EP0189855B1 - Apparatus for evenly directing a gas towards a flat surface - Google Patents

Apparatus for evenly directing a gas towards a flat surface Download PDF

Info

Publication number
EP0189855B1
EP0189855B1 EP86100915A EP86100915A EP0189855B1 EP 0189855 B1 EP0189855 B1 EP 0189855B1 EP 86100915 A EP86100915 A EP 86100915A EP 86100915 A EP86100915 A EP 86100915A EP 0189855 B1 EP0189855 B1 EP 0189855B1
Authority
EP
European Patent Office
Prior art keywords
slot
nozzle openings
nozzle
openings
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86100915A
Other languages
German (de)
French (fr)
Other versions
EP0189855A3 (en
EP0189855A2 (en
Inventor
Carl Prof.Dr.-Ing. Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Junker GmbH
Original Assignee
Carl Prof.Dr.-Ing. Kramer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Prof.Dr.-Ing. Kramer filed Critical Carl Prof.Dr.-Ing. Kramer
Priority to AT86100915T priority Critical patent/ATE73863T1/en
Publication of EP0189855A2 publication Critical patent/EP0189855A2/en
Publication of EP0189855A3 publication Critical patent/EP0189855A3/en
Application granted granted Critical
Publication of EP0189855B1 publication Critical patent/EP0189855B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges

Definitions

  • the invention relates to a device for uniformly applying a gas to a flat surface.
  • the aim is to drive the heat transfer in a chamber furnace, as is used, for example, in the aluminum industry for annealing strip coils, as high as possible. If the blowing system used leads to large local differences in the heat transfer, local overheating can occur, which can cause discoloration of the metal strips and can also impair the desired metallurgical properties of the strips.
  • a device for uniformly loading a flat surface of a workpiece in which the fluid medium exits through slots or openings to blow off workpieces.
  • the known device is provided for uniformly blowing off semiconductor wafers in order to thereby remove foreign bodies or liquids from their surface.
  • said fluid medium is blown out through slots or openings which are arranged on a rotating disk and directed onto the workpiece.
  • a device for drying ceramic moldings is known.
  • a nozzle is rotatably arranged above a molding to be dried, which directs drying agent supplied to the molding via a feed line.
  • the purpose of the rotation of the nozzle of the known device is that moisture can be removed from the ceramic molding evenly, so that no stresses arise in the molding. This is intended to improve the quality of the ceramic moldings and to reduce the number of moldings.
  • the invention is therefore based on the object to create a device that is particularly suitable for evenly applying a gas to a flat surface of a workpiece, the heat transfer between the gas and the flat surface of the workpiece being as high as possible and at the same time taking place as uniformly as possible over the entire surface.
  • the advantages achieved with the invention are based, in particular, on the fact that in a simple embodiment which is yet to be explained, the ratio between the locally maximum and locally minimum heat transfer coefficient is approximately 1.2, that is to say the discernible difference between the two extreme values is very small.
  • This has to be related to a value of 1.9 for a blower system that uses hole nozzles and a value of about 1.7 for a blower system that uses conventional slot nozzles that just impinge on the one to be impinged Straighten the surface.
  • This new blowing system is particularly suitable for the application of a gas flow to the ends of strip coils, the heat transfer coefficient of which is almost constant over the entire end face.
  • the heating takes place essentially via the end faces, since the heat conduction in the radial direction only makes up a fraction of the heat conduction in the axial direction because of the separating surfaces between the individual turns of the collar.
  • the device for uniform loading of the two end faces of a metal band bundle in particular an aluminum band bundle 12, which is shown in FIG. 1 and is generally indicated by the reference numeral 10, has an all-round closed housing with a bottom 14, two hollow side walls 16, 18 designed as blowing chambers and a cover 20, in which a radial fan 22 serving as a drive for the circulated gas flow is integrated.
  • the band 12 is held by supports 24 so that its two end faces face the side walls 16 and 18.
  • the two further side walls can be closed by doors and serve to load this "chamber furnace" 10.
  • slot-shaped nozzles 26 are integrated, which extend radially outwards from a common center. It is advantageous to arrange the band collar 12 in such a way that its axis 27 passes through these center points 29 as precisely as possible, that is to say it is concentric with the radial nozzle arrangement.
  • the area of the side walls 16, 18 covered by the slot nozzles 26 will be referred to below as the “nozzle bottom”.
  • slot nozzles 26 thus lie in a common plane formed by the inner surface of the side walls 16, 18. Their nozzle openings also lie at least approximately in one plane, the direction of the gas streams emerging from the nozzle openings being inclined towards the plane in which the nozzle openings lie.
  • FIG. 5 shows a perspective view of the nozzle base indicated by reference numeral 28, from which the individual slot nozzles 26 each project with different inclinations, as can be seen from the angles shown.
  • the nozzle base 28 In the middle of the nozzle base 28 there is a circular area with the diameter D i which is left blank, ie no slot nozzles 26 are provided in this area 29.
  • the slot nozzles 26 extend radially outward from the edge of the circular region 25 with the diameter D i , both the angles between the individual slot nozzles 26 and the inclination the slot nozzles can be different with respect to the nozzle bottom 28.
  • the radially outer ends of the slot nozzles 26 lie on a circle with the diameter D a .
  • Fig. 6 shows a plan view of different embodiments of the slot nozzles, namely in sector I slot-shaped openings with variable width in the radial direction, in sector II slot nozzles with different extensions in the radial direction, in sector III slot nozzles with different angles between the individual jets and finally in sector IV an embodiment in which a plurality of rows of perforated nozzles running in the radial direction are used instead of the slot-shaped nozzle opening.
  • Fig. 7 shows a detailed view of a modification in which the openings of the slot nozzles are "twisted", i.e. the inclination of the slot nozzles 26 changes with the radius, resulting in a curved slot axis.
  • FIG. 8 shows two embodiments in which flow guiding devices 30 are integrated in the slot-shaped nozzle openings, which in turn are adapted to the inflow direction.
  • These flow control devices 30 are either straight (right variant) or e.g. bent in the direction of inclined inflow (left variant).
  • the angle between the individual slot nozzles 26 is approximately 45 °.
  • the radial fan 22 rotating in the direction of the arrow generates an air flow which initially flows outward and is then deflected downward into the hollow side walls 16, 18 in the direction of the arrows.
  • This gas stream then emerges from the hollow side walls 16, 18, namely from the slot nozzles 26, and acts on the end faces of the band collar 12.
  • These end surfaces run parallel to the nozzle bottoms 28, i.e. the slot nozzles 26 are inclined relative to the end surfaces of the band collar 12.
  • the angle of inclination between the nozzle base 28 and the slot nozzles 26 is expediently selected so that it corresponds to the direction of rotation of the vortex which results from the usual loading of the chambers in the side walls 16, 18 by means of the radial fan 22 built into the furnace ceiling 20 in the case of conventional chamber furnace designs.
  • By coordinating the inclination to the direction of rotation of this vortex it is achieved that all slot nozzles 26 are flowed in approximately in the same direction, which is advantageous with regard to a quantity distribution that corresponds as closely as possible to the cross section of these slot nozzles 26.
  • FIG. 2 shows a perspective distribution of the local heat transfer coefficients for a blowing system consisting of a single perforated nozzle. Relative to the axis of the nozzle jets (three nozzle jets are indicated in FIG. 2), there is a curve for the heat transfer distribution which is similar in cross section to a volcanic crater. A relative minimun is formed at the stagnation point, which is surrounded by a maximum value corresponding to the crater rim. The ratio of maximum to minimum heat transfer coefficients is approximately 1.9.
  • FIG. 3 shows a corresponding, perspective representation of the distribution of the local heat transfer coefficient for a slot nozzle system which generates vertically incident nozzle jets.
  • the course is similar to that of FIG. 2.
  • the distribution of the heat transfer coefficient over the end face of a band bundle is very uneven.
  • the ratio of maximum to minimum heat transfer coefficient is approximately 1.7.
  • the maximum permissible average heat transfer coefficient would be 110W / (m2 K) for the perforated nozzle system, 130W / (m2 K) for the slotted nozzle system and for the new blowing system with the inclined slot nozzles are 160W / (m2 K).

Abstract

A device for the uniform application of gas on a plane surface comprises several slot-like openings which are at least approximately in one plane; the longitudinal axes of the nozzle openings are radially arranged, whereas the direction of the flow exiting from the slot-like openings is inclined towards the plane in which the openings are located. This allows an extremely uniform application so that the difference between the maximum and the minimum values of the heat-transfer coefficient is only very small.

Description

Die Erfindung betrifft eine Vorrichtung zur gleichmäßigen Beaufschlagung einer planen Fläche mit einem Gas.The invention relates to a device for uniformly applying a gas to a flat surface.

Die besonders gleichmäßige Beaufschlagung einer Fläche mit einem Gas spielt überall da eine große Rolle, wo mittels dieses strömenden Gases Wärme auf ein Gut übertragen werden muß, da nur dann ein gleichmäßiger Wärmeübergang oder gegebenenfalls auch Stoffaustausch zwischen Gasstrom und Fläche gewährleistet ist, ohne daß größere Unterschiede im örtlichen Wärmeübergangskoeffizienten zu unterschiedlichen Temperaturen bzw. unterschiedlicher Aufheizung des Gutes führen. Dies stellt bspw. beim Anwärmen von Metallbunden ein großes Problem dar. Darunter versteht man zu einem Zylinder aufgewickelte Metall-Bleche, bspw. Aluminium-Bleche.The particularly even exposure of a surface to a gas plays a major role wherever heat must be transferred to a good by means of this flowing gas, since only then is a uniform heat transfer or, if appropriate, also mass transfer between gas flow and surface guaranteed without major differences lead to different temperatures or different heating of the goods in the local heat transfer coefficient. This is a major problem, for example, when heating metal coils. This is understood to mean metal sheets, for example aluminum sheets, wound into a cylinder.

Zur Abkürzung der Glühzeit wird nämlich angestrebt, den Wärmeübergang in einem Kammerofen, wie er bspw. in der Aluminiumindustrie zum Glühen von Bandbunden benutzt wird, so hoch wie möglich zu treiben. Führt nun das verwendete Beblasungssystem zu großen örtlichen Unterschieden im Wärmeübergang, so können sich lokale Überhitzungen einstellen, die Verfärbungen der Metallbänder bewirken und außerdem die angestrebten metallurgischen Eigenschaften der Bänder beeinträchtigen können.In order to shorten the annealing time, the aim is to drive the heat transfer in a chamber furnace, as is used, for example, in the aluminum industry for annealing strip coils, as high as possible. If the blowing system used leads to large local differences in the heat transfer, local overheating can occur, which can cause discoloration of the metal strips and can also impair the desired metallurgical properties of the strips.

Die bisher üblichen Beblasungssysteme, mit denen ein hoher Wärmeübergang angestrebt wird, weisen Loch- oder Schlitzdüsen auf, die senkrecht auf die Stirnfläche des Metallbundes auftreffende Prallstrahlen erzeugen; werden nun lokale Überhitzungen festgestellt, so bleibt vielfach keine andere Wahl als den Gesamt-Volumenstrom zu reduzieren und dadurch die hohen örtlichen Wärmeübergangskoeffizienten zu vermeiden.The previously customary blowing systems, with which a high heat transfer is aimed for, have perforated or slot nozzles that are perpendicular to the end face generate impact beams of the metal collar; If local overheating is now determined, there is often no choice but to reduce the total volume flow and thereby avoid the high local heat transfer coefficients.

Aus der US-A-3 849 906 ist eine Vorrichtung zur gleichmäßigen Beaufschlagung einer planen Oberfläche eines Werkstückes bekannt, bei der das fluide Medium durch Schlitze bzw. Öffnungen austritt, um Werkstücke abzublasen. Insbesondere ist die bekannte Vorrichtung dazu vorgesehen, Halbleiterwaver gleichmäßig abzublasen, um dadurch Fremdkörper oder Flüssigkeiten von deren Oberfläche zu entfernen. Zu diesem Zweck wird das besagte fluide Medium durch Schlitze bzw. Öffnungen, die auf einer rotierenden Scheibe angeordnet sind, ausgeblasen und auf das Werkstück gerichtet. Die oben diskutierten lokalen Überhitzungsphänomene treten hier nicht auf, da es bei der bekannten Vorrichtung nicht um eine Wärmebehandlung von Werkstücken geht, sondern lediglich eine schonende Reinigung von Werkstücken bezweckt wird.From US-A-3 849 906 a device for uniformly loading a flat surface of a workpiece is known, in which the fluid medium exits through slots or openings to blow off workpieces. In particular, the known device is provided for uniformly blowing off semiconductor wafers in order to thereby remove foreign bodies or liquids from their surface. For this purpose, said fluid medium is blown out through slots or openings which are arranged on a rotating disk and directed onto the workpiece. The local overheating phenomena discussed above do not occur here, since the known device is not about heat treatment of workpieces, but rather the purpose of gentle cleaning of workpieces.

Aus der DE-A-26 49 189 ist eine Vorrichtung zum Trocknen von keramischen Formlingen bekannt. Dabei ist oberhalb eines zu trocknenden Formlings eine Düse drehbar angeordnet, die über eine Zuleitung zugeführtes Trocknungsmittel auf den Formling lenkt. Durch das Drehen der Düse der bekannten Vorrichtung wird bezweckt, daß dem keramischen Formling gleichmäßig Feuchtigkeit entzogen werden kann, um in den Formlingen keine Spannungen entstehen zu lassen. Hierdurch soll die Qualität der keramischen Formlinge verbessert und der Ausschuß an Formlingen verringert werden.From DE-A-26 49 189 a device for drying ceramic moldings is known. In this case, a nozzle is rotatably arranged above a molding to be dried, which directs drying agent supplied to the molding via a feed line. The purpose of the rotation of the nozzle of the known device is that moisture can be removed from the ceramic molding evenly, so that no stresses arise in the molding. This is intended to improve the quality of the ceramic moldings and to reduce the number of moldings.

Auch hier treten die oben genannten Überhitzungsphänomene nicht auf, da die Werkstücke in erster Linie gleichmäßig getrocknet, jedoch nicht erhitzt werden sollen.The above-mentioned overheating phenomena also do not occur here, since the workpieces are primarily intended to be dried uniformly, but not to be heated.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die zur gleichmäßigen Beaufschlagung einer planen Oberfläche eines Werkstückes mit einem Gas besonders geeignet ist, wobei der Wärmeübergang zwischen dem Gas und der planen Fläche des Werkstückes möglichst hoch ist und gleichzeitig möglichst gleichmäßig über der gesamten Fläche erfolgt.The invention is therefore based on the object To create a device that is particularly suitable for evenly applying a gas to a flat surface of a workpiece, the heat transfer between the gas and the flat surface of the workpiece being as high as possible and at the same time taking place as uniformly as possible over the entire surface.

Insbesondere soll eine Vorrichtung vorgeschlagen werden, bei der die Unterschiede zwischen dem maximalen und dem minimalen Wärmeübergangskoeffizienten, also eine eventuelle Ungleichmäßigkeit in der Beaufschlagung mit dem Gas, wesentlich geringer als bei den herkömmlichen Beblasungssystemen sind.In particular, a device is to be proposed in which the differences between the maximum and the minimum heat transfer coefficient, that is to say a possible non-uniformity in the exposure to the gas, are substantially smaller than in the conventional blowing systems.

Diese Aufgabe wird erfindungsgemäß durch die im Anspruch 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in claim 1.

Zweckmäßige Ausführungsformen sind in den Unteransprüchen zusammengestellt.Appropriate embodiments are compiled in the subclaims.

Die mit der Erfindung erzielten Vorteile beruhen insbesondere darauf, daß bei einer einfachen, noch zu erläuternden Ausführungsform das Verhältnis zwischen lokal maximalem und lokal minimalem Wärmeübergangskoeffizient etwa 1,2 beträgt, also der feststellbare Unterschied zwischen den beiden Extremwerten sehr gering ist. Dies muß in Beziehung gesetzt werden zu einem Wert von 1,9 für ein Beblasungssystem, das Lochdüsen verwendet, und einem Wert von etwa 1,7 für ein Beblasungssystem, das herkömmliche Schlitzdüsen verwendet, die gerade Prallstrahlen auf die zu beaufschlagende Fläche richten.The advantages achieved with the invention are based, in particular, on the fact that in a simple embodiment which is yet to be explained, the ratio between the locally maximum and locally minimum heat transfer coefficient is approximately 1.2, that is to say the discernible difference between the two extreme values is very small. This has to be related to a value of 1.9 for a blower system that uses hole nozzles and a value of about 1.7 for a blower system that uses conventional slot nozzles that just impinge on the one to be impinged Straighten the surface.

Diese extrem gleichmäßige Beaufschlagung bedeutet, daß im Mittel ein wesentlich höherer Volumenstrom auf das zu erwärmende Gut gerichtet werden kann als dies bei Einhaltung der gleichen Maximalwerte für den örtlichen Wärmeübergang mit anderen Düsensystemen möglich wäre. Die Folgen hiervon sind eine wesentliche Reduzierung der Aufheiz- bzw. Abkühlzeit sowie eine Vergrößerung des Verhältnisses der Kapazitätsströme vom dem Wärmeaustausch dienenden Gasstrom zu erwärmender bzw. abzukühlender Masse des Gutes. Diese Erhöhung des Kapazitätsstroms-Verhältnisses führt zu geringeren Temperaturdifferenzen im Gasstrom und mindert damit die Gefahr von starken Temperaturdifferenzen, bspw. durch die Bildung von Temperatursträhnen.This extremely even application means that on average a much higher volume flow can be directed onto the material to be heated than would be possible if the same maximum values for the local heat transfer were maintained with other nozzle systems. The consequences of this are a significant reduction in the heating-up or cooling-down time and an increase in the ratio of the capacity flows from the gas flow used for heat exchange to the mass of the goods to be heated or cooled. This increase in the capacity flow ratio leads to lower temperature differences in the gas flow and thus reduces the risk of large temperature differences, for example due to the formation of temperature streaks.

Dieses neue Beblasungssystem eignet sich besonders für die Beaufschlagung der Stirnseiten von Bandbunden mit einem Gasstrom, dessen Wärmeübergangskoeffizient über die gesamte Stirnfläche gesehen nahezu konstant ist. Insbesondere bei aus Metall, bspw. Aluminium bestehenden Bandbunden erfolgt die Aufwärmung im wesentlichen über die Stirnflächen, da die Wärmeleitung in radialer Richtung wegen der Trennflächen zwischen den einzelnen Windungen des Bundes nur einen Bruchteil der Wärmeleitung in axialer Richtung ausmacht.This new blowing system is particularly suitable for the application of a gas flow to the ends of strip coils, the heat transfer coefficient of which is almost constant over the entire end face. In particular in the case of band coils consisting of metal, for example aluminum, the heating takes place essentially via the end faces, since the heat conduction in the radial direction only makes up a fraction of the heat conduction in the axial direction because of the separating surfaces between the individual turns of the collar.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden, schematischen Zeichnungen näher erläutert. Es zeigen

Fig. 1
eine perspektivische, teilweise weggeschnittene Ansicht einer Vorrichtung zur gleichmäßigen Beaufschlagung der beiden Stirnflächen eines Bandbundes mit einem Gas,
Fig. 2
eine perspektivische Darstellung der Verteilung des örtlichen Wärmeübergangskoeffizienten bei einem Lochdüsen enthaltenden Beblasungssystem (αmaxmin = 1,9),
Fig. 3
eine perspektivische Darstellung der Verteilung des örtlichen Wärmeübergangskoeffizienten für ein Schlitzdüsen enthaltendes Beblasungssystem mit senkrecht auftreffenden Düsenstrahlen (αmaxmin = 1,7),
Fig. 4
eine perspektivische Darstellung der Verteilung des örtlichen Wärmeübergangskoeffizienten für ein erfindungsgemäßes Beblasungssystem mit geneigten Schlitzdüsen (αmaxmin = 1,2),
Fig. 5
eine perspektivische Ansicht des Düsenbodens mit Schlitzdüsen unterschiedlicher Neigung,
Fig. 6
eine Draufsicht auf den Düsenboden mit verschiedenen Ausführungsformen von Schlitzdüsen,
Fig. 7
eine perspektivische Detailansicht von zwei verschiedenen Ausführungsformen der Schlitzdüsen, und
Fig. 8
Detailansichten weiterer Ausführungsformen der Schlitzdüsen.
The invention is explained in more detail below using exemplary embodiments with reference to the accompanying schematic drawings. Show it
Fig. 1
2 shows a perspective, partially cut-away view of a device for uniformly applying a gas to the two end faces of a band bundle,
Fig. 2
3 shows a perspective representation of the distribution of the local heat transfer coefficient in a blowing system containing perforated nozzles (α max / α min = 1.9),
Fig. 3
3 shows a perspective representation of the distribution of the local heat transfer coefficient for a blowing system containing slot nozzles with vertically incident nozzle jets (α max / α min = 1.7),
Fig. 4
2 shows a perspective representation of the distribution of the local heat transfer coefficient for an inventive blowing system with inclined slot nozzles (α max / α min = 1.2),
Fig. 5
2 shows a perspective view of the nozzle base with slot nozzles of different inclinations,
Fig. 6
a plan view of the nozzle bottom with different embodiments of slot nozzles,
Fig. 7
a detailed perspective view of two different embodiments of the slot nozzles, and
Fig. 8
Detailed views of further embodiments of the slot nozzles.

Die aus Fig. 1 ersichtliche, allgemein durch das Bezugszeichen 10 angedeutete Vorrichtung zur gleichmäßigen Beaufschlagung der beiden Stirnflächen eines Metallbandbundes, insbesondere eines Aluminiumband-Bundes 12, weist ein allseitiges geschlossenes Gehäuse mit einem Boden 14, zwei hohlen, als Beblasungskammern ausgebildeten Seitenwänden 16, 18 und einem Deckel 20 auf, in den ein als Antrieb des umgewälzten Gasstromes dienender Radialventilator 22 integriert ist.The device for uniform loading of the two end faces of a metal band bundle, in particular an aluminum band bundle 12, which is shown in FIG. 1 and is generally indicated by the reference numeral 10, has an all-round closed housing with a bottom 14, two hollow side walls 16, 18 designed as blowing chambers and a cover 20, in which a radial fan 22 serving as a drive for the circulated gas flow is integrated.

Der Bandbund 12 wird durch Stützen 24 so gehalten, daß seine beiden Stirnflächen den Seitenwänden 16 und 18 zugewandt sind.The band 12 is held by supports 24 so that its two end faces face the side walls 16 and 18.

Die beiden weiteren, in Fig. 1 nicht dargestellten Seitenwände können durch Türen verschlossen werden und dienen zur Beschickung dieses "Kammerofens" 10.The two further side walls, not shown in FIG. 1, can be closed by doors and serve to load this "chamber furnace" 10.

In die Innenflächen der beiden Seitenwände 16 und 18 sind sternförmig angeordnete Schlitzdüsen 26 integriert, die sich von einem gemeinsamen Mittelpunkt strahlenförmig nach außen erstrecken. Es ist vorteilhaft, den Bandbund 12 so anzuordnen, daß seine Achse 27 möglichst genau durch diese Mittelpunkte 29 geht, also zur strahlenförmigen Düsenanordnung konzentrisch ist. Die durch die Schlitzdüsen 26 bedeckte Fläche der Seitenwände 16, 18 soll im folgenden als "Düsenboden" bezeichnet werden.In the inner surfaces of the two side walls 16 and 18, slot-shaped nozzles 26 are integrated, which extend radially outwards from a common center. It is advantageous to arrange the band collar 12 in such a way that its axis 27 passes through these center points 29 as precisely as possible, that is to say it is concentric with the radial nozzle arrangement. The area of the side walls 16, 18 covered by the slot nozzles 26 will be referred to below as the “nozzle bottom”.

Diese Schlitzdüsen 26 liegen also in einer gemeinsamen, durch die Innenfläche der Seitenwände 16, 18 gebildeten Ebene. Auch ihre Düsenöffnungen liegen zumindest näherungsweise in einer Ebene, wobei die Richtung der aus den Düsenöffnungen austretenden Gasströme gegen die Ebene, in der die Düsenöffnungen liegen, geneigt ist.These slot nozzles 26 thus lie in a common plane formed by the inner surface of the side walls 16, 18. Their nozzle openings also lie at least approximately in one plane, the direction of the gas streams emerging from the nozzle openings being inclined towards the plane in which the nozzle openings lie.

Fig. 5 zeigt in perspektivischer Ansicht den durch das Bezugszeichen 28 angedeuteten Düsenboden, aus dem die einzelnen Schlitzdüsen 26 mit jeweils unterschiedlicher Neigung vorstehen, wie man aus den eingezeichneten Winkeln erkennen kann.5 shows a perspective view of the nozzle base indicated by reference numeral 28, from which the individual slot nozzles 26 each project with different inclinations, as can be seen from the angles shown.

In der Mitte des Düsenbodens 28 befindet sich ein kreisförmiger Bereich mit dem Durchmesser Di, der ausgespart ist, d.h., in diesem Bereich 29 sind keine Schlitzdüsen 26 vorgesehen. Die Schlitzdüsen 26 erstrecken sich strahlenförmig vom Rand des kreisförmigen Bereiches 25 mit dem Durchmesser Di radial nach außen, wobei sowohl die Winkel zwischen den einzelnen Schlitzdüsen 26 als auch die Neigung der Schlitzdüsen in Bezug auf den Düsenboden 28 unterschiedlich sein können.In the middle of the nozzle base 28 there is a circular area with the diameter D i which is left blank, ie no slot nozzles 26 are provided in this area 29. The slot nozzles 26 extend radially outward from the edge of the circular region 25 with the diameter D i , both the angles between the individual slot nozzles 26 and the inclination the slot nozzles can be different with respect to the nozzle bottom 28.

Die radial äußeren Enden der Schlitzdüsen 26 liegen auf einem Kreis mit dem Durchmesser Da.The radially outer ends of the slot nozzles 26 lie on a circle with the diameter D a .

Fig. 6 zeigt eine Draufsicht auf unterschiedliche Ausführungsformen der Schlitzdüsen, und zwar im Sektor I schlitzförmige Öffnungen mit veränderlicher Breite in radialer Richtung, im Sektor II Schlitzdüsen mit unterschiedlicher Erstreckung in radialer Richtung, im Sektor III Schlitzdüsen mit unterschiedlichen Winkeln zwischen den einzelnen Strahlen und schließlich im Sektor IV eine Ausführungsform, bei der statt der schlitzförmigen Düsenöffnung mehrere, in radialer Richtung verlaufende Lochdüsenreihen verwendet werden.Fig. 6 shows a plan view of different embodiments of the slot nozzles, namely in sector I slot-shaped openings with variable width in the radial direction, in sector II slot nozzles with different extensions in the radial direction, in sector III slot nozzles with different angles between the individual jets and finally in sector IV an embodiment in which a plurality of rows of perforated nozzles running in the radial direction are used instead of the slot-shaped nozzle opening.

Fig. 7 zeigt eine Detailansicht einer Modifikation, bei der die Öffnungen der Schlitzdüsen "verwunden" sind, d.h., die Neigung der Schlitzdüsen 26 ändert sich mit dem Radius, wodurch sich eine gekrümmte Schlitzachse ergibt.Fig. 7 shows a detailed view of a modification in which the openings of the slot nozzles are "twisted", i.e. the inclination of the slot nozzles 26 changes with the radius, resulting in a curved slot axis.

Fig. 8 zeigt zwei Ausführungsformen, bei denen in die schlitzförmigen Düsenöffnungen Strömungsleiteinrichtungen 30 integriert sind, die wiederum der Einströmrichtung angepaßt sind. Diese Strömungsleiteinrichtungen 30 sind entweder gerade (rechte Variante) oder z.B. bei schräger Zuströmung in deren Richtung gebogen (linke Variante).8 shows two embodiments in which flow guiding devices 30 are integrated in the slot-shaped nozzle openings, which in turn are adapted to the inflow direction. These flow control devices 30 are either straight (right variant) or e.g. bent in the direction of inclined inflow (left variant).

Bei der bspw. aus Fig. 5 ersichtlichen Ausführungsform beträgt der Winkel zwischen den einzelnen Schlitzdüsen 26 etwa 45°.In the embodiment shown in FIG. 5, for example, the angle between the individual slot nozzles 26 is approximately 45 °.

Durch die Neigung der Schlitzdüsen 26 gegenüber dem Düsenboden 28 sind die aus den schlitzförmigen Düsen öffnungen austretenden Schlitzstrahlen ebenfalls gegenüber dem Düsenboden 28 geneigt.Due to the inclination of the slot nozzles 26 with respect to the nozzle bottom 28, these are from the slot-shaped nozzles openings emerging slot slits also inclined relative to the nozzle bottom 28.

Der sich in Richtung des Pfeils drehende Radialventilator 22 erzeugt einen Luftstrom, der zunächst nach außen strömt und dann in Richtung der Pfeile nach unten in die hohlen Seitenwände 16, 18 umgelenkt wird. Anschließend tritt dieser Gasstrom aus den hohlen Seitenwänden 16, 18, nämlich aus den Schlitzdüsen 26, aus und beaufschlagt die Stirnflächen des Bandbundes 12. Diese Stirnflächen verlaufen parallel zu den Düsenböden 28, d.h., die Schlitzdüsen 26 sind gegenüber den Stirnflächen des Bandbundes 12 geneigt.The radial fan 22 rotating in the direction of the arrow generates an air flow which initially flows outward and is then deflected downward into the hollow side walls 16, 18 in the direction of the arrows. This gas stream then emerges from the hollow side walls 16, 18, namely from the slot nozzles 26, and acts on the end faces of the band collar 12. These end surfaces run parallel to the nozzle bottoms 28, i.e. the slot nozzles 26 are inclined relative to the end surfaces of the band collar 12.

Der Neigungswinkel zwischen dem Düsenboden 28 und den Schlitzdüsen 26 wird zweckmäßigerweise so ausgewählt, daß er dem Drehsinn des Wirbels entspricht, der sich bei üblicher Beschickung der Kammern in den Seitenwänden 16, 18 mittels des in die Ofendecke 20 eingebauten Radialventilators 22 bei üblichen Kammerofenkonstruktionen ergibt . Durch die Abstimmung der Neigung auf die Drehrichtung dieses Wirbels wird noch erreicht, daß alle Schlitzdüsen 26 etwa mit der gleichen Richtung angeströmt werden, was im Hinblick auf eine dem Querschnitt dieser Schlitzdüsen 26 möglichst genau entsprechende Mengenverteilung vorteilhaft ist.The angle of inclination between the nozzle base 28 and the slot nozzles 26 is expediently selected so that it corresponds to the direction of rotation of the vortex which results from the usual loading of the chambers in the side walls 16, 18 by means of the radial fan 22 built into the furnace ceiling 20 in the case of conventional chamber furnace designs. By coordinating the inclination to the direction of rotation of this vortex, it is achieved that all slot nozzles 26 are flowed in approximately in the same direction, which is advantageous with regard to a quantity distribution that corresponds as closely as possible to the cross section of these slot nozzles 26.

Durch die Neigung der Schlitzstrahlen gegenüber den Stirnflächen des Bandbundes 12 in die gleiche Richtung entsteht auf den beblasenen Stirnflächen eine Strömung, die mit derjenigen in einem Wirbel verglichen werden kann.Due to the inclination of the slit jets in relation to the end faces of the band collar 12 in the same direction, a flow arises on the blown end faces, which can be compared with that in a vortex.

Der mit der neuen Ausgestaltung erzielte Vorteil im Vergleich mit herkömmlichen Beblasungseinrichtungen soll im folgenden unter Bezugnahme auf die Figuren 2 bis 4 beschrieben werden.The advantage achieved with the new design in comparison with conventional blowing devices will be described below with reference to FIGS. 2 to 4.

Fig. 2 zeigt eine perspektivisch dargestellte Verteilung der örtlichen Wärmeübergangskoeffizienten für ein aus eines einzelnen Lochdüsen bestehendes Beblasungssystem. Bezogen auf die Achse der Düsenstrahlen (in Fig. 2 sind drei Düsenstrahlen angedeutet) ergibt sich für die Wärmeübergangsverteilung eine Kurve, die im Querschnitt einem Vulkankrater gleicht. Im Staupunkt bildet sich ein relatives Minimun, das von einem dem Kraterrand entsprechenden Maximalwert umgeben ist. Das Verhältnis von maximalen zu minimalen Wärmeübergangskoeffizienten beträgt etwa 1,9.2 shows a perspective distribution of the local heat transfer coefficients for a blowing system consisting of a single perforated nozzle. Relative to the axis of the nozzle jets (three nozzle jets are indicated in FIG. 2), there is a curve for the heat transfer distribution which is similar in cross section to a volcanic crater. A relative minimun is formed at the stagnation point, which is surrounded by a maximum value corresponding to the crater rim. The ratio of maximum to minimum heat transfer coefficients is approximately 1.9.

Fig. 3 zeigt eine entsprechende, perspektivische Darstellung der Verteilung des örtlichen Wärmeübergangskoeffizienten für ein Schlitzdüsensystem, das senkrecht auftreffende Düsenstrahlen erzeugt. Es ergibt sich ein ähnlicher Verlauf wie bei Fig. 2. Auch hier ist die Verteilung des Wärmeübergangskoeffizienten über der beaufschlagten Stirnfläche eines Bandbundes noch sehr ungleichmäßig. Das Verhältnis von maximalem zu minimalem Wärmeübergangskoeffizienten beträgt etwa 1,7.FIG. 3 shows a corresponding, perspective representation of the distribution of the local heat transfer coefficient for a slot nozzle system which generates vertically incident nozzle jets. The course is similar to that of FIG. 2. Here, too, the distribution of the heat transfer coefficient over the end face of a band bundle is very uneven. The ratio of maximum to minimum heat transfer coefficient is approximately 1.7.

Fig. 4 zeigt schließlich eine perspektivische Darstellung der Verteilung des örtlichen Wärmeübergangskoeffizienten für ein Beblasungssystem mit geneigten Schlitzdüsen. Hierbei ergibt sich ein extrem gleichmäßiger Wärmeübergangskoeffizient, d.h., das Verhältnis von maximalem zu minimalem Wert beträgt nur noch 1,2.4 finally shows a perspective representation of the distribution of the local heat transfer coefficient for a blowing system with inclined slit nozzles. This results in an extremely uniform heat transfer coefficient, i.e. the ratio of the maximum to the minimum value is only 1.2.

Müßte bspw. eine Beblasung mit einem maximalen Wärmeübergang von 170W/(m² K) erreicht werden, so würde der höchstzulässige, mittlere Wärmeübergangskoeffizient für das Lochdüsensystem 110W/(m² K), für das Schlitzdüsensystem mit senkrecht auftreffenden Düsenstrahlen 130W/(m² K) und für das neue Beblasungssystem mit den geneigten Schlitzdüsen 160W/(m² K) betragen.If, for example, blowing should be achieved with a maximum heat transfer of 170W / (m² K), the maximum permissible average heat transfer coefficient would be 110W / (m² K) for the perforated nozzle system, 130W / (m² K) for the slotted nozzle system and for the new blowing system with the inclined slot nozzles are 160W / (m² K).

Claims (10)

  1. Apparatus for evenly directing a gas onto a flat surface of a workpiece, in particular of the two front faces of a strip coil, consisting of a housing which is closed all round and has a bottom (14) and two hollow side walls (16 and 18) formed as blowing chambers, the inner surfaces of the side walls (16, 18) forming a stationary nozzle bottom (28) with slot-like nozzle openings in which the longitudinal axes of the slot-like nozzle openings are arranged radially and the direction of inclination of the nozzle openings is such that the direction of the gas flows emerging from the nozzle openings is inclined in the same sense with respect to the plane in which the nozzle openings lie.
  2. Apparatus according to claim 1, characterized in that the nozzle openings (26) have different cross-sections in the radial direction.
  3. Apparatus according to claim 2, characterized in that the cross-sections of the slot-like nozzle openings (26) increase linearly radially outwardly from the central region (25).
  4. Apparatus according to any one of claims 1 to 3, characterized in that the slot-like nozzle openings (26) are inclined with respect to the stationary nozzle bottom (28) in such a manner that the inclination of the emerging flow varies in radial direction along the nozzle openings (26).
  5. Apparatus according to any one of claims 1 to 4, characterized in that the slot-like nozzle openings (26) have different lengths in the radial direction.
  6. Apparatus according to any one of claims 1 to 5, characterized in that the angles between the radially arranged longitudinal axes of the nozzle outlet cross-sections are unequal.
  7. Apparatus according to any one of claims 1 to 6, characterized in that the slot-like radially extending nozzle openings (26) are each formed by a single longitudinal slot.
  8. Apparatus according to any one of claims 1 to 6, characterized in that the slot-like nozzle openings (26) are formed constructionally by hole rows.
  9. Apparatus according to any one of claims 1 to 8, characterized in that in or upstream of the slot-like nozzle openings (26) flow guide means (30) are disposed.
  10. Apparatus according to any one of claims 1 to 9, characterized in that the nozzle bottom (28) comprises a closed central region (25).
EP86100915A 1985-01-30 1986-01-23 Apparatus for evenly directing a gas towards a flat surface Expired - Lifetime EP0189855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86100915T ATE73863T1 (en) 1985-01-30 1986-01-23 DEVICE FOR UNIFORM APPLICATION TO A FLAT SURFACE WITH A GAS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3503089 1985-01-30
DE19853503089 DE3503089A1 (en) 1985-01-30 1985-01-30 DEVICE FOR EVENLY APPLYING A TARGET SURFACE WITH A GAS

Publications (3)

Publication Number Publication Date
EP0189855A2 EP0189855A2 (en) 1986-08-06
EP0189855A3 EP0189855A3 (en) 1988-09-21
EP0189855B1 true EP0189855B1 (en) 1992-03-18

Family

ID=6261175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100915A Expired - Lifetime EP0189855B1 (en) 1985-01-30 1986-01-23 Apparatus for evenly directing a gas towards a flat surface

Country Status (6)

Country Link
US (1) US4736529A (en)
EP (1) EP0189855B1 (en)
JP (1) JPS61201734A (en)
AT (1) ATE73863T1 (en)
CA (1) CA1240507A (en)
DE (2) DE3503089A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413438A (en) * 1986-03-17 1995-05-09 Turchan; Manuel C. Combined hole making and threading tool
AT399164B (en) * 1992-12-04 1995-03-27 Ebner Ind Ofenbau DEVICE FOR SUPPLYING PLANNER WORKPIECE SURFACES WITH A GAS, IN PARTICULAR THE FACE SURFACES OF A TAPE BAND IN A CHAMBER OVEN
DE4243127A1 (en) * 1992-12-19 1994-06-23 Gautschi Electro Fours Sa Method and device for heat treatment of heat material in an industrial furnace
US5553394A (en) * 1995-05-11 1996-09-10 Reliance/Comm Tech Corporation Radial jet reattachment nozzle heat sink module for cooling electronics
DE19650965C1 (en) 1996-12-07 1998-08-13 Kramer Carl Device for uniformly applying a fluid to a flat surface of a workpiece
US5937536A (en) * 1997-10-06 1999-08-17 Pharmacopeia, Inc. Rapid drying oven for providing rapid drying of multiple samples
WO2003078665A2 (en) 2002-03-15 2003-09-25 Rolf-Josef Schwartz Method and device for convective heat transfer between a heat transfer medium and the surface of a workpiece
US7832177B2 (en) 2002-03-22 2010-11-16 Electronics Packaging Solutions, Inc. Insulated glazing units
DE102004028236B3 (en) * 2004-06-11 2005-11-17 Rolf-Josef Schwartz Assembly for heating workpieces before shaping in a press, e.g. high tensile steel sheets for automobile bodywork components, has a kiln with a jet field and fans to give the workpieces a convective heating action
US9328512B2 (en) 2011-05-05 2016-05-03 Eversealed Windows, Inc. Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit
ITMI20111092A1 (en) * 2011-06-17 2012-12-18 Eagle Tech S R L REFINED HOOD FOR THE CONTROLLED COOLING OF EXTRUDED ALUMINUM PROFILES OR OTHER METALS OUTPUT FROM THE EXTRUSION LINE.
DE102011056823A1 (en) * 2011-12-21 2013-06-27 Thyssen Krupp Steel Europe AG A nozzle device for a furnace for heat treating a flat steel product and equipped with such a nozzle device furnace
DE102014106135A1 (en) * 2014-04-30 2015-11-05 Thyssenkrupp Ag Nozzle device and method for treating a flat steel product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB878497A (en) * 1957-02-13 1961-10-04 Lee Wilson Method of and apparatus for annealing strip metals
GB1266956A (en) * 1968-04-30 1972-03-15
DE2345734A1 (en) * 1973-09-11 1975-03-20 Peters Ag Claudius RUST PLATE FOR REFRIGERATING AND BURNING GRATES
US3849906A (en) * 1973-11-07 1974-11-26 Ibm Rotary fluid applicator
US3887135A (en) * 1973-11-15 1975-06-03 Shigetake Tamai Gas-atomizing nozzle by spirally rotating gas stream
DE2454202A1 (en) * 1974-11-15 1976-05-26 Kloeckner Humboldt Deutz Ag Cooler grate plate, esp. for cooling cement clinker - made of metal box-frame contg. refractory layer and air holes
US4030712A (en) * 1975-02-05 1977-06-21 Alco Standard Corporation Method and apparatus for circulating a heat treating gas
DD124937A1 (en) * 1975-11-20 1977-03-23
US4155701A (en) * 1977-09-26 1979-05-22 The Trane Company Variable capacity burner assembly
US4261517A (en) * 1979-11-23 1981-04-14 General Electric Company Atomizing air metering nozzle

Also Published As

Publication number Publication date
EP0189855A3 (en) 1988-09-21
EP0189855A2 (en) 1986-08-06
DE3503089C2 (en) 1988-12-08
DE3684339D1 (en) 1992-04-23
JPH0218365B2 (en) 1990-04-25
CA1240507A (en) 1988-08-16
DE3503089A1 (en) 1986-07-31
ATE73863T1 (en) 1992-04-15
JPS61201734A (en) 1986-09-06
US4736529A (en) 1988-04-12

Similar Documents

Publication Publication Date Title
EP0189855B1 (en) Apparatus for evenly directing a gas towards a flat surface
DE4336364C2 (en) Device for heating or cooling tabular or band-shaped items to be treated made of glass or ceramic material
EP0336120A2 (en) Apparatus for heat treating and/or drying a running web
EP0028025A1 (en) Method and device for the production of microdroplets of liquid
DE2253487A1 (en) DEVICE FOR PERFORMING A HEAT TREATMENT ON COVERS ON A CONTINUOUSLY FORWARDING TRAIL, IN PARTICULAR SHEET METAL
DE3616328C2 (en)
DE2623425C3 (en) Device for cooling a parison mold
DE4225970C1 (en) Honeycomb body powder coating - uses recirculating carrier gas with powder vol. through the honeycomb channels
WO1998023397A2 (en) Device for cooling extruded profiles
DE2725275B2 (en) Method and device for the heat treatment of objects, in particular thin-walled glass bodies
DE1652395C3 (en) Process and device for the continuous enamel coating of wire
DE3815211A1 (en) PAPER TREATMENT DEVICE
DE3815209C2 (en)
DE19538364C2 (en) Device for rapid heating of metal press bolts
CH656696A5 (en) METHOD AND DEVICE FOR INTENSE HEAT AND / OR MASS TRANSFER, PARTICULARLY IN furnaces.
DE2553069C3 (en) Slot nozzle for producing a polymer film of uniform thickness
CH663222A5 (en) SPINNING MACHINE FOR CHEMICAL FIBERS.
DE3802475A1 (en) Vertical oven device for heating wire-type products
DE3229471C2 (en) Cooling system for a rotating roller
EP2589909A2 (en) Device for heating or drying of elongated materials
EP0508254A1 (en) Process and apparatus for heat treatment of a web having a fluid or paste-like composition applied to it
EP0971191A2 (en) Process and apparatus for heating goods by a heated gas
DE1596632B1 (en) Method and device for hardening sheet glass
EP0652412B1 (en) Industrial furnace for the thermic treatment of a load in a treatment chamber
DE4329646C2 (en) Ventilation component with a device for mixing air flowing through this component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890301

17Q First examination report despatched

Effective date: 19900914

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 73863

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3684339

Country of ref document: DE

Date of ref document: 19920423

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: OTTO JUNKER GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: OTTO JUNKER GMBH TE SIMMERATH, BONDSREPUBLIEK DUIT

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;OTTO JUNKER GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050128

Year of fee payment: 20

Ref country code: FR

Payment date: 20050128

Year of fee payment: 20

Ref country code: CH

Payment date: 20050128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20050131

Year of fee payment: 20

Ref country code: AT

Payment date: 20050131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050330

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060123

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20060123

BE20 Be: patent expired

Owner name: *OTTO JUNKER G.M.B.H.

Effective date: 20060123