EP0184415A1 - Evacuated heat insulation unit - Google Patents
Evacuated heat insulation unit Download PDFInfo
- Publication number
- EP0184415A1 EP0184415A1 EP19850308757 EP85308757A EP0184415A1 EP 0184415 A1 EP0184415 A1 EP 0184415A1 EP 19850308757 EP19850308757 EP 19850308757 EP 85308757 A EP85308757 A EP 85308757A EP 0184415 A1 EP0184415 A1 EP 0184415A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- film
- bag
- metallic foil
- insulation unit
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 60
- 239000011888 foil Substances 0.000 claims abstract description 58
- 239000011162 core material Substances 0.000 claims abstract description 6
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 239000002985 plastic film Substances 0.000 claims description 2
- 229920006255 plastic film Polymers 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 description 33
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 33
- 239000007789 gas Substances 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- XFJBGINZIMNZBW-CRAIPNDOSA-N 5-chloro-2-[4-[(1r,2s)-2-[2-(5-methylsulfonylpyridin-2-yl)oxyethyl]cyclopropyl]piperidin-1-yl]pyrimidine Chemical compound N1=CC(S(=O)(=O)C)=CC=C1OCC[C@H]1[C@@H](C2CCN(CC2)C=2N=CC(Cl)=CN=2)C1 XFJBGINZIMNZBW-CRAIPNDOSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002651 laminated plastic film Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/08—Means for preventing radiation, e.g. with metal foil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/14—Insulation with respect to heat using subatmospheric pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1334—Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
- Y10T428/1338—Elemental metal containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/231—Filled with gas other than air; or under vacuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
Definitions
- the present invention relates to an evacuated heat insulation unit (hereinafter referred to as insulation unit) for use in, for example, refrigerators as a heat insulation panel.
- insulation unit an evacuated heat insulation unit for use in, for example, refrigerators as a heat insulation panel.
- the insulation unit for use in refrigerators has a synthetic resin bag charged with a heat insulation core material, such as a foamed and then crashed fine perlite powder, in a vacuum state.
- the evacuated insulation unit has a high heat insulating property or a low thermal conductivity of about 0.01 Kcal/m.h. or less since it includes a heat insulation vacuum layer.
- the evacuated insulation unit is degraded in its heat insulating property with lapse of time since a small amount of air permeates through the plastic bag into the evacuated insulation unit.
- the evacuated heat insulation bag is excellent in vacuum degree retention since a metallic foil allows only a trace amount of gas to permeate it and hence the insulation unit has a prolonged life.
- the metallic foils of the insulation unit constitute at the sealed peripheries a heat bridge between the outer face and the inner face of the insulation unit, and hence heat conductivity at the peripheries of the insulation unit is rather large, resulting in deterioration in insulation property of the whole insulation unit.
- an object of the present invention to provide an evacuated heat insulation unit which is fairly low in heat conductivity at the peripheral portion thereof, thus providing excellent heat insulation property.
- the present invention provides a plate like insulation unit which includes an evacuated bag having two gas impermeable films sealed at peripheries thereof to form the bag and a heat insulating core material charged into the bag.
- the one gas impermeable film of the bag is a first film having a first metallic foil laminated to extend to the peripheries thereof, and the other gas permeable film is a second film having a metallic layer vapor deposited.
- the reference numeral 10 designates an evacuated heat insulation panel including a vacuum packed bag 12 and a heat insulating core material 14 charged into it.
- the heat insulating core material 14 may include: a fine powder such as a finely crashed perlite and a microballoon; an inorganic material powder such as silica, magnesium carbonate, a diatomaceous earth and calcium silicate; a moulding of calcium silicate; a fine glass fiber; asbestos; a heat insulating material such as a foamed plastic material; and like insulating materials.
- the vacuum packed bag 12 has two films 16 and 18 heat sealed at their peripheries 12A, and includes a planar portion A and a peripheral portion B surrounding the planar portion A.
- the film 16 is, as shown in FIG. 4, a laminated film including an outer layer 20 of a synthetic resin, an intermediate layer 22 of a metallic foil laminated to the outer layer 20 and an inner layer 24 of a synthetic resin.
- the outer layer 20 is a polyethylene film (hereinafter referred to as PE film), polyethylene terephthalate (hereinafter as PET), nylon film, polyvinylidene chloride film, biaxially oriented polypropylene film or a film of a similar resin.
- the outer layer typically has a thickness about 12 pm to 25 pm.
- the inner layer film 24 may be made of, for example, a polyolefin resin such as a low density polyethylene (hereinafter as LDPE), high density polyethylene (HDPE) and polypropylene (PP).
- LDPE low density polyethylene
- HDPE high density polyethylene
- PP polypropylene
- the inner layer typically has a thickness 30 ⁇ m to 100 pm and may be made of LDPE, HDPE, PP and a like material.
- the outer and inner layers 20 and 24 may be a film vapor-deposited with a metal such as aluminum.
- the metallic foil 22 may be made of aluminum, iron, stainless steel, tin or a similar material. When an aluminum foil is used, the metallic foil 22 has typically a thickness about 9 pm to about 30 pm.
- the metallic foil 22 may be provided to either the outer face or the inner face of the film 16. As illustrated in FIG. 3, the metallic foil 22 is provided to reach the same extent as the layers 20 and 24.
- the metallic foil 22 may be laminated to the outer and inner layers 20 and 24 by means of conventional dry laminating, wet laminating, heat sealing or other similar processing.
- the other film 18 is a laminated film including, for example, an outermost PET film layer 26 having a first aluminum layer 28 vapor deposited, an intermediate PET film layer 29 having a second aluminum layer 30 vapor deposited and an innermost PE film layer 32.
- the outermost and intermediate layers 26 and 29 typically has a thickness about 12 to 25 pm and may be made of the same material as the inner layer 20 of the film 16 in FIG. 4.
- the innermost layer 32 may be made of the same material as the lower layer 24 of the film 16 in FIG. 4 and may have a thickness equal to the thickness of the lower layer 24.
- Each vapor-deposited aluminum layer preferably has a thickness about 0.05 pm to about 0.07 pm.
- These films 16 and 18 are sealed at their three sides 12A by a conventional manner such as heat sealing to form a bag 12 with one open end 12B as illustrated in FIG. 1 and then a heat insulating material 14 is charged into it through the open end 12B. Then, the bag 12 is placed within a conventional vacuum packer for evacuation, during which the open end 12B of the bag 12 is sealed likewise.
- the insulation unit 10 as shown in FIG. 2 is produced, having sealed portions 12C of the bag 12 placed at peripheries thereof.
- the central portions of the films 16 and 18 define the planar portion A of the insulation unit 10.
- the insulation unit 10 does not produce any heat bridge between the films 16 and 18 since only one film 16 has a metallic foil 22. Thus, heat flows between the films 16 and 18 at a very small flow rate, resulting in a fairly small heat conductivity of the insulation unit 10.
- the metallic foil 22 prevents gas permeation through the film 16 and thereby considerably reduces the gas permeation area of the vacuum packed bag 10 and hence the flow rate of the gas which permeates the bag. This maintains a predetermined vacuum degree in the interior of the unit 10 for a fairly long period of time and hence prolongs the life of the insulation unit 10.
- the metallic foil 22 is provided to the film 16 to extend to the edges thereof, and hence a continuous laminating process of the metallic foil 22 may be made. That is, a long metallic foil for the foil 22 may be continuously provided between two long sheets of films for the films 20 and 24 and laminated to them, after which the material thus laminated is cut to length to produce the film 16. This enables ease of fabrication of the film 16 and thus reduction in manufacturing cost of the bag 10.
- the metallic foil 22 is sandwiched between the films 20 and 24 and hence even if the metallic foil 22 is bonded to these films through an adhesive, in the use of the insulation unit 10 for a double walled portion of a refrigerator, the bonding of the metallic foil 22 is not deteriorated due to Freon gas produced from a foamed urethane, etc which is used for fixing the unit 10 to the double walled portion.
- refrigerators using the insulation unit 10 ensure a predetermined heat insulation performance for a fairly long period of time.
- FIGS. 6 to 8 illustrate a modified form of the present invention, with an improved heat insulation property.
- the modified insulation unit 40 is distinct from the insulation unit 10 in FIGS. 2 to 5 in that a metallic foil 42 is provided to the film 18.
- the metallic foil 42 is centrally bonded to the planar portion of the outer face of the film 18 through an adhesive 44, such as polyurethane adhesive, as shown in FIGS. 6 to 8.
- the metallic foil 42 may be attached to the film 18 by heat sealing and may be placed on the inner face of the film 18 or between the components of the film 18.
- the unit 40 of this modification is larger in metallic foil covered area than the unit 10 and hence has an improved gas impermeability, thus providing a superior performance in vacuum degree retention.
- FIGS. 9 and 10 there is illustrated a still modified form of the insulation unit 10 in FIGS. 2 to 5.
- This modified insulation unit 50 has the same structure as the unit 10 except that a metallic foil laminated film 52 is attached to the aluminum vapor-deposited film 18 instead of the metallic foil 42 in the insulation unit 40 in FIGS. 6 to 8.
- the metallic foil laminated film 52 includes a protection layer 54 and a metallic foil 56 which is laminated at its one face to the protection layer 54 for protection.
- the metallic foil laminated film 52 is attached to the film 18 by laminating the other face of the metallic foil 56 to the outermost film layer 26 of the film 18 through an adhesive compound 58 such as acrylic adhesive compound.
- the metallic foil 56 may be laminated to the outermost film layer 26 through a conventional adhesive for dry laminating, such as polyurethane adhesive.
- the protection layer 54 may be made of the same film as the outermost layer 26 of the film 18 of the insulation unit 10.
- the insulation unit 50 is used in a solvent such as Freon, it is preferable to adopt lamination of the metallic foil 56 through an adhesive rather than through adhesive compound. It is preferable to apply the metallic foil laminated film 52 over only a portion of the unit 50 which effectively contributes to heat insulation of the unit 50, thus preventing the unit 50 from degrading in heat insulation property.
- Example 1 There were prepared two bags 400 mm wide and 400 mm long.
- One bag (Example 1) used an aluminum foil laminated film and an aluminum vapor-deposited film heat sealed to the aluminum laminated film as in FIG. 1.
- the aluminum foil laminated film had the same structure as the film 16 in FIG. 4, including a 12 ⁇ m PET outer layer having 500 ⁇ aluminum vapor-deposited, 9 pm aluminum foil heat sealed to the outer layer, and a 60 pm HDPE inner layer heat sealed to the aluminum foil.
- the aluminