EP0279739B1 - Kältemaschine, insbesondere mit Vuilleumier-Zyklus, mit durch Gaslager unterstützten Kolben - Google Patents

Kältemaschine, insbesondere mit Vuilleumier-Zyklus, mit durch Gaslager unterstützten Kolben Download PDF

Info

Publication number
EP0279739B1
EP0279739B1 EP88400321A EP88400321A EP0279739B1 EP 0279739 B1 EP0279739 B1 EP 0279739B1 EP 88400321 A EP88400321 A EP 88400321A EP 88400321 A EP88400321 A EP 88400321A EP 0279739 B1 EP0279739 B1 EP 0279739B1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
refrigerator according
magnets
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88400321A
Other languages
English (en)
French (fr)
Other versions
EP0279739A1 (de
Inventor
Gérard Claudet
Bernard Dewanckel
Alain Ravex
Serge Reale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0279739A1 publication Critical patent/EP0279739A1/de
Application granted granted Critical
Publication of EP0279739B1 publication Critical patent/EP0279739B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • F02G1/0445Engine plants with combined cycles, e.g. Vuilleumier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/18Vuilleumier cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2258/00Materials used
    • F02G2258/10Materials used ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/50Crosshead guiding pistons

Definitions

  • the present invention relates to a low power cryogenic refrigerator, and in particular a refrigerator operating according to the Vuilleumier cycle.
  • the invention relates to a refrigerator capable of operating for a very long period without the possibility of intervention or maintenance in order to be able to be carried, for example on board a satellite.
  • Cryogenic refrigeration of small power that is to say for powers between one tenth of a watt and a few watts, at temperature levels between 100 K and 4 K is obtained, in known manner, by machines operating according to cycles of Stirling, Mac Mahon, Vuilleumier or their derivatives.
  • refrigerators of this type have one or more cylinders inside each of which moves a piston driven by an alternating translational movement in order to compress or relax a gas, or simply to transfer this gas. one room in another.
  • pistons are called “compressors” when a force must be applied to the piston to overcome the forces due to the different pressures prevailing on its two faces.
  • Compressor type pistons are used to achieve mechanical compression (or expansion) of the gas in the Stirling, Gifford Mac Mahon, Joule Thomson or their derivatives cycles.
  • the forces applied to the pistons either by the gas or by the mechanical force of the drive motor are never strictly axial and opposite, which causes significant radial reactions on the guide bearings which must therefore be designed to withstand forces important and which must therefore have great stiffness.
  • the pistons are said to be “displacers” when they only serve to carry out transformations at constant volume by passing an amount of gas from one chamber at a certain temperature into another chamber at a different temperature.
  • Such an operation results in a change in gas pressure (compression or expansion depending on the direction) but with the particularity of maintaining at all times the same pressure on the two faces of the piston.
  • Such compression does not consume mechanical energy, with the exception of friction losses or flow pressure losses. It only consumes thermal energy to maintain the chambers at different temperatures.
  • thermodynamics In this kind of transformation (compression or expansion) that can be called thermodynamics, the displacing piston is subjected to other forces only its weight or inertia or that friction and pressure differences which can be made very low . As a result, the load on the bearings can be reduced considerably.
  • the Vuilleumier cycle has the particularity of being able to be implemented by the exclusive use of displacement pistons. It is a cycle with three temperature sources well known to those skilled in the art and which has been described for example in the document FF Chellis and WH Hogan, "A liquid nitrogen operated refrigerator for temperatures below 77 K", in “Advances in Cryogenic Engineering ", vol. 9, 1963, pp 545-551.
  • the refrigerator of the invention therefore uses the Vuilleumier cycle which makes it possible to produce machines in which the piston guide bearings, which constitute one of the critical elements conditioning the life of the refrigerator, are only subjected to very low forces and, by subsequently cause reduced wear and heat generation.
  • This characteristic constitutes a considerable advantage compared to machines operating according to other cycles and using compressor pistons. Indeed, in the case of the latter, the piston bearings are heavily loaded. Their wear is high and the release of heat is high. Consequently, it is very difficult to produce machines with a long service life.
  • EP-A-0 114 069 describes a machine in which the pistons move in cylinders according to a purely linear movement with adjustments with reduced clearance, which requires adding magnetic devices to reduce the radial forces and prevent them blockages.
  • the present invention specifically relates to a refrigerator, in particular a refrigerator operating according to the Vuilleumier cycle, which overcomes these drawbacks.
  • This refrigerator must be able to operate for several years without maintenance of the bearings supporting the pistons. As a result, the bearings must be subjected to a very low load. They must not be subject to wear or generate heat.
  • the present invention relates to a refrigerator operating according to a Vuilleumier cycle, characterized in that it uses at least one gas bearing for the suspension of at least one piston, and a means for rotating said piston.
  • the refrigerator of the invention is suitable for space applications when the refrigerator is not subjected to the action of gravity.
  • the refrigerator of the invention comprises two pistons operating in phase opposition so as to make the vibrations as low as possible.
  • FIG. 1 shows a schematic longitudinal sectional view of a cylinder 2 forming part of a cryogenic refrigerator operating according to a Vuilleumier cycle.
  • a displacement piston 4 is driven in an alternating translational movement inside the cylinder 2 so as to transfer a quantity of cycle gas from a first sealed chamber 6 to a second sealed chamber 8 via a pipe 9.
  • a Vuilleumier cycle refrigerator comprises at least two piston-cylinder assemblies, the first of these assemblies constituting a thermal compressor and the second a cold finger.
  • the complete representation of the refrigerator is not necessary for the explanation of the principle of the invention.
  • the displacing piston has a mass M corresponding to a weight P under the effect of a given acceleration, for example the acceleration of terrestrial gravity.
  • a line of magnets L1 and a line of magnets L2 are arranged along an upper generatrix of the cylinder 2. The lengths of these lines are equal or not, but are, in all cases, greater than the alternating stroke C of the piston.
  • the lines L1 and L2 consist of five magnets arranged side by side.
  • the magnets 14 are mounted on the displacer piston 4 respectively opposite the line of magnets L1 and the line of magnets L2.
  • the weight P of the displacing piston is balanced by the set of permanent magnets acting by attraction and producing forces F1 and F2 independent of the axial position of the piston since the lines of magnets L1 and L2 have a length greater than the stroke vs.
  • the attraction forces of the magnets are chosen so that the sum of the forces F1 and F2 is slightly less than the weight P of the piston 4 to avoid bonding of the magnets.
  • the resulting force to bear is equal to P- (F1 + F2). This resulting force can easily be reduced to a small fraction of P, for example a few%.
  • the forces P, F1 and F2 are arranged in the same plane, which does not introduce any lateral reaction.
  • a gas bearing is produced by means of a relative movement of the displacing piston 2 relative to the cylinder 4 so as to obtain a centering effect which is added to the suspension by the permanent magnets for get guidance without friction of the piston.
  • the gas bearings alone are sufficient to ensure guiding without friction of the piston, without it being necessary to provide a magnetic suspension passive by permanent magnets.
  • FIG. 3 There is shown in Figures 3 and 4 an embodiment of gas bearings according to the invention.
  • This mode is characterized by the fact that the gas bearing is obtained by a rotation on itself of the piston 4.
  • the relative movement of rotation of the piston 4 relative to the cylinder 2 entrains the gas cycle by viscosity, which has the effect of forming a wedge which produces a centering force F of the piston 4 relative to the cylinder 2.
  • a bearing of this type is provided at each of the ends of the piston 4.
  • FIGS. 4a and 4b show two alternative embodiments of a rotary gas bearing according to the invention.
  • the principle of this bearing is identical to that of FIG. 3, but the piston 4 comprises (FIG. 4a) a series of ramps 32, five in the example chosen, whose profile, convex, is inclined relative to the internal surface 34 of cylinder 2 so as to determine with this cylinder a clearance which decreases from the beginning towards the end of the ramp 32.
  • the effect of levitation by wedge of gas driven by viscosity, described with reference to FIG. 3, is thus obtained several times per turn, five times in the example shown.
  • FIG. 4b One can also use (FIG. 4b) a circular piston in a chamber comprising multiple ramps 32 ′.
  • the gas bearings of Figures 3, 4a and 4b can be used alone, that is to say in the absence of passive magnetic suspension by permanent magnets, when the refrigerator is not subjected to the action of gravity during its operation.
