EP0185377B1 - Circuit de signalisation - Google Patents

Circuit de signalisation Download PDF

Info

Publication number
EP0185377B1
EP0185377B1 EP85116256A EP85116256A EP0185377B1 EP 0185377 B1 EP0185377 B1 EP 0185377B1 EP 85116256 A EP85116256 A EP 85116256A EP 85116256 A EP85116256 A EP 85116256A EP 0185377 B1 EP0185377 B1 EP 0185377B1
Authority
EP
European Patent Office
Prior art keywords
transistor
current
circuit
current path
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85116256A
Other languages
German (de)
English (en)
Other versions
EP0185377A1 (fr
Inventor
Heinrich Dipl.-Ing. Schott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85116256T priority Critical patent/ATE43930T1/de
Publication of EP0185377A1 publication Critical patent/EP0185377A1/fr
Application granted granted Critical
Publication of EP0185377B1 publication Critical patent/EP0185377B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B23/00Alarms responsive to unspecified undesired or abnormal conditions

Definitions

  • the fault status signals are expediently displayed using a display element.
  • the operating voltage for the signaling circuit itself is advantageously independent of the supply voltage of the signal evaluation.
  • monitoring circuits with an open collector output are used for the devices to be monitored, an OR operation can be easily achieved by connecting the outputs in parallel for the error messages.
  • a signaling circuit is then required which, depending on the output signals of the monitoring circuits, supplies ground potential at the relevant output and optionally indicates an error state optically.
  • the signaling circuit can be dimensioned for a specific operating voltage and can be adapted to the operating voltage available in each case with differently sized series resistors in rough steps via internal bridges or by changing the frame wiring, which, however, involves additional effort. If a voltage regulator is provided for the operating voltage, an undesirably large power loss results even in the normal state.
  • the object of the invention is therefore to design a signaling circuit in such a way that it operates reliably in a wide range of operating voltage with the lowest possible power consumption.
  • the signaling circuit is designed to achieve this object in such a way that a switching path of a first electronic switch is arranged between the first output and reference potential and a switching path of a second electronic switch is arranged between the second output and reference potential and that the signaling circuit is connected to an operating voltage source Contains constant current circuit with a parallel circuit connected to it from a first current path and a second current path and that the first electronic switch can be controlled by the current flowing in the first current path and the second electronic switch by the current flowing in the second current path and that the two current paths are dependent can be controlled by the input criteria in such a way that in the first input criterion the first current path is conductive and the second current path is blocked and in the second input criterion the second current path ad conductive and the first current path is blocked.
  • the signaling circuit emits reference potential at the first output in one switching state and reference potential at the other output in the other switching state.
  • the associated electronic switch is open or high-resistance at the output that is not connected to the reference potential.
  • the measures according to the invention result in the advantage that the signaling circuit can be fed from operating voltage sources with very different nominal values of the voltage with a low power loss and can therefore be used particularly universally. Since circuit parts arranged in parallel and functioning simultaneously are largely avoided, this results in a particularly low power loss.
  • the signaling circuit is designed such that a first input criterion is a predetermined control potential and a second control criterion is an open input circuit and that the first current path contains the controlled path of a transistor which is guided to an input for the control criteria with a control electrode, and that the two current paths each contain a non-linear two-pole in the manner of a Zener diode, which is conductive above a predetermined voltage threshold and blocked below the predetermined voltage threshold, and that the voltage threshold of the first non-linear two-pole network located in the first current path is less than the voltage threshold of the one in the second current branch second non-linear bipolar.
  • the transistor can e.g. be a bipolar transistor or a field effect transistor, the emitter-collector path or the source-drain path of the transistor being in the first current path.
  • An arrangement of at least one diode and / or at least one Z diode can serve in particular as a non-linear two-pole in the manner of a Z diode.
  • control path expediently lies in one of the two parallel current paths, in particular together with a resistor arranged parallel to the control path.
  • control path may also prove to be expedient to connect the control path to the associated current path via at least one transistor stage in at least one of the electronic switches.
  • the constant current source can be, for example, a constant current diode or a stabilization circuit in which the voltage drop occurring at a current measuring resistor is equal to the Zener voltage of a Z- Diode is compared.
  • the signaling circuit is designed such that the constant current circuit is formed by a current stabilization circuit which is arranged in series with the parallel connection of the first and second current paths and is connected together with the parallel circuit to the operating voltage source and which controls the controlled path of a first transistor and one contains a resistor arranged in series and in which the control path of a second transistor is located parallel to the resistor, the collector of which is connected directly to the control connection of the first transistor and via a resistor to an operating voltage source.
  • the first transistor is a field effect transistor and the second transistor is a bipolar transistor.
  • the signaling circuit should display error status criteria, it is expediently designed such that the signaling circuit contains a further constant current circuit connected to the second current path, which can be activated by a current flowing in the second current path, and that a series circuit comprising the second constant current circuit and one Display element is connected to the operating voltage source.
  • switching means already present in the signaling circuit can also be advantageously used in that the second constant current circuit contains, as a controlled resistor, a transistor which also belongs to a control stage for the second electronic switch and, as a comparison standard, the non-linear two-pole circuit arranged in the second current path.
  • the two transistors 2 and 1 serving as electronic switches are each connected directly to the ground terminal a by their emitter.
  • the collector of transistor 1 is led to the first output A1, the collector of transistor 2 to the second output A2.
  • the base of transistor 1 is connected to first current path 1a, and the base of transistor 2 is connected to second current path 2a.
  • the signaling shaft is fed with the supply voltage U S1 .
  • the supply voltage source 9 lies with its positive pole at the ground connection a and with the negative pole at the supply voltage connection b, which is led to the circuit point c via the PTC thermistor 7.
  • the constant current circuit 4 is designed as a stabilization circuit, which contains the drain-source path of the MOS field-effect transistor 43 as a controlled resistance.
  • the drain electrode of the field effect transistor 43 is located at the connection point d of the current paths 1 a and 2a.
  • the source electrode of the field effect transistor 43 is led to the node c via the resistor 44.
  • the npn transistor 42 has its emitter at node c, its base at the source of field effect transistor 43 and its collector at the gate of field effect transistor 43.
  • the collector of transistor 42 is also connected via resistor 41 to ground terminal a .
  • the series circuit comprising the source-drain path of the field-effect transistor 43 and resistor 44 forms a two-pole circuit with a very large differential resistance and acts as a constant current source for the two current paths 1 a and 2a which are parallel to one another.
  • the first current path 1 a contains the transistor 13, the emitter of which is connected to the drain electrode of the field effect transistor 43.
  • the resistor 32 is parallel to the base-emitter path of the transistor 13.
  • the base of the transistor 13 is led via the resistor 31 to the control input E of the circuit arrangement.
  • the collector of transistor 13 is led to the base of transistor 1 via the forward-biased Zener diode 12.
  • the resistor 11 is parallel to the base-emitter path of the transistor 1.
  • the drain electrode of the field effect transistor 43 is guided to the ground connection a via the forward-biased Zener diode 21 and the resistor 20.
  • the base of transistor 2 is connected to the connection point between Zener diode 21 and resistor 20, so that resistor 20 is parallel to the base-emitter path of transistor 2.
  • the input E of the signaling circuit is connected to the collector of the transistor 3, the emitter of which is led to the positive direct voltage U s2 .
  • the base of the transistor 3 is connected to the monitoring device 8.
  • the control voltage U s2 is at the input E as the first control criterion.
  • the high blocking resistance of the transistor 3 is effective as the second control criterion at the input E of the circuit arrangement.
  • the supply voltage of Us1 10 ... 75 V is applied between the ground connection a and the supply voltage connection b.
  • the signal determining the state of the signaling takes effect at connection point E.
  • the signals emitted appear at outputs A1 and A2.
  • ground is switched through at output A1.
  • ground appears at output A2 as a continuous signal.
  • a pulse signal the associated output of which is not shown in the figure for the sake of clarity, is generated in the same way, but via a capacitive coupling.
  • the circuit arrangement uses as the constant current circuit 4 an arrangement for current stabilization with the transistors 43, 42 and the resistors 44, 41.
  • the voltage occurring at the resistor 44 and proportional to the current through the transistor 43 is compared with the emitter-base voltage of the transistor 42.
  • the current stabilization of comparatively low accuracy achieved in this way is completely sufficient for the present circuit arrangement.
  • the positive, conductive voltage reaches the gate of the field effect transistor 43, which is in particular a power MOS field effect transistor.
  • the use of a field effect transistor is advantageous because, compared to a bipolar transistor, a much larger value can be selected for the resistor 41.
  • the current stabilized with the current stabilizing circuit is on average 2 mA. At the maximum voltage of 75 V, this means only 150 mW of power consumption.
  • the monitoring device 8 is used in particular to monitor supply voltages. If, in the normal state, all output voltages of a power supply device are present in the correct size, the monitoring device 8 controls the transistor 3 to conduct, which switches the positive potential of, for example, + 5 V to the error signal input E of the signaling circuit.
  • the transistors 13 and 1 are turned on and the output A1 is connected to ground.
  • the stabilized current of 2 mA flows in the first current path 1a and there essentially as the base current for the transistor 1 via the Zener diode 12 and the emitter-collector path of the transistor 13.
  • the signaling circuit consumes only the stabilized current, the size of which is expediently chosen in accordance with the load on the signal at output A1 or output A2 and the minimum current gain of transistor 1 or 2, and is in particular 2 mA.
  • the monitoring device 8 blocks the transistor 3.
  • the transistor 13 is no longer activated, likewise blocks and its emitter potential becomes negative until the Zener voltage of the Zener diode 21 is reached.
  • the stabilized current I s is to a certain extent switched over to the second current path 2a and now controls the transistor 2 in a conductive manner, so that the ground potential is switched through to the output A2.
  • the PTC thermistor 7 is provided. It limits the current in the event of a short circuit or faulty constant current circuit by means of a sharp increase in resistance, so that no further components or supply lines, in particular conductor tracks, can be endangered.
  • the signaling circuit shown in FIG. 2 largely corresponds to that of FIG. 1. Deviatingly, the base of transistor 2 is not directly connected to second current path 2a. The transistor 2 is rather controlled indirectly from the current path 2a via the two transistor stages with the transistors 23 and 63.
  • the second current path 2a consists of the Z diode 21, the resistor 22 and the base-emitter path of the NPN transistor 23.
  • the drain electrode of the field effect transistor 43 is guided to the ground terminal a via the emitter-base path of the transistor 23 and the forward-polarized Zener diode 21.
  • the resistor 22 is arranged parallel to the base-emitter path of the transistor 23.
  • the collector 23 is connected directly to the base of the pnp transistor 63 and via the resistor 51 to the ground terminal a.
  • the transistor 63 is guided with its collector via the light-emitting diode 64 to the switching point c and with its emitter via the resistor 62 and the resistor 61 arranged in series therewith to the ground connection a.
  • the base of transistor 2 is at the junction of resistors 61 and 62.
  • the signaling circuit consumes only the stabilized current, the size of which is expediently chosen in accordance with the load on the signal at output A1 and the minimum current gain of transistor 1 or 2, and is in particular 2 mA.
  • the stabilized current I s is switched to the second current path 2a, it controls the transistor 23 in a conductive manner. As a result, transistor 63 is also driven.
  • This transistor 63 forms a further current stabilization circuit with the Zener diode 21 and the resistor 62.
  • the further current stabilization circuit carries a stabilized current of, in particular, the light-emitting diode 64 arranged on the collector side of the transistor 64, which optically indicates a device fault 10 mA too.
  • this current flowing through resistor 62 also controls transistor 2 in a conductive manner and connects the ground potential to output A2.
  • the current consumption in the event of a fault is approx. 12 mA.
  • the minimum operating voltage U S1 results from the Zener voltage of the Zener diode 21, the emitter base voltage of the transistor 23 and a sufficient working voltage for the constant current circuit 4 to a total of approximately 9 V.
  • the same current is switched over and used to operate a second constant current circuit with 10 mA for the LED 64.
  • a serial arrangement of the functional parts ensures that this LED current simultaneously controls the transistors 23, 63 and 2 in a conductive manner. The current consumption of the entire signaling circuit therefore does not exceed 12 mA.
  • earth potential which can be loaded with 60 mA
  • earth potential which can be loaded with 60 mA
  • ground potential for a continuous signal and for a pulse signal each with a load of 12 mA against the same supply voltage, is supplied at output A2.
  • the operating voltage Usi for the signaling circuit itself is independent of the supply voltage of the device for signal evaluation to be connected to the outputs A1 and A2 and can have different nominal values between - 12 and - 60 V.
  • the signaling circuit is therefore designed for an operating voltage range of -10 to - 75 V.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Amplifiers (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Interface Circuits In Exchanges (AREA)
  • Dc-Dc Converters (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Measurement Of Current Or Voltage (AREA)

