelegt ist, aufgrund der gegebenen Wärmetauscherfläche erbringen, ohne daß die Nachteile bisher üblicher Spiralwärmetauscher herkömmlicher Bauart in Kauf zu nehmen sind.In a spiral heat exchanger designed in this way, each material flow can be divided between the spiral arms, with the advantage that either the spiral flow channels between the inlet and outlet of the respective material flow are relatively short, or a correspondingly higher throughput is possible, both advantages without reducing the actual heat exchanger area can be achieved, the dimensions of which must be adapted to the achievable order of magnitude of the performance of a heat exchanger. A spiral heat exchanger designed in accordance with the invention can thus achieve the full performance for which it is designed, owing to the given heat exchanger surface, without the disadvantages of conventional spiral heat exchangers of conventional design that have been accepted up to now.

Ein mit einer mehrgängigen Spirale ausgebildeter Wärmetauscher weist auch den Vorteil auf, daß er einfach hergestellt werden kann, da die einzelnen Strömungskanäle relativ kurz sind und demzufolge das Biegen der Trennwände in die Spiralform auch einfach ist, weil die einzelnen Windungen nur wenig ineinander liegen.A heat exchanger designed with a multi-course spiral also has the advantage that it can be manufactured easily since the individual flow channels are relatively short and consequently the bending of the partition walls into the spiral shape is also easy because the individual turns are only slightly intertwined.

Da der Spiralwärmetauscher noch aus zwei mehrgängigen Spiralen besteht, die einander entgegengesetzten Drehsinn aufweisen, sind die Bauabmessungen der Spiralen verringert und lassen sich dennoch relativ große Wärmetauscherflächen auf engstem Raum unterbringen. Jeder Strömungskanal innerhalb einer der Spiralen kann kurz sein, da die Gesamtlänge eines jeden Strömungskanals durch seinen Verlauf innerhalb beider Spiralen vorgebbar ist. Durch die Verbindung von zwei gegenläufigen Spiralen erhält jeder Strömungskanal einen etwa S-förmigen Verlauf, wobei die S-Bögen jeweils innerhalb einer der Spiralen liegen. Diese Art der Spiralbildung der Wärmetauscherflächen erleichtert deren Herstellung und ermöglicht eine verhältnismäßig kostengünstige Fertigung aus hochkant nebeneinanderstehenden Blechbändern, wobei jeweils zwei Blechbänder zwischen sich einen Strömungskanal einschließen, der oben und unten durch eine Abdeckung, z. B. äußere Gehäusewände, verschlossen ist, indem beide Spiralen in vorteilhaft einfacher Weise in einem geschlossenen Gehäuse angeordnet sind. Der Wärmetauscher ist dadurch ein besonders kompaktes Bauteil, das hohen Leistungsanforderungen genügt. Die Verwendung in klimatechnischen Anlagen und sonstigen Einsatzgebieten ist denkbar, wobei insbesondere das Gebiet niedriger Abwärmetemperaturen bei Gasen in Frage kommt.Since the spiral heat exchanger still consists of two multi-course spirals, which have opposite directions of rotation, the overall dimensions of the spirals are reduced and still relatively large heat exchanger surfaces can be accommodated in a very small space. Each flow channel within one of the spirals can be short, since the total length of each flow channel can be predetermined by its course within both spirals. The connection of two opposing spirals gives each flow channel an approximately S-shaped course, with the S-bends each lying within one of the spirals. This type of spiral formation of the heat exchanger surfaces facilitates their manufacture and enables relatively inexpensive manufacture from sheet metal strips standing upright next to one another, two sheet metal strips each enclosing a flow channel between them, which is covered at the top and bottom by a cover, for. B. outer housing walls, is closed by both spirals are arranged in an advantageously simple manner in a closed housing. This makes the heat exchanger a particularly compact component that meets high performance requirements. The use in air conditioning systems and other areas of application is conceivable, in particular the area of low waste heat temperatures for gases.

Die Zuström- und Abströmöffnungen sind jeweils in einem dem Zentrum der Spiralen entsprechenden Gehäusebereich angeordnet. Entsprechende Leitungsanschlüsse, z. B. Anschlußstutzen, können vorgesehen werden.The inflow and outflow openings are each arranged in a housing area corresponding to the center of the spirals. Corresponding line connections, e.g. B. connecting piece, can be provided.

Ein Ausführungsbeispiel, aus dem sich weitere erfinderische Merkmale ergeben, ist in der Zeichnung dargestellt.An embodiment from which further inventive features result is shown in the drawing.

Die Zeichnung zeigt eine schematische Schnittansicht eines Spiralwärmetauschers mit einer unteren Gehäusewand 1 und kastenförmigen Seitenwänden 2. Bei diesem Ausführungsbeispiel sind die Wärmetauscherflächen in der gezeigten Weise spiralförmig angeordnet. Über Zuströmöffnungen 3-3"' kann ein Stoffstrom zugeführt werden. Da vier Zuströmöffnungen vorhanden sind, und an jede der Zuströmöffnungen 3-3'" jeweils ein Strömungskanal 4-4'" angeschlossen ist, verteilt sich der zugeführte Stoffstrom auf die vier Strömungskanäle, die von jeweils zwei nebeneinanderliegenden Trennwänden 5, 6, hier am Beispiel des Strömungskanals 4 bezeichnet, begrenzt werden. Die Strömungskanäle 4-4'" sind spiralförmig ineinandergelegt und bilden somit eine mehrgängige, im Uhrzeigersinn verlaufende Spirale. Zwischen den einzelnen Strömungskanälen 4-4"' befinden sich freie Spiralräume, die ebenfalls als Strömungskanäle für einen zweiten Stoffstrom dienen, der durch die Öffnung 9 geleitet wird.The drawing shows a schematic sectional view of a spiral heat exchanger with a lower housing wall 1 and box-shaped side walls 2. In this exemplary embodiment, the heat exchanger surfaces are arranged spirally in the manner shown. A material flow can be supplied via inflow openings 3-3 "'. Since there are four inflow openings and a flow channel 4-4'" is connected to each of the inflow openings 3-3 '", the supplied material flow is distributed over the four flow channels, which are delimited by two adjacent partition walls 5, 6, here referred to here using the example of the flow channel 4. The flow channels 4-4 '"are arranged in a spiral manner and thus form a multi-course, clockwise spiral. There are free spiral spaces between the individual flow channels 4-4 "', which also serve as flow channels for a second stream of material which is passed through the opening 9.

Dieser zweite Stoffstrom wird über eine einzige Zuströmöffnung größeren Durchmessers, die in der linken, gegen den Uhrzeigersinn gewundenen Spirale angeordnet ist und mit 7 bezeichnet ist, zugeführt. Diese zweite Spirale weist die Abströmöffnungen 8-8'" auf, über die der erste Stoffstrom, der über die Zuströmöffnungen 3-3"' der rechten Spirale eintritt, wieder abgeleitet wird.. Die Abströmöffnung 8 befindet sich somit am Ende des Strömungskanals 4, der von der Zuströmöffnung 3 abgeht. Die verbleibenden, jeweils einander zugeordneten Zuström- und Abströmöffnungen 3'-3"' und 8'-8"' weisen jeweils den gleichen Index auf.This second stream of material is fed through a single inflow opening of larger diameter, which is arranged in the left, counterclockwise spiral and is designated by 7. This second spiral has the outflow openings 8-8 '", via which the first material flow, which enters via the inflow openings 3-3"' of the right spiral, is discharged again. The outflow opening 8 is thus located at the end of the flow channel 4, that goes from the inflow opening 3. The remaining inflow and outflow openings 3'-3 "'and 8'-8"' assigned to each other each have the same index.

Der über die größere Zuströmöffnung 7 in der linken Spirale zuströmende zweite Stoffstrom tritt in durch Pfeile schematisiert angedeuteten Bereichen in die Spiralräume zwischen den Strömungskanälen ein und strömt durch die Spiralräume zur rechten Spirale und somit im Gegenstrom zu dem der rechten Spirale zugeführten Stoffstrom, wo er durch die dort befindliche Abströmöffnung 9 wieder aus dem Gehäuse des Wärmetauschers austritt.The second stream of material flowing in via the larger inflow opening 7 in the left spiral enters the spiral spaces between the flow channels in regions indicated schematically by arrows and flows through the spiral spaces to the right spiral and thus in counterflow to the stream of material supplied to the right spiral, where it flows through the outflow opening 9 located there emerges again from the housing of the heat exchanger.