  • the nature of the materials used to produce the gas bearing that is to say the material of the piston 4 and that of the cylinder 2, is indifferent but in the event of accidental contact, or during start-up periods, materials having good friction properties with a low coefficient of friction and low wear are preferable.
  • Metals or metal alloys can be used as well as plastics.
  • ceramic materials such as alumina and zirconia are preferably used, which allow better performance, in particular for operation at high temperatures.
  • FIG. 5 shows a first example of a means making it possible to rotate the piston 4 in order to produce a rotating gas bearing such as those of FIGS. 3 and 4.
  • a rotating magnetic field symbolized by arrow 42
  • a permanent magnet 44 is provided on the piston 4. This magnet is driven by the rotating field, synchronously.
  • a synchronous motor is thus produced which makes it possible to drive the piston 4 in rotation at the desired speed.
  • An asynchronous motor could also be produced by replacing the permanent magnet 44 with ferromagnetic materials.
  • a three-phase current one could still use a single-phase alternating current to produce a synchronous or asynchronous electric motor.
  • FIG. 6 shows another means for driving the piston 4 in rotation.
  • Two coils 50 and 52 spaced apart by a pitch P1 are provided at the periphery of the cylinder 2.
  • a plurality of magnets 54 spaced apart a pitch P2 less than the pitch P1 are regularly distributed around the periphery of the piston 4.
  • the coil 50 and the coil 52 are supplied alternately. Under the effect of the electromagnetic forces which appear, one of the magnets 54 comes place next to the coil which is supplied.
  • a neighboring magnet 54 is placed opposite this second coil. The piston is thus driven in rotation by a series of successive pulses producing displacements in increments.
  • FIGS 7a and 7b There is shown in Figures 7a and 7b a third means for rotating the piston 4.
  • the piston 4 At one or at each of its ends, the piston 4 has a chamber 60 determined by a circular groove. The width of this groove is at least equal to the alternative stroke C of the piston.
  • a helical groove 62 opens at one of its ends in the chamber 60 and at its other end in the chamber 6 and / or in the chamber 8.
  • a non-return valve consisting for example of a plate 64 which plugs the end of the helical groove 62 opening into the chamber 6, and into the chamber 8, this plate 64 being supported by a flexible blade 66, prohibited from gas cycle to pass directly from chamber 6 and chamber 8 into the helical groove 62. This gas must therefore pass through a bypass duct 68.
  • FIG. 9 shows a means making it possible to obtain a mixed movement of rotation and translation by the contactless action of an elliptical magnetic ramp 94a.
  • a piston 80 placed inside a cylinder 90, is rotated by a synchronized asynchronous motor comprising the coils 91 which create a rotating radial field, a squirrel cage 81 which ensures the asynchronous rotation, in particular at start-up , and a magnet 82 which ensures the synchronous rotation of the piston 80.
  • the rotational movement thus produced drives the magnet 83 integral with the piston 80 in front of the magnetic ramp 94 which produces an attraction of the magnet 83.
  • the magnetized ramp has an elliptical geometry inclined to the longitudinal axial direction of the piston 80. It produces a axial force which tends to maintain the magnet 83 in the maximum field of the elliptical ramp 94.
  • the combined movements of rotation and translation of the piston 80 take place at the same frequency.
  • the piston 80 performs an alternating outward and return stroke at the same time as it performs a full rotation in rotation about its longitudinal axis.
  • FIG. 10 shows three different embodiments of the magnetized ramp 94.
  • the ramp 94a has already been described previously. It has been shown again only as a reminder to allow a comparison with the forms 94b and 94c.
  • the magnetized ramp 94b has two helical turns of opposite pitch to obtain a rotation frequency of the piston 80 twice its translation frequency. It goes without saying that one could also use several helical turns of opposite pitch to obtain a frequency of rotation multiple of the translation frequency.
  • FIG. 10c a magnetized ramp 94c having two undulations per revolution, which makes it possible to create a translation of frequency double the frequency of rotation of the piston 80.
  • a magnetized ramp 94c having two undulations per revolution, which makes it possible to create a translation of frequency double the frequency of rotation of the piston 80.
  • FIG. 8 shows a complete embodiment of a refrigerator according to the invention operating according to a Vuilleumier cycle.
  • the refrigerator is made up of two sets, namely a thermal compressor designated by the reference 100 and a pressure reducer, also called cold finger in the text below and designated by the reference 200.
  • the thermal compressor 100 includes a piston 104 sliding inside a cylinder 102, 55 mm in diameter and 300 mm long, containing gaseous helium whose pressure can vary between 5 and 10 bars approximately.
  • the piston 104 determines a hot chamber 106 and a cold chamber 108 at each of the opposite ends of the piston 104.
  • a bearing 104a is provided at the hot end of the piston, while a cold bearing 104b is provided at the cold end of this piston.
  • the bearings 104a and 104b are gas bearings of the rotating type such as, for example, those of FIGS. 3 and 4 of the application. They consist of two alumina rings with a radial clearance of 20 microns.
  • suspension lines L1 and L2 made up of a series of permanent magnets arranged along an upper generatrix of the cylinder 102, cooperating with permanent magnets 114, 114 make it possible to balance the weight P of the piston 104.
  • two lines L1 and L2 but we could also use a single line, provided that this is arranged symmetrically with respect to the center of gravity of the piston and is at least as long as the stroke C of the piston .
  • the piston 104 is driven in rotation at a speed of 5 revolutions per second by a stepping motor such as for example that of FIG. 6, consisting of two coils, of which only one, the coil 150, has been shown in FIG. 8 and a plurality of magnets 154 distributed along a circumference of the piston 104.
  • a stepping motor such as for example that of FIG. 6, consisting of two coils, of which only one, the coil 150, has been shown in FIG. 8 and a plurality of magnets 154 distributed along a circumference of the piston 104.
  • Means have also been provided for obtaining an alternative translation of 20 mm of the piston 104.
  • These means are constituted in the example chosen by a linear motor of the stepping type consisting on the one hand of a series of magnets permanent 156 distributed along a circumference of the piston 104 and on the other hand of coils 158 arranged opposite the magnets 156.
  • the operating principle of the linear stepping motor is identical to that of the rotating motor and will therefore not be described in detail .
  • the supply of electric current to the coils of the linear motor is controlled by a servo device 157 which receives indications from a position detector 159 which makes it possible to detect the position of the piston 104 relative to the cylinder 102.
  • the thermal compressor 100 comprises several layers of insulation 170 surrounding its hot end and an electrical heating resistor 172 making it possible to maintain this hot end at a temperature of the order of 1000 K.
  • Other means such as solar or nuclear heating might be suitable.
  • the cold room 108 is cooled by a cooling circuit 174 which makes it possible to maintain its temperature at around 300 K.
  • the chambers 106 and 108 are connected by means of a pipe 176 on which a thermal regenerator 178 known in itself is inserted.
  • the hot part of the cylinder is enclosed in a chamber 180 constituting a vacuum enclosure in which there is a high vacuum so as to avoid heat loss towards the outside.
  • the refrigerator shown in FIG. 8 also comprises a cold finger designated by the general reference 200.
  • the constitution of the cold finger 200 is essentially identical to that of the thermal compressor 100. It comprises two balancing bearings with magnet permanent to balance the weight of the piston 204. These folds have been designated by the reference 214. It further comprises a stepper motor 250, 254 for driving the piston 204 in rotation and a stepper motor 256, 258 for the drive in alternative translation of this same piston (10 mm stroke).
  • a servo device 257 which receives information from a position detector known per se 259 controls the supply of electric current to the coils 258 of the linear stepping motor.
  • the piston 204 comprises a cold bearing 204a situated on the right in the figure and a hot bearing 204b situated on the left in the figure.
  • the production of these bearings is identical to what has already been described. It should however be noted that a particularity of the piston 204 is stepped so as to determine not a single chamber but two chambers 206a and 206b. Its length is 200 mm and its diameter is 40 mm between chamber 208 at 300 K and chamber 206b at 150 K. Its length is 100 mm and its diameter is 15 mm between chamber 206b and chamber 206a at 50 K So the fridge allows you to extract heat at two different temperatures, 1 watt at 50 K in room 206a and 3 watts at 150 K in room 206b.
  • thermal regenerators 178a and 178b consist of a lining material lining the bottom with circular grooves provided in the wall of the cylinder 202.
  • the assembly of the cold finger is enclosed inside an enclosure 280 inside which there is a high vacuum in order to limit as much as possible the heat input coming from the outside.
  • the refrigerator which has just been described preferably applies to the cooling of samples to be studied in physics experiments or to enable or improve the functioning of superconductive materials or radiation detectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (15)

1. Kältemaschine, die nach einem Vuilleumierzyklus arbeitet, dadurch gekennzeichnet, daß sie wenigstens ein Gaslager (104a, 104b, 204a, 204b) sur Aufhängung wenigstens eines Kolbens (4, 104, 204) und eine Vorrichtung (40, 50, 52, 62, 94) zum Indrehungversetzen des Kolbens verwendet.
2. Kältemaschine nach Anspruch 1, dadurch gekennzeichnet, daß sie aufweist:
einen ersten Zylinder (102) mit einem warmen Ende und einem Ende auf mittlerer Temperatur, einem Verschiebekolben (104), der in dem ersten Zylinder zwischen einer ersten und zweiten Stellung hin- und hergleitet, um eine in dem ersten Zylinder (102) enthaltene Gasmenge zu komprimieren und zu entspannen, und einem Rohr, auf dem ein thermischer Regenerator, der das Ende auf hoher Temperatur mit dem Ende auf mittlerer Temperatur des ersten Zylinders verbindet, dazwischen angeordnet ist;
einen zweiten Zylinder (202) mit einem Ende auf mittlerer Temperatur und einem kalten Ende, einem zweiten Verschiebekolben (204), der in dem zweiten Zylinder (202) zwischen einer ersten und zweiten Stellung zum Komprimieren und Enspannen einer in dem zweiten Zylinder enthaltenen Gasmenge hin- und hergleitet;
einen Kanal, der das Ende auf mittlerer Temperatur des ersten Zylinders mit dem Ende auf mittlerer Temperatur des zweiten Zylinders verbindet;
eine Vorrichtung, um den ersten Zylinder (102) und den zweiten Zylinder (202) in Phase zu bewegen;
ein Gaslager (104a) am warmen Ende des ersten Kolbens (104) und ein Gaslager (104b) am Ende auf mittlerer Temperatur des ersten Kolbens;
ein Gaslager (204b) am Ende auf mittlerer Temperatur des zweiten Kolbens (204) und ein Gaslager (204a) am kalten Ende des zweiten Kolbens.
3. Kältemaschine nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß sie zwei derart gegenphasig arbeitende Kolben umfaßt, daß die Vibrationen so gering wie möglich werden.
4. Kältemaschine nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, daß wenigstens eine Reihe von Magneten (L1, L2) entlang der oberen Erzeugenden des ersten Zylinders (2, 102) angeordnet ist, wobei die Reihe von Magneten (L1, L2) eine obere Grenze für den Abstand (c) zwischen der ersten und zweiten Stellung des ersten Kolbens (4,104) bildet, wobei ein Permanentmagnet (14) auf dem ersten Zylinder (2, 102) gegenüber jeder dieser Reihen von Magneten (L1, L2) angeordnet ist; und daß wenigstens eine Reihe von Magneten (L1, L2) entlang der oberen Erzeugenden des zweiten Zylinders (2, 202) angeordnet ist, wobei die Reihe von Magneten (L1, L2) eine obere Grenze für den Abstand zwischen der ersten und zweiten Stellung des zweiten Kolbens (4, 204) bildet, wobei ein Magnet (14, 214) auf dem zweiten Zylinder (2, 202) gegenüber jeder dieser Reihen von Magneten (L1, L2) des zweiten Zylinders angeordnet ist.
5. Kältemaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Vorrichtung zum Indrehungversetzen eine Vorrichtung zum Indrehungversetzen wenigstens eines der ersten und zweiten Verschiebekolben (4, 104, 204) umfaßt, wobei die Drehung dieses Kolbens das Auftreten eines Gaskeils verursacht, der sich zwischen der äußeren, umgebenden Wand des Kolbens (4, 104, 204) und der inneren Wand (34) des Zylinders (2, 102, 202) bildet, wobei dieser Gaskeil ein Gaslager bildet (Figur 3).
6. Kältemaschine nach Anspruch 5, dadurch gekennzeichnet, daß der Kolben (4) eine Mehrzahl von Oberflächen (32) aufweist, die ein Neigung bezüglich der peripheren, inneren Oberfläche (34) des Zylinders aufweisen (Fig. 4a).
7. Kältemaschine nach Anspruch 5, dadurch gekennzeichnet, daß die innere Wand des Zylinders (2) eine Mehrzahl von Oberflächen aufweist, die eine Neigung bezüglich der äußeren Oberfläche des Kolbens aufweisen (Fig. 4b).
8. Kältemaschine nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß die Vorrichtung zum Indrehungversetzen des Kolbens (4) aus drei Spulen (40), die auf dem Zylinder in einem Winkel von jeweils 120° zueinander angeordnet sind und jeweils mit einer Phase eines dreiphasigen Wechselstroms verbunden sind, um einen Drehstrommotor (42) zu bilden, und aus einem auf dem Kolben (4) montierten Magneten (44), wobei das Drehfeld (42) den Magneten (44) in eine synchrone Drehung versetzt, oder aus einem auf dem Kolben (4) montierten, ferromagnetischen Material besteht, wobei das Drehfeld den Kolben (4) in Drehung versetzt.
9. Kältemaschine nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß die Vorrichtung zum Indrehungversetzen des Kolbens (4) aus einem Schrittmotor besteht (Figur 6).
10. Kältemaschine nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß die Vorrichtung zum Indrehungversetzen des Kolbens (4) aus wenigstens einer Vertiefung (60), die ein kreisförmige Kammer bildet, und einer schraubenförmigen Verteifung (62) besteht, die die Vertiefung (60) mit einer der Kammern (6, 8) verbindet, wobei ein Ventil (64, 66) die direkte Zirkulation des Zirkulationsfluids der Kammer (6, 8) zur Verteifung (60) während der Kompressionsphase dieses Fluids verhindert, welches Fluid dann durch einen Ableitungskanal (68) fließt (Figuren 7a, 7b).
11. Kältemaschine nach Anspruch 8, dadurch gekennzeichnet, daß sie eine Vorrichtung zum Mitnehmen des Kolbens (80) in einer translatorischen Hin- und Herbewegung umfaßt, die aus einem auf dem Kolben (80) montierten Magneten (83) und einer in sich geschlossenen, magnetischen Rampe (94a, 94b, 94c), die um den Kolben (80) angeordnet ist, besteht und eine Neigung bezüglich der axialen Longitudinalrichtung des Kolbens (80) besitzt, wobei der Magnet (83) der magnetischen Rampe (94a, 94b, 94c) derart folgt, daß er dem Kolben (80) eine translatorische Hin-und Herbewegung aufprägt.
12. Kältemaschine nach Anspruch 11, dadurch gekennzeichnet, daß sie zwei Magnetkränze (92, 93) aufweist, die jeweils an jedem Ende der translatorischen Hin- und Herbewegung des auf dem Magneten (82) montierten Kolbens (80) angeordnet sind.
13. Kältemaschine nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die magnetische Rampe (94a) die Form eines elliptischen Kranzes aufweist, der zur longitudinalen Achse des Kolbens (80) geneigt ist.
14. Kältemaschine nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die magnetische Rampe (94b) die Form einer mehrfachen Spirale mit gegenläufigem Schritt aufweist.
15. Kältemaschine nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die magnetische Rampe (94c) eine Form von mehreren Wellen pro Umdrehung aufweist.
EP88400321A 1987-02-16 1988-02-12 Kältemaschine, insbesondere mit Vuilleumier-Zyklus, mit durch Gaslager unterstützten Kolben Expired - Lifetime EP0279739B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8701926A FR2611031B1 (fr) 1987-02-16 1987-02-16 Refrigerateur, notamment a cycle de vuilleumier, comportant des pistons suspendus par des paliers a gaz
FR8701926 1987-02-16