Claims (10)

1. Circuit de signalisation, qui, dans le cas de l'application d'un premier critère d'entrée prédéterminé à une entrée (E), fournit un potentiel de référence (masse) à une première sortie (A1 ) et une résistance de blocage à une seconde sortie (A2) et, lors de l'application d'un second critère d'entrée, fournit un potentiel de référence (masse) à une seconde sortie (A2) et une résistance de blocage à une première sortie (A1), caractérisé par le fait qu'une section de commutation d'un premier interrupteur électronique (transistor 1) est disposée entre la première sortie (A1) et le potentiel de référence (masse) et une section de commutation d'un second interrupteur électronique (transistor 2) est disposée entre la seconde sortie (A2) et le potentiel de référence (masse), et que le circuit de signalisation comporte un circuit à courant constant (4), qui est raccordé à une source de tension de service (9) et auquel est raccordé un montage en parallèle formé d'une première voie de courant (1 a) et d'une seconde voie de courant (2a), et que le premier interrupteur électronique (transistor 1) peut être placé à l'état conducteur par le courant circulant dans la première voie de courant (1 a) et le second interrupteur électronique (transistor 2) peut être placé à l'état conducteur par le courant circulant dans la seconde voie de courant (2a), et que les deux voies de courant (1a, 2a) peuvent être commandées en fonction des critères d'entrée de sorte que, dans le cas du premier critère d'entrée, la première voie de courant (1a) est conductrice et la seconde voie de courant (2a) est bloquée et que, dans le cas du second critère d'entrée, la seconde voie de courant (2a) est conductrice et la première voie de courant (1 a) est bloquée.
2. Circuit de signalisation suivant la revendication 1, caractérisé par le fait qu'un premier critère d'entrée est un potentiel de commande prédéterminé (Us2) et un second critère de commande est un circuit d'entrée ouvert (3a), et que la première voie de courant (1a) comporte la voie commandée d'un transistor (13), dont l'électrode de commande (base) est raccordée à une entrée (E) pour les critères de commande et que les deux voies de courant (1 a, 2a) comportent chacune un dipôle non linéaire (12, 21) agencé à la manière d'une diode Zener, qui est conductrice au-dessus d'un seuil de tension prédéterminé et est bloquée au-dessous du seuil de tension prédéterminé, et que le seuil de tension du premier dipôle non linéaire (12), situé dans la première voie de courant (1 a), est inférieur au seuil de tension du second dipôle non linéaire (21), situé dans la seconde voie de courant (2a).
3. Circuit de signalisation suivant la revendica- fion 1 ou 2, caractérisé par le fait que, dans au moins l'un des interrupteurs électroniques (transistor 1), la voie de commande (voie base-émetteur) est située dans l'une des deux voies de courant parallèles.
4. Circuit de signalisation suivant l'une des revendications 1 à 3, caractérisé par le fait que dans au moins l'un des interrupteurs électroniques (transistor 2), la voie de commande est raccordée à la voie de courant associée (2a) par l'intermédiaire d'au moins un étage à transistors (transistors 23, 63).
5. Circuit de signalisation suivant l'une des revendications 1 à 4, caractérisé par le fait que le circuit à courant constant (4) est formé par un circuit de stabilisation du courant, qui est branché en série avec le montage en parallèle formé des première et seconde voies de courant (1a, 2a), et raccordé, conjointement avec ce montage en parallèle, à une source de tension de service (9), contient la voie commandée d'un premier transistor (43) et une résistance (44) branchée en série avec ce transistor, et dans lequel en parallèle avec la résistance (44) se trouve disposée la voie de commande d'un second transistor (42), dont le collecteur est raccordé directement à la borne de commande du premier transistor (43) et, par l'intermédiaire d'une résistance (44), à une source de tension de service (9).
6. Circuit de signalisation suivant la revendication 5, caractérisé par le fait que le premier transistor (43) est un transistor à effet de champ et que le second transistor (42) est un transistor bipolaire.
7. Circuit de signalisation suivant l'une des revendications 1 à 6, caractérisé par le fait que le circuit de signalisation comporte un autre circuit à courant constant, qui est raccordé à la seconde voie de courant (2a) et peut être activé par un courant circulant dans la seconde voie de courant (2a), et qu'un circuit série formé par le second circuit à courant constant et un élément d'affichage (64) est raccordé à la source de tension de service (9).
8. Circuit de signalisation suivant les revendications 2 et 7, caractérisé par le fait que le second circuit à courant constant comporte, en tant que résistance commandée, un transistor (63), qui fait simultanément partie d'un étage de commande pour le second interrupteur électronique (transistor 2), et, en tant qu'étalon de comparaison, le dipôle non linéaire (21) situé dans la seconde voie de courant.
9. Circuit de signalisation suivant la revendication 8, caractérisé par le fait que le collecteur d'un transistor (23), dont la voie base-émetteur est située dans la seconde voie de courant (2a), est raccordé directement à la base d'un autre transistor (63), dont la voie émetteur-collecteur est située dans une branche (6) de circulation du courant, qui relie le potentiel de référence à la borne de la source de tension de service (9), qui délivre la tension d'alimentation (-U5l) et comporte la voie émetteur- base d'un transistor (2) constituant le second interrupteur électronique, une résistance, la voie émetteur-collecteur du second transistor (63) et l'élément d'affichage (64).
10. Circuit de signalisation suivant l'une des revendications précédentes, caractérisé par son utilisation en liaison avec plusieurs dispositifs de contrôle comportant une sortie à collecteur ouvert, de telle sorte que les sorties à collecteur ouvert sont raccordés multiple à l'entrée (E) du circuit de signalisation.
EP85116256A 1984-12-20 1985-12-19 Circuit de signalisation Expired EP0185377B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85116256T ATE43930T1 (de) 1984-12-20 1985-12-19 Signalisierungsschaltung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3446628 1984-12-20
DE19843446628 DE3446628A1 (de) 1984-12-20 1984-12-20 Signalisierungsschaltung