Claims (1)

  1. Recuperative spiral heat exchanger with spiral partitions bent out of sheet metal ribbons standing on edge adjacent each other between the fluid material streams having the utilizable drop in temperature, of which two neighbouring partitions enclose between them a flow channel for one of the two streams of material and the spiral space located between two flow channels constitutes the flow route for the other stream of material and characterized with inlet and outlet openings for both streams of material, characterized in that it comprises two multi-passage spirals of opposed hand arranged after the other in a closed housing and in that the inlet and outlet openings (3-3'" and 8-8"' ; 7 and 9) for the two streams of material are arranged at the centre of the spiral.
EP86101948A 1985-02-20 1986-02-15 Spiral heat exchanger Expired EP0192212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86101948T ATE38093T1 (en) 1985-02-20 1986-02-15 SPIRAL HEAT EXCHANGER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853505789 DE3505789A1 (en) 1985-02-20 1985-02-20 SPIRAL HEAT EXCHANGER
DE3505789 1985-02-20

Publications (2)

Publication Number Publication Date
EP0192212A1 EP0192212A1 (en) 1986-08-27
EP0192212B1 true EP0192212B1 (en) 1988-10-19

Family

ID=6262988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86101948A Expired EP0192212B1 (en) 1985-02-20 1986-02-15 Spiral heat exchanger

Country Status (5)

Country Link
US (1) US4679621A (en)
EP (1) EP0192212B1 (en)
JP (1) JPS61240093A (en)
AT (1) ATE38093T1 (en)
DE (2) DE3505789A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8918446D0 (en) * 1989-08-12 1989-09-20 Stokes Keith H Heat exchange apparatus
DE4413867A1 (en) * 1994-04-21 1995-10-26 Paul Grote Process for the production of a recuperative spiral heat exchanger
DE19810186C2 (en) * 1998-03-10 2002-12-12 Renzmann Und Gruenewald Gmbh Spiral heat exchanger
AU759747B2 (en) * 1998-06-25 2003-05-01 Energy Saving Concepts Limited Heat exchanger tracking
EP1125090B1 (en) * 1998-10-02 2004-03-17 Erling Vage Heat exchanger, method and apparatus for producing same
GB2354315B (en) * 1999-06-18 2003-12-10 Galixbrook Engineering Ltd Heat exchanger core
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
MXPA04006590A (en) * 2002-01-03 2005-03-31 Pax Scient Inc Vortex ring generator.
AUPR982502A0 (en) * 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A heat exchanger
AUPR982302A0 (en) * 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A fluid flow controller
AU2003903386A0 (en) 2003-07-02 2003-07-17 Pax Scientific, Inc Fluid flow control device
CA2544516C (en) * 2003-11-04 2014-04-29 Pax Scientific, Inc. Fluid circulation system
CN1985093A (en) * 2004-01-30 2007-06-20 百思科技公司 Housing for a centrifugal fan, pump or turbine
JP4695097B2 (en) * 2004-01-30 2011-06-08 パックス サイエンティフィック インコーポレイテッド Centrifugal fan, pump or turbine housing
DE102004046587B4 (en) * 2004-09-23 2007-02-22 Josef Bachmaier heat exchangers
JP3982545B2 (en) * 2005-09-22 2007-09-26 ダイキン工業株式会社 Air conditioner
WO2008042251A2 (en) 2006-09-29 2008-04-10 Pax Streamline, Inc. Axial flow fan
US20090308472A1 (en) * 2008-06-15 2009-12-17 Jayden David Harman Swirl Inducer
US8721981B2 (en) * 2009-11-30 2014-05-13 General Electric Company Spiral recuperative heat exchanging system
EP3356424B1 (en) 2015-09-29 2020-04-15 ExxonMobil Chemical Patents Inc. Polymerization using a spiral heat exchanger
WO2018044395A1 (en) 2016-08-31 2018-03-08 Exxonmobil Chemical Patents Inc. Spiral heat exchanger as a preheater in polymer devolatilization processes
CN111511776B (en) 2018-02-12 2022-09-16 埃克森美孚化学专利公司 Metallocene catalyst feed system for solution polymerization process
WO2021086678A1 (en) 2019-10-29 2021-05-06 Exxonmobil Chemical Patents Inc. Reactor for polymerization process
WO2021086584A1 (en) 2019-10-29 2021-05-06 Exxonmobil Chemical Patents Inc. Reactor for polymerization processes
IT202000022384A1 (en) 2020-09-23 2022-03-23 Steel Tech Srl SPIRAL IMMERSION EXCHANGER
WO2023114815A1 (en) 2021-12-17 2023-06-22 Exxonmobil Chemical Patents Inc. Processes for making polyolefins with composition control
WO2023114813A1 (en) 2021-12-17 2023-06-22 Exxonmobil Chemical Patents Inc. Processes for making propylene-based copolymers having broad cds and mwds

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR417560A (en) * 1909-07-14 1910-11-17 Jean Billon Radiator
US1758209A (en) * 1928-06-14 1930-05-13 Pittsburgh Rolls Corp Heater
NL37730C (en) * 1933-05-12 1936-03-16
US1978639A (en) * 1933-05-23 1934-10-30 Lynch Francis John Heat reclaimer
US2136153A (en) * 1934-04-14 1938-11-08 Rosenblads Patenter Ab Heat exchanger and method of making same
US2039556A (en) * 1935-02-15 1936-05-05 Harry R Ruse Beverage cooler
US2131265A (en) * 1937-03-01 1938-09-27 Dow Chemical Co Spiral heat interchanger and method of making same
FR835161A (en) * 1937-03-12 1938-12-14 heat exchanger
GB778541A (en) * 1955-01-31 1957-07-10 Rosenblads Patenter Ab Heat-exchanger of the type having spiral or volute passages
DE1792325U (en) * 1956-05-15 1959-07-23 Siemens Ag HEAT EXCHANGERS FOR NUCLEAR POWER PLANTS AND OTHER THERMAL POWER PLANTS.
US3854530A (en) * 1969-12-29 1974-12-17 E Jouet Heat exchanger
DE1907881A1 (en) * 1969-02-17 1970-09-03 Becker Dr Ing Kurt Flat coils for cross-flow heat exchangers
US3921713A (en) * 1973-12-26 1975-11-25 Zachry Co H B Heat exchanger
DE2645072A1 (en) * 1976-10-06 1978-04-13 Karlheinz Dr Rer Nat Raetz Solar energy heat exchanger - made of light absorbing plastics straps in which channels are formed
DE8117144U1 (en) * 1981-03-31 1981-11-26 Feraton Anstalt, 9494 Schaan HEAT EXCHANGER
SU989295A2 (en) * 1981-07-02 1983-01-15 Московский ордена Трудового Красного Знамени технологический институт пищевой промышленности Heat exchanger
DE3319521A1 (en) * 1983-05-28 1984-11-29 Kienzle Apparate Gmbh, 7730 Villingen-Schwenningen HEAT EXCHANGER FOR LIQUID MEDIA

Also Published As

Publication number Publication date
EP0192212A1 (en) 1986-08-27
ATE38093T1 (en) 1988-11-15
US4679621A (en) 1987-07-14
DE3505789A1 (en) 1986-08-21
JPS61240093A (en) 1986-10-25
DE3660977D1 (en) 1988-11-24

Similar Documents

Publication Publication Date Title
EP0192212B1 (en) Spiral heat exchanger
DE3336049C3 (en) Counterflow heat exchanger
DE1601216A1 (en) Plate heat exchanger
EP0521298A2 (en) Heat exchange apparatus for dryer by refrigeration in compressed air plants and tubes/plates heat exchanger for this use
EP0826941B1 (en) Tubular heat exchange core
EP0548602B1 (en) Plate type heat-exchanger
DE1847822U (en) COIL HEAT EXCHANGER.
DE2951352C2 (en) Flat tube heat exchanger
DE2952736C2 (en)
EP1800079A1 (en) Heat exchanger
DE3734857C2 (en)
EP1411310B1 (en) Heat exhanger with serpentine structure
DE1451254A1 (en) Plate-shaped heat exchanger
DE2659348C2 (en) Pipe distributor for central heating systems
EP1139055B1 (en) Heat exchanger with multiple tube bundles
EP0236859B1 (en) Heat exchanger for combustion engines
EP1588114B1 (en) Cross-counterflow layered heat exchanger
DE3208838C2 (en) Heat exchanger
EP0230982B1 (en) Cylindrical heat exchanger manufactured from prefabricated components, in particular a chimney recuperator
DE3110719C2 (en) Heat exchanger with several spiral-shaped distributor pipe sections accommodated in a housing
DE1501624B1 (en) Partition wall heat exchanger with at least two folded, essentially parallel and spaced apart metal sheets as partition walls
DE3016781C2 (en) Heat exchanger with a heat exchange tube arranged in an air duct
DE1451246B2 (en) Multi-plate heat exchanger
DE10048016C1 (en) Counterflow heat exchanger
DE8504700U1 (en) Spiral heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870225

17Q First examination report despatched

Effective date: 19870605

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 38093

Country of ref document: AT

Date of ref document: 19881115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3660977

Country of ref document: DE

Date of ref document: 19881124

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GROTE, HEINER

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HEINER GROTE TE EDEWECHT, BONDSREPUBLIEK DUITSLAND

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HEINER GROTE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PAUL GROTE

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86101948.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960207

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960208

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960226

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960229

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970228

Ref country code: CH

Effective date: 19970228

Ref country code: BE

Effective date: 19970228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970813

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970814

Year of fee payment: 12

BERE Be: lapsed

Owner name: GROTE HEINER

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

EUG Se: european patent has lapsed

Ref document number: 86101948.7

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980215

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980215

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020828

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050215