Publications (2)

Publication Number Publication Date
EP0279739A1 EP0279739A1 (de) 1988-08-24
EP0279739B1 true EP0279739B1 (de) 1991-01-23

Family

ID=9347950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88400321A Expired - Lifetime EP0279739B1 (de) 1987-02-16 1988-02-12 Kältemaschine, insbesondere mit Vuilleumier-Zyklus, mit durch Gaslager unterstützten Kolben

Country Status (5)

Country Link
US (1) US4840032A (de)
EP (1) EP0279739B1 (de)
JP (1) JPS63207957A (de)
DE (1) DE3861595D1 (de)
FR (1) FR2611031B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257951A1 (de) * 2002-12-12 2004-07-01 Leybold Vakuum Gmbh Kolbenkompressor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL76591A0 (en) * 1984-10-05 1986-02-28 Bioferon Biochem Substanz Pharmaceutical compositions containing ifn-ypsilon and processes for the preparation thereof
FR2649784B1 (fr) * 1989-07-13 1995-01-13 Sodern Machine cryogenique a palier a billes
FR2741940B1 (fr) * 1995-12-05 1998-01-02 Cryotechnologies Refroidisseur a moteur lineaire
CA2292684A1 (en) 1999-12-17 2001-06-17 Wayne Ernest Conrad Self-contained light and generator
US6269640B1 (en) 1999-12-17 2001-08-07 Fantom Technologies Inc. Heat engine
US6345666B1 (en) 1999-12-17 2002-02-12 Fantom Technologies, Inc. Sublouvred fins and a heat engine and a heat exchanger having same
US6332319B1 (en) 1999-12-17 2001-12-25 Fantom Technologies Inc. Exterior cooling for a heat engine
US6311490B1 (en) 1999-12-17 2001-11-06 Fantom Technologies Inc. Apparatus for heat transfer within a heat engine
US6336326B1 (en) 1999-12-17 2002-01-08 Fantom Technologies Inc. Apparatus for cooling a heat engine
US6286310B1 (en) 1999-12-17 2001-09-11 Fantom Technologies Inc. Heat engine
US6279318B1 (en) 1999-12-17 2001-08-28 Fantom Technologies Inc. Heat exchanger for a heat engine
US6269639B1 (en) 1999-12-17 2001-08-07 Fantom Technologies Inc. Heat engine
US6293101B1 (en) 2000-02-11 2001-09-25 Fantom Technologies Inc. Heat exchanger in the burner cup of a heat engine
US6279319B1 (en) 2000-02-11 2001-08-28 Fantom Technologies Inc. Heat engine
US6226990B1 (en) 2000-02-11 2001-05-08 Fantom Technologies Inc. Heat engine
US8037686B2 (en) * 2002-11-01 2011-10-18 George Lasker Uncoupled, thermal-compressor, gas-turbine engine
US6796123B2 (en) * 2002-11-01 2004-09-28 George Lasker Uncoupled, thermal-compressor, gas-turbine engine
US20050126171A1 (en) * 2002-11-01 2005-06-16 George Lasker Uncoupled, thermal-compressor, gas-turbine engine
US7677039B1 (en) * 2005-12-20 2010-03-16 Fleck Technologies, Inc. Stirling engine and associated methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580362A1 (fr) * 1985-04-10 1986-10-17 Bertin & Cie Dispositif reversible de transformation d'un mouvement rotatif en un mouvement rectiligne alternatif

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302577A (de) * 1963-12-24
US3774405A (en) * 1971-09-09 1973-11-27 Us Air Force Magnetically driven cryogen vuilleumier refrigerator
DE2350958C2 (de) * 1973-10-11 1984-10-25 Robert Bosch Gmbh, 7000 Stuttgart Steuervorrichtung für eine Stellvorrichtung
US4389849A (en) * 1981-10-02 1983-06-28 Beggs James M Administrator Of Stirling cycle cryogenic cooler
JPS5956055A (ja) * 1982-09-24 1984-03-31 アイシン精機株式会社 スタ−リングサイクル冷凍機
US4429539A (en) * 1982-10-07 1984-02-07 Vought Corporation Heat exchangers for vuilleumier cycle heat pumps
US4545209A (en) * 1983-01-17 1985-10-08 Helix Technology Corporation Cryogenic refrigeration system with linear drive motors
US4500265A (en) * 1983-01-28 1985-02-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetically actuated compressor
US4459811A (en) * 1983-03-28 1984-07-17 The United States Of America As Represented By The United States Department Of Energy Magnetic refrigeration apparatus and method
FR2551189B1 (fr) * 1983-08-24 1986-01-31 Abg Semca Dispositif de refroidissement a compression et detente de gaz sans changement de phase
US4606194A (en) * 1983-11-18 1986-08-19 Helix Technology Corporation Cryocooler having low magnetic signature
US4584839A (en) * 1984-07-02 1986-04-29 Cvi Incorporated Multi-stage cryogenic refrigerators
US4610143A (en) * 1984-12-18 1986-09-09 North American Philips Corporation Long life vibration canceller having a gas spring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580362A1 (fr) * 1985-04-10 1986-10-17 Bertin & Cie Dispositif reversible de transformation d'un mouvement rotatif en un mouvement rectiligne alternatif

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257951A1 (de) * 2002-12-12 2004-07-01 Leybold Vakuum Gmbh Kolbenkompressor

Also Published As

Publication number Publication date
JPS63207957A (ja) 1988-08-29
EP0279739A1 (de) 1988-08-24
FR2611031B1 (fr) 1989-05-05
FR2611031A1 (fr) 1988-08-19
DE3861595D1 (de) 1991-02-28
US4840032A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
EP0279739B1 (de) Kältemaschine, insbesondere mit Vuilleumier-Zyklus, mit durch Gaslager unterstützten Kolben
EP1969294A2 (de) Vorrichtung zur kälte- und wärmeerzeugung durch einen magnetokalorischen effekt
EP1366280B1 (de) Antriebseinheit mit linearer hubbewegung auf grundlage eines stirlingmotors und bei dem antriebssystem verwendetes verfahren
CH697852B1 (fr) Dispositif à spirale de compression ou d'expansion.
FR3007077A1 (fr) Dispositif de compression thermique de fluide gazeux
EP0001732B1 (de) Verfahren und Vorrichtung zur Energieumwandlung
EP3671065A1 (de) Kühlvorrichtung, die eine paramagnetische granatkeramik umfasst
FR2560978A1 (fr) Refrigerateur cryogenique et source de chaleur associee
EP3087329B1 (de) Magnetokalorischer wärmegenerator und verfahren zur kühlung davon
FR2566887A1 (fr) Refrigerateurs cryogeniques a etages multiples, capables d'obtenir une refrigeration a une temperature se situant entre 4,5 et 10o kelvin
EP0778452A1 (de) Stirling-Kühlanlage mit Drehantrieb
WO2022112391A1 (fr) Machine magnetocalorique
WO1997004215A1 (fr) Dispositif de detente a spirales pour des temperatures cryogeniques
WO1997003327A1 (fr) Refrigerateur ou pompe a chaleur a tube de pulsation alimente par un generateur de pression
EP3379172A1 (de) Kryoanlage, die einen zirkulator umfasst
FR2875895A1 (fr) Dispositif de production d'energie thermique a materiau magneto-calorifique a moyens internes de commutation et synchronisation automatique des circuits de fluides caloporteurs
WO2023118041A1 (fr) Modulation de puissance acoustique dans une machine thermoacoustique
US20130167535A1 (en) Rotary Engine with Unidirectional Monatomic Gas Flow, Static Heat Exchangers
EP4180154A1 (de) Verfahren zur bearbeitung von rippen oder nuten von luft- oder gaslagern eines kompressors
WO2023198448A1 (fr) Dispositif de commande fluidique notamment pour une machine magnetocalorique et machine magnetocalorique equipee d'un tel dispositif
FR2723987A1 (fr) Pompe a vide cryomecanique
FR3141984A1 (fr) Dispositif de détente d’un gaz, notamment pour sa liquéfaction
WO2022194878A9 (fr) Machine thermique
FR3003314A1 (fr) Boucle fluide diphasique a pompage mecanique
FR2930679A1 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19890912

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3861595

Country of ref document: DE

Date of ref document: 19910228

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980205

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980209

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980225

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050212