Publications (2)

Publication Number Publication Date
EP0185377A1 EP0185377A1 (fr) 1986-06-25
EP0185377B1 true EP0185377B1 (fr) 1989-06-07

Family

ID=6253388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85116256A Expired EP0185377B1 (fr) 1984-12-20 1985-12-19 Circuit de signalisation

Country Status (6)

Country Link
US (1) US4712056A (fr)
EP (1) EP0185377B1 (fr)
JP (1) JPS61151471A (fr)
AT (1) ATE43930T1 (fr)
DE (2) DE3446628A1 (fr)
NO (1) NO169257C (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166400U (fr) * 1988-05-10 1989-11-21
DE10144907A1 (de) 2001-09-12 2003-04-03 Infineon Technologies Ag Sendeanordnung, insbesondere für den Mobilfunk
US7406135B2 (en) * 2004-06-22 2008-07-29 International Business Machines Corporation Reducing power consumption in signal detection
CN103369779A (zh) * 2012-04-11 2013-10-23 鸿富锦精密工业(深圳)有限公司 Led恒流驱动电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1370808A (en) * 1970-11-16 1974-10-16 Pioneer Electronic Corp Signal amplifier including a protective circuit
FR2268314A1 (en) * 1974-04-17 1975-11-14 Nippon Denso Co Central alarm unit for motor vehicles with sensors - has sensors attached to parts or areas for monitoring and converting physical variable into electrical signal
US3903430A (en) * 1974-09-12 1975-09-02 Basf Ag Low loss circuit fail detector
DE2809533C3 (de) * 1978-03-06 1981-08-13 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zum Auswerten der Schaltzustände von m Relais
JPS5711174A (en) * 1980-06-24 1982-01-20 Nissan Motor Co Ltd Cowl box construction for automobile
US4514648A (en) * 1982-08-27 1985-04-30 Motorola, Inc. Current sense circuit for a bubble memory voltage booster
US4567539A (en) * 1984-03-23 1986-01-28 Siemens Corporate Research & Support, Inc. Power interruption and brownout detector
US4560921A (en) * 1984-06-15 1985-12-24 National Semiconductor Corporation Comparator circuit with built in reference
US4594518A (en) * 1984-07-06 1986-06-10 Rca Corporation Voltage level sensing circuit

Also Published As

Publication number Publication date
DE3570936D1 (en) 1989-07-13
US4712056A (en) 1987-12-08
EP0185377A1 (fr) 1986-06-25
DE3446628A1 (de) 1986-06-26
NO855181L (no) 1986-06-23
NO169257B (no) 1992-02-17
NO169257C (no) 1992-05-27
JPS61151471A (ja) 1986-07-10
ATE43930T1 (de) 1989-06-15

Similar Documents

Publication Publication Date Title
EP0423885B1 (fr) Dispositif d'alimentation avec limitation du courant d'appel
DE2727537A1 (de) Schwellwert-detektor
DE4041032C2 (de) Schaltungsanordnung zur Überwachung eines Lastkreises
EP0409327B1 (fr) Dispositif d'alimentation de courant avec circuit de surveillance
EP0185377B1 (fr) Circuit de signalisation
DE4326423B4 (de) Anordnung zur Entkopplung eines Verbrauchers von einer Gleichspannungs-Versorgungsquelle
DE1537185B2 (de) Amplitudenfilter
DE3224209C2 (fr)
DE1512752B2 (de) Digital und analog arbeitende verknuepfungsschaltung
DE2814856C2 (de) Ansteuerschaltung für eine Leuchtdiode
DE2715609B2 (de) Fenster-Diskriminatorschaltung
DE3037319A1 (de) Steuerschaltung fuer einen bewegungslosen transistorschalter fuer gleichstromlasten mit hohem einschaltstrom
DE3539379C2 (de) Monolithisch integrierte Steuerschaltung für die Umschaltung von Transistoren
DE3432567C1 (de) Schaltungsanordnung zur Kurzschlußüberwachung
DE3110355A1 (de) "vorspannungsgenerator"
DE3240280C2 (fr)
DE2929515C2 (de) Schaltungsanordnung zur unterbrechungsfreien Spannungsumschaltung
DE3145771C2 (fr)
EP0048490B1 (fr) Circuit pour transformer un signal d'entrée binaire en un signal télégraphique
DE102017131200B4 (de) Digitale Eingangsschaltung zum Empfangen digitaler Eingangssignale eines Signalgebers
DE3311258C1 (de) Schaltungsanordnung zur UEberwachung einer Betriebsspannung
DE2431523C3 (de) Halbleiter-Sprechweg-Schaltanordnung
DE2842629C2 (de) Einrichtung zum steuerbaren Verbinden eines Anschlußpunktes über einen Lastwiderstand mit einem Lastpotential
DE2237764A1 (de) Schaltung zum bevorrechtigten inbetriebsetzen einer stufe einer elektronischen folgeschaltung mit halteschaltung
DE1911959A1 (de) Triggerschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19861218

17Q First examination report despatched

Effective date: 19880802

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890607

REF Corresponds to:

Ref document number: 43930

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3570936

Country of ref document: DE

Date of ref document: 19890713

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941114

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950317

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951219

Ref country code: AT

Effective date: 19951219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

Ref country code: BE

Effective date: 19951231

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST