EP0187078B1 - Kühl- oder Wärmepumpvorrichtung - Google Patents

Kühl- oder Wärmepumpvorrichtung Download PDF

Info

Publication number
EP0187078B1
EP0187078B1 EP85402388A EP85402388A EP0187078B1 EP 0187078 B1 EP0187078 B1 EP 0187078B1 EP 85402388 A EP85402388 A EP 85402388A EP 85402388 A EP85402388 A EP 85402388A EP 0187078 B1 EP0187078 B1 EP 0187078B1
Authority
EP
European Patent Office
Prior art keywords
hot
cold
magnetic means
contact
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402388A
Other languages
English (en)
French (fr)
Other versions
EP0187078A1 (de
Inventor
Robert Beranger
Gérard Claudet
Alain Lacaze
Ambert Lacaze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0187078A1 publication Critical patent/EP0187078A1/de
Application granted granted Critical
Publication of EP0187078B1 publication Critical patent/EP0187078B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a refrigeration or heat pumping device. This invention applies to refrigeration, especially at very low temperatures, as well as to heat pumping.
  • thermodynamic cycle in which a certain amount of heat Q 2 is borrowed from a cold source at a temperature T 2 , while another quantity of heat Qi is returned to a hot source at a temperature Ti greater than T 2 .
  • the most classic thermodynamic cycle in refrigeration or heat pumping is the Carnot cycle.
  • the Carnot cycle is difficult to implement in refrigeration or heat pumping installations, because of the problems posed by the heat exchanges between the hot and cold sources and the refrigerating substance.
  • the main drawback resulting from these problems is the very low efficiency of refrigeration or heat pumping installations. This is the case for example of the installations described in patents EP-A 0 104 713 and FR-A 2 525 748.
  • the efficiency of this refrigerator is low because it does not have valves to control heat transfer between the cold source and the paramagnetic substance and between the hot source and the paramagnetic substance element.
  • the present invention aims to remedy these drawbacks and in particular to produce a refrigeration or heat pumping device, using magnetic means acting on an element of paramagnetic substance, this device operating cyclically according to a Carnot cycle and having a much higher yield than any known installation.
  • the device is characterized in that the element of paramagnetic substance has the form of a ring whose axis constitutes said axis and which consists of slices of paramagnetic substance thermally insulated from each other, the magnetic means being located opposite at least part of the paramagnetic substance ring and means for producing a rotational movement of the magnetic means around said axis if the ring occupies a fixed position, or for producing a rotational movement of the ring around said axis if the magnetic means occupy a fixed position, the valves (35, 40) being constituted by elements of thermally insulating substance arranged to be periodically opposite the ends of the wafers (23) of paramagnetic substance so that the wafers ( 23) are thus in periodic contact with the hot source and the cold source.
  • the hot source is constituted by a "hot" fluid at the first temperature T i , this fluid being contained in an upper reservoir placed above the element of paramagnetic substance, so that the hot fluid is in contact with the paramagnetic substance element when the upper valve is open, and in that the cold source consists of a "cold” fluid contained in a lower reservoir placed below the substance, so that the cold fluid either in contact with the element when the lower valve is open.
  • the upper valve comprises a thermally insulating upper disc, in contact with the hot fluid, connected to rotary drive means and having at least one opening facing the magnetic means, the rotation of this upper disc being synchronous with the rotation of the magnetic means.
  • the lower valve comprises a thermally insulating lower disk, in contact with the cold fluid, connected to means for driving in rotation and having at least one opening, this opening not being opposite magnetic means, the rotation of the lower disc being synchronous with the rotation of the magnetic means.
  • the upper valve comprises an upper thermally insulating disc in contact with the hot fluid, having at least one opening facing the magnetic means.
  • the lower valve comprises a lower disc, thermally insulating, in contact with the cold fluid and having at least one opening, this opening not being opposite magnetic means.
  • the lower valve is constituted by an element of insulating substance, connected to displacement means, for controlling, in relation to each magnetization or demagnetization, either the contact of the cold fluid with the element of paramagnetic substance when the lower valve is open, i.e. the prohibition of this contact when the lower valve is closed.
  • the upper valve is constituted by an element of thermally insulating substance connected to displacement means for controlling, in relation to each magnetization or demagnetization of the paramagnetic substance, either the contact of the hot fluid with the element of substance paramagnetic when the upper valve is open, i.e. the prohibition of this contact when the valve is closed.
  • the device further comprises thermal insulation means surrounding the element of paramagnetic substance except facing the hot and cold sources.
  • the magnetic means are constituted by superconductive magnets or by a permanent magnet.
  • FIG. 2 shows schematically and in section, a first embodiment of the device of the invention.
  • This device comprises an element 1 of paramagnetic substance, consisting for example of a garnet of gadolinium and gallium; this element is placed between a hot source 2 at a temperature T 1 and a cold source 3 at a temperature T 2 ; the sources can be constituted by one or more liquid or gaseous fluids contained in upper 4 and lower 5 reservoirs. These fluids can optionally be cryogenic fluids.
  • the device also comprises magnetic means 6, 7, which can be at least a portion of a torus, which make it possible to cause the magnetizations and demagnetizations defined above and allowing the hot and cold sources to evolve thermally according to the Carnot cycle.
  • the element 1 of paramagnetic substance, the cold source 3 and the hot source 2 are arranged along the same vertical axis 8, the cold source 3 being below the element 1 of paramagnetic substance and the hot spring 2 being above this element.
  • the hot and cold sources as well as the paramagnetic substance are on the same axis, but of any orientation, for example horizontal.
  • the magnetic means 6, 7, which will be described later in detail, are placed at least periodically, opposite the element 1 of paramagnetic substance, to create the variable field allowing the magnetizations and demagnetizations defined above.
  • the device also comprises means of thermal insulation, such as insulating walls 9, 10, surrounding the element 1 of paramagnetic substances, except facing the hot and cold sources.
  • the thermal insulating elements used in the device of the invention can consist of stainless steel walls between which a molecular vacuum prevails, or by glass fiber with an epoxy resin.
  • the fluid at temperature Ti, contained in the upper reservoir 4 and constituting the hot source will be qualified as "hot” fluid, while the fluid at temperature T 2 , contained in the lower reservoir 3 and constituting the cold source, will be qualified of "cold" fluid.
  • the magnetic means 6, 7 can be produced in different ways: these means can be constituted respectively by electromagnets controlled respectively by generators 11, 12, of variable currents, to cause the magnetizations and successive demagnetizations defined above.
  • electromagnets can moreover be electromagnets of the superconductive type. They occupy a fixed position opposite element 1 of paramagnetic substance.
  • the magnetic means 6, 7 can also be constituted respectively by permanent magnets or by magnetic coils with constant field, mechanically connected and respectively, with means 13, 14 which make it possible to move them parallel to the axis 8, so to cause the magnetizations and demagnetizations defined above, of the paramagnetic substance 1.
  • These displacements can be periodic, so that in this case, the magnetic means are periodically opposite the element 1 of paramagnetic substance.
  • the magnetization and demagnetization of the paramagnetic substance 1 will be caused either by an adjustment of the currents delivered by the current generators 11, 12, or by the alternating movement of the magnetic means 6, 7 along element 1 of paramagnetic substance.
  • the device also comprises lower and upper valves, located respectively between the cold source 3 and the element of paramagnetic substance 1 and between the hot source 2 and the element of paramagnetic substance 1. These valves are closed during demagnetization and during l 'adiabatic magnetization; the upper valve is closed and the lower valve is open, during the isothermal demagnetization of the paramagnetic substance, while the upper valve is open and the lower valve is closed, during the isothermal magnetization of this substance.
  • the upper and lower mechanical valves consist respectively of the elements 15, 16, of thermally insulating substance; these valves are capable, in the closed position, of avoiding any thermal contact between the corresponding fluids and the element 1 of paramagnetic substance; these elements of insulating substance, when placed in the "open" position on the contrary allow the establishment of thermal contact between each of the fluids and the element 1 of paramagnetic substance.
  • Closing the valves formed by the elements 15, 16 of insulating substance amounts to bringing these elements into contact with the element 1 of paramagnetic substance.
  • the opening of these valves amounts to distancing these elements from the element 1 of paramagnetic substance, in order to bring them respectively to positions 17 or 18 for example.
  • the hot or cold fluids are in contact with the element 1 of paramagnetic substance.
  • the elements 15, 16 which respectively constitute the upper and lower valves are respectively connected to displacement means 19, 20; these means control the opening or closing of the valves, by moving away or bringing the elements 15, 16 closer to the element 1 of paramagnetic substance.
  • FIG. 3 schematically represents in a, b, c, d, e, some variants of the first embodiment of the device of the invention.
  • the same elements have the same references in this figure and in Figure 2.
  • Figure 3a it is assumed that the element 1 of paramagnetic substance, as well as the valves 15, 16, are arranged along the same horizontal axis .
  • the reservoir 4 containing the hot fluid and the reservoir 5 containing the cold fluid.
  • valves of mechanical type, constituted by a thermal insulator, as well as the element 1 of paramagnetic substance, are arranged along the same axis. vertical.
  • the means for guiding the valves consist of springs R1, R2.
  • these guide means consist of axes circulating in mechanical bearings P1, P2.
  • the guide means are constituted by a frictionless system constituted by permanent magnets A1, A2, circulating in superconductive coils B1, B2.
  • valves 15, 16 of which the guide means have not been shown consist of a thermally insulating substance. These valves have a conical shape at their base and are pierced with an opening. This conical shape and this opening make it possible to activate convection at boiling, on the side of the hot source contained in the tank 4, and promote the flow of the condensed liquid on the side of the cold source contained in the tank 5.
  • Figures 4 and 5 schematically show a cross section in perspective of a second embodiment of the device of the invention.
  • the paramagnetic substance element is represented at 21; this element which appears better in FIG. 4 has the shape of a ring whose axis is represented at 22; this ring consists of sections 23, thermally insulated from each other by layers 24 of thermal insulation.
  • the upper 25 and lower 26 tanks have a shape which is at least partially annular; as in the previous embodiment, the hot fluid is contained in the upper reservoir 25, while the cold fluid is contained in the lower reservoir 26.
  • the magnetic means can be constituted by coils or by permanent magnets 27, 28, 29, 30 which are not shown here in detail.
  • the element 21 of paramagnetic substance is surrounded by thermal insulation means which can be constituted, here, for example, by certain parts of the walls of the tanks 25, 26.
  • the hot and cold sources are arranged on either side of the element 21 of paramagnetic substance, the hot source being located above this element and the cold source being located below.
  • the magnetic means 27, 28, 29, 30 are located opposite at least part of the ring 21 of paramagnetic substance, and they are connected to means 31 to drive them in rotation about the axis 22; these means can for example be a motor driving the shaft 32 made integral with the magnetic means 27, 28, 29, 30, by rods 31, 33, 34.
  • the valves consist of elements of thermally insulating substance, moving opposite the ends of the slices of paramagnetic substance which are thus in periodic contact with the hot and cold fluids, when these valves are open.
  • the upper valve therefore comprises an upper disc 35, thermally insulating, in contact with the hot fluid contained in the reservoir 25; this disc is connected by a rod 36 to rotary drive means which can be the same as those which drive the magnetic means 27, 28, 29, 30.
  • This upper disc 35 has openings 38, 39, which are located opposite magnetic means 27, 28, 29, 30 and which have a surface greater than that of the corresponding end of a wafer 23 of paramagnetic substance. The rotation of this upper disc 35 is synchronous with the rotation of the magnetic means 27, 28, 29, 30.
  • the arrangement of the openings 38, 39 relative to the magnetic means allows these openings to act as an open valve; the opening and closing of the valve thus occur at an appropriate time, in relation to the magnetization or demagnetization caused by the rotation of the magnetic means, so that each slice of paramagnetic substance in the ring 21 changes thermally according to the cycle de Carnot described above.
  • the lower valve comprises, in the vicinity of the element 21 of paramagnetic substance, a thermally insulating lower disc 40 in contact with the cold fluid; this lower disc is connected to drive means which may for example be constituted by the rotating shaft 32 made integral with the disc 40, by the rod 41.
  • the rotation of this disc is synchronous with that of the magnetic means 27, 28, 29, 30; it also includes openings 42, 43, which are not located opposite the magnetic means. In fact, as with the upper disc, these openings act as open valves.
  • the course of the Carnot cycle requires that the lower and upper valves be closed simultaneously, or that when one of the valves is open, the other is closed.
  • the magnetic means 27, 28, 29, 30 make it possible, thanks to their rotation, to ensure the successive magnetizations and demagnetizations of the different sections 23 of the ring 21, so that in relation to the openings and closings of the valves described more high, the device operates according to the Carnot cycle.
  • Figure 6 schematically shows a cross section of a third embodiment of the device of the invention.
  • FIG. 7 shows schematically and in perspective, some of the elements involved in this third embodiment.
  • the element of paramagnetic substance is represented at 21 and, as in the previous embodiment, this element has the form of a ring whose axis is represented at 22.
  • This ring consists of sections 23, thermally insulated one from the other others by layers 24 of thermal insulation.
  • the upper 25 and lower 26 reservoirs have a shape which is at least partially annular and contain respectively the hot fluid and the cold fluid constituting the hot and cold sources.
  • Magnetic means can be cons titled, as in the previous embodiment, by coils, superconductive for example ..-, or by permanent magnets 27, 28, 29, 30.
  • the element 21 of paramagnetic substance is surrounded by myens of insulation thermal which can be constituted here too, by certain parts of the walls of the reservoirs 25, 26.
  • the hot and cold sources are arranged on either side of the element 21 of paramagnetic substance, the hot source being located above element 21 and the cold source being located below.
  • the magnetic means 27, 28, 29, 30 are located opposite at least part of the ring 21 of paramagnetic substance and here, these means occupy a fixed position .
  • the ring 21 of paramagnetic substance is connected to means which make it possible to drive it in rotation about the axis 22.
  • These means can be constituted for example by a motor 45, which, thanks to the shafts 46, 47 and pinions 48, 49, allow to rotate the ring, inside the insulating walls of the tanks 25, 26.
  • a motor 45 which, thanks to the shafts 46, 47 and pinions 48, 49, allow to rotate the ring, inside the insulating walls of the tanks 25, 26.
  • the magnetic means 27, 28, 29, 30 make it possible to ensure the successive magnetizations and demagnetizations of the different sections 23 of the ring 21, during the rotation of the latter, so that in relation to the openings and closings valves described above, the device operates according to the Carnot cycle.
  • the mechanical valves consist of elements of insulating substance which are periodically opposite the ends of the wafers 23 paramagnetic substance; these sections are thus in periodic contact with the hot and cold fluids, when these valves are open.
  • the upper valve therefore comprises a thermally insulating upper disc 35, in contact with the hot fluid contained in the reservoir 25.
  • This disc has openings 38, 39 which are located opposite the magnetic means 27, 28 , 29, 30; these openings have a surface close to that of the corresponding end of a wafer 23 of paramagnetic substance.
  • the rotation of the ring 21 of paramagnetic substance as well as the relative arrangement of the openings 38, 39 and the magnetic means 27, 28, 29, 30 make it possible to consider these openings as an open valve, while the other parts of the disc constitute a valve closed.
  • the lower valve comprises, in the vicinity of the element 21 of paramagnetic substance, a thermally insulating lower disc 40, in contact with the cold fluid. This disc as well as the upper disc, occupy a fixed position. It also includes openings 42, 43, which are not located opposite the magnetic means.
  • the drive means could be of different types, in particular, in the second embodiment of the device, it is possible to envisage that the rings 35, 40 are driven in rotation by the magnetic fields created by the means 27, 28, 29, 30, which are themselves driven in rotation. It is also obvious that the number of coils or permanent magnets constituting the magnetic means has been limited to four, but that this number could be different. In particular, this number as well as that of the openings present in the upper and lower rings, could be greater, so as to increase the efficiency of the device. It is also possible to envisage different forms for producing the different slices of paramagnetic substance and, in particular, forms making it possible to obtain greater contact surfaces between the element of paramagnetic substance and the fluids constituting the hot sources and cold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Claims (11)

1. Kühl- oder Wärmepumpvorrichtung, enthaltend:
- ein Element (1) aus einer paramagnetischen Substanz, das zwischen einer Kältequelle (3) und einer Wärmequelle (2) angeordnet ist und eine Achse (22) aufweist,
- magnetische Einrichtungen (6, 7), die in dem Element (1) ein variables Feld erzeugen, um eine adiabatische Entmagnetisierung der paramagnetischen Substanz hervorzurufen, wobei das Magnetfeld von einem ersten Wert HA auf einen zweiten Wert HB übergeht, der niedriger als der erste Wert ist, die Substanz von einer ersten Temperatur Ti auf eine zweite Temperatur T2 übergeht, die niedriger als die erste Temperatur ist, dann um eine isothermische Entmagnetisierung der Substanz bei der zweiten Temperatur T2 hervorzurufen, wobei das Feld von dem zweiten Wert HB auf einen dritten Wert Hc übergeht, der niedriger als der zweite Wert ist, um dann die Substanz adiabatisch zu magnetisieren, wobei das Magnetfeld von dem dritten Wert Hc auf einen vierten Wert Hp übergeht, der größer als der dritte Wert ist, die Substanz von der zweiten Temperatur T2 auf die erste Temperatur Ti übergeht, um dann die Substanz isothermisch bei der ersten Temperatur Ti zu magnetisieren, wobei das Magnetfeld vom vierten Wert HD auf den ersten Wert HA übergeht, wobei das Element (1) aus der paramagnetischen Substanz, die Kältequelle (3) und die Wärmequelle (2) längs der Achse (22) angeordnet sind, die Vorrichtung weiterhin Ventile (35, 40) aufweist, die jeweils zwischen der Kältequelle (3) und dem Element aus der paramagnetischen Substanz und zwischen der Wärmequelle (2) und dem Element (1) aus der paramagnetischen Substanz gelegen sind, welche Ventile während der adiabatischen Entmagnetisierung und der adiabatischen Magnetisierung geschlossen sind, wobei während der isothermen Entmagnetisierung der Substanz das warme Ventil (35) geschlossen und das kalte Ventil (40) geöffnet ist und während der isothermen Magnetisierung der Substanz das warme Ventil (35) geöffnet und das kalte Ventil (40) geschlossen ist, dadurch gekennzeichnet, daß das Element aus der paramagnetischen Substanz die Form eines Rings (21) hat, dessen Mittenachse die genannte Achse (22) bildet und das von Scheiben (23) aus paramagnetischer Substanz gebildet ist, die thermisch voneinander isoliert sind, wobei die magnetischen Einrichtungen (27, 28, 29, 30) wenigstens einem Teil des Rings (21) aus der paramagnetischen Substanz gegenüberliegend angeordnet sind, und mit Einrichtungen (31, 32, 33, 34) zum Erzeugen einer Drehbewegung der magnetischen Einrichtungen um die genannte Achse (22), wenn der Ring eine feste Position einnimmt, oder um eine Drehbewegung des Rings um die genannte Achse (22) zu erzeugen, wenn die magnetischen Einrichtungen eine feste Position einnehmen, wobei die Ventile (35, 40) durch Elemente aus thermisch isolierender Substanz gebildet sind, die so betrieben sind, daß sie periodisch den Enden der Scheiben (23) aus paramagnetischer Substanz gegenüberstehen, so daß die Scheiben (23) so periodisch mit der Kältequelle und der Wärmequelle in Berührung sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Wärmequelle (2) von einem "warmen" Fluid mit der ersten Temperatur Ti gebildet ist, wobei dieses Fluid in einem oberen Behälter (4) enthalten ist, der über dem Element (1) aus paramagnetischer Substanz angeordnet ist, so daß das warme Fluid mit dem Element (1) aus paramagnetischer Substanz in Berührung ist, wenn das obere Ventil (15) offen ist, und daß die Kältequelle (3) von einem "kalten" Fluid gebildet ist, das in einem unteren Behälter (5) enthalten ist, der unterhalb der Substanz (1) angeordnet ist, so daß das kalte Fluid mit dem Element (1) in Kontakt ist, wenn das untere Ventil (16) offen ist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß bei festem Ring das obere Ventil eine thermisch isolierende obere Scheibe (35) enthält, die mit dem warmen Fluid in Berührung ist, mit Einrichtungen (32, 36) für einen Drehantrieb verbunden ist und wenigstens eine Öffnung (38, 39) gegenüber den magnetischen Einrichtungen (27, 28, 29, 30) aufweist, wobei die Drehung dieser oberen Scheibe (35) synchron mit der Drehung der magnetischen Einrichtungen ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das untere Ventil eine thermisch isolierende untere Scheibe (4) enthält, die mit dem kalten Fluid in Berührung ist, mit Drehantriebseinrichtungen (32, 41) verbunden ist und wenigstens eine Öffnung (42, 43) aufweist, die den magnetischen Einrichtungen (27, 28, 29, 30) nicht gegenübersteht, wobei die Drehung der unteren Scheibe (40) synchron mit der Drehung der magnetischen Einrichtungen ist.
5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß bei feststehenden magnetischen Einrichtungen das obere Ventil eine thermisch isolierende Scheibe (35) enthält, die mit dem warmen Fluid in Berührung ist und wenigstens eine Öffnung (38, 39) gegenüber den magnetischen Einrichtungen (27, 28, 29, 30) aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das untere Ventil eine thermisch isolierende untere Scheibe (40) enthält, die mit dem kalten Fluid in Berührung ist und wenigstens eine Öffnung (42, 43) aufweist, die den magnetischen Einrichtungen (27, 28, 29, 30) nicht gegenübersteht.
7. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das untere Ventil (16) von einem Element aus isolierender Substanz gebildet ist und mit Verstelleinrichtungen (20) verbunden ist, um in bezug auf jede Magnetisierung oder Entmagnetisierung entweder die Berührung des kalten Fluides (3) mit dem Element (1) aus paramagnetischer Substanz, wenn das untere Ventil geöffnet ist, oder die Unterbindung dieser Berührung, wenn das untere Ventil geschlossen ist, zu steuern.
8. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das obere Ventil (15) von einem Element aus thermisch isolierender Substanz gebildet ist, das mit Verstelleinrichtungen (19) verbunden ist, um in bezug auf jede Magnetisierung oder Entmagnetisierung der paramagnetischen Substanz entweder die Berührung des warmen Fluides mit dem Element (1) aus paramagnetischer Substanz, wenn das obere Ventil geöffnet ist, oder die Unterbindung dieser Berührung, wenn das Ventil geschlossen ist, zu steuern.
9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie darüber hinaus Einrichtungen (9, 10) zur thermischen Isolierung enthält, die das Element aus paramagnetischer Substanz mit Ausnahme gegenüber den Wärme- und Kältequellen umgeben.
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die magnetischen Einrichtungen (6, 7) von einem Permanentmagneten gebildet sind. 11. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die magnetischen Einrichtungen (6, 7) von Supraleiter-Magneten gebildet sind.
EP85402388A 1984-12-18 1985-12-03 Kühl- oder Wärmepumpvorrichtung Expired EP0187078B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419354 1984-12-18
FR8419354A FR2574913B1 (fr) 1984-12-18 1984-12-18 Dispositif de refrigeration ou de pompage de chaleur

Publications (2)

Publication Number Publication Date
EP0187078A1 EP0187078A1 (de) 1986-07-09
EP0187078B1 true EP0187078B1 (de) 1989-05-24

Family

ID=9310723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402388A Expired EP0187078B1 (de) 1984-12-18 1985-12-03 Kühl- oder Wärmepumpvorrichtung

Country Status (3)

Country Link
EP (1) EP0187078B1 (de)
DE (1) DE3570515D1 (de)
FR (1) FR2574913B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118007A1 (en) * 2014-02-05 2015-08-13 Danmarks Tekniske Universitet An active magnetic regenerator device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785636A (en) * 1986-07-11 1988-11-22 Hitachi, Ltd. Magnetic refrigerator and refrigeration method
US5091361A (en) * 1990-07-03 1992-02-25 Hed Aharon Z Magnetic heat pumps using the inverse magnetocaloric effect
US5156003A (en) * 1990-11-08 1992-10-20 Koatsu Gas Kogyo Co., Ltd. Magnetic refrigerator
JP2933731B2 (ja) * 1991-01-22 1999-08-16 高圧ガス工業株式会社 静止型磁気冷凍機
EP1847788A1 (de) * 2001-12-12 2007-10-24 Astronautics Corporation Of America Magnetische Kühleinrichtung für einen Drehmagneten
WO2003050456A1 (en) * 2001-12-12 2003-06-19 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
US7038565B1 (en) 2003-06-09 2006-05-02 Astronautics Corporation Of America Rotating dipole permanent magnet assembly
US6946941B2 (en) 2003-08-29 2005-09-20 Astronautics Corporation Of America Permanent magnet assembly
WO2005074608A2 (en) 2004-02-03 2005-08-18 Astronautics Corporation Of America Permanent magnet assembly
FR2869403A1 (fr) * 2004-04-23 2005-10-28 Christian Muller Dispositif et procede de generation de thermies a materiau magneto-calorique
WO2005116537A1 (fr) * 2004-05-28 2005-12-08 Nanjing University Procede de realisation de la magnetisation et demagnetisation d'une substance de travail refroidissante magnetique utilisant un circuit magnetique dynamique
EP2108904A1 (de) * 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) Magnetokalorische Vorrichtung, insbesondere ein magnetischer Kühlschrank, eine Wärmepumpe oder ein Stromgenerator
JP5278486B2 (ja) * 2011-04-25 2013-09-04 株式会社デンソー 熱磁気エンジン装置、および可逆熱磁気サイクル装置
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) * 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN113531947B (zh) * 2021-07-16 2022-06-24 华北电力大学 一种能够热回收的脉冲热电制冷的过冷维持装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0104713A2 (de) * 1982-08-31 1984-04-04 Kabushiki Kaisha Toshiba Magnetischer Kühler

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125861A (en) * 1964-03-24 Method and apparatus for heat transfer
US2913881A (en) * 1956-10-15 1959-11-24 Ibm Magnetic refrigerator having thermal valve means
US3108444A (en) * 1962-07-19 1963-10-29 Martin Marietta Corp Magneto-caloric cryogenic refrigerator
US3393526A (en) * 1966-06-29 1968-07-23 Rca Corp Cryogenic heat pump including magnetic means for moving a normal zone along a superconductive rod
US4033734A (en) * 1976-09-17 1977-07-05 Steyert Jr William A Continuous, noncyclic magnetic refrigerator and method
US4107935A (en) * 1977-03-10 1978-08-22 The United States Of America As Represented By The United States Department Of Energy High temperature refrigerator
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
FR2517415A1 (fr) * 1981-11-27 1983-06-03 Commissariat Energie Atomique Procede de refrigeration ou de pompage de chaleur et dispositif pour la mise en oeuvre de ce procede
JPS58184471A (ja) * 1982-04-23 1983-10-27 株式会社日立製作所 磁気冷凍機
JPS608673A (ja) * 1983-06-29 1985-01-17 株式会社日立製作所 回転磁界型磁気冷凍機
JPS60259870A (ja) * 1984-06-05 1985-12-21 株式会社東芝 磁気冷凍装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0104713A2 (de) * 1982-08-31 1984-04-04 Kabushiki Kaisha Toshiba Magnetischer Kühler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118007A1 (en) * 2014-02-05 2015-08-13 Danmarks Tekniske Universitet An active magnetic regenerator device
US9777952B2 (en) 2014-02-05 2017-10-03 Danmarks Tekniske Universitet Active magnetic regenerator device

Also Published As

Publication number Publication date
FR2574913A1 (fr) 1986-06-20
EP0187078A1 (de) 1986-07-09
FR2574913B1 (fr) 1987-01-09
DE3570515D1 (en) 1989-06-29

Similar Documents

Publication Publication Date Title
EP0187078B1 (de) Kühl- oder Wärmepumpvorrichtung
EP0081411B1 (de) Verfahren zur Kühlung oder zum Pumpen von Wärme und Vorrichtung zur Durchführung dieses Verfahrens
CA2702793C (fr) Generateur thermique a materiau magnetocalorique
EP1702183B1 (de) Vorrichtung zur erzeugung von thermischem fluss mit magnetokalorischem material
EP1366280B1 (de) Antriebseinheit mit linearer hubbewegung auf grundlage eines stirlingmotors und bei dem antriebssystem verwendetes verfahren
EP1969294A2 (de) Vorrichtung zur kälte- und wärmeerzeugung durch einen magnetokalorischen effekt
JPS63113266A (ja) 伝導により熱を転送する磁気冷凍装置
FR2914051A1 (fr) Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique
CA2511541A1 (fr) Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique
EP0279739B1 (de) Kältemaschine, insbesondere mit Vuilleumier-Zyklus, mit durch Gaslager unterstützten Kolben
WO1993005859A1 (en) Miniature cryosorption vacuum pump
WO2012020183A1 (fr) Generateur thermique a materiau magnetocalorique
EP3087329B1 (de) Magnetokalorischer wärmegenerator und verfahren zur kühlung davon
EP4169155B1 (de) Maschine zur umwandlung von wärmeenergie in elektrische energie oder umgekehrt
EP4251934B1 (de) Magnetokalorische maschine
EP2318784A2 (de) Magnetokalorisches material verwendender wärmegenerator
FR2547031A1 (fr) Refrigerateur cryogene
FR2580385A1 (fr) Dispositif de refrigeration ou de pompage de chaleur a regenerateur
EP2318785B1 (de) Magnetokalorischer wärmegenerator
WO2022015128A1 (fr) Système de réfrigération basé sur l'effet magnétocalorique
JPH0322884A (ja) 熱エネルギーを力学的エネルギーに変換する方法及び熱機関
JPH0318283A (ja) 熱エネルギーを力学的エネルギーに変換する方法及び熱機関

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19861211

17Q First examination report despatched

Effective date: 19870727

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3570515

Country of ref document: DE

Date of ref document: 19890629

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921203

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921204

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931231

Ref country code: CH

Effective date: 19931231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931203

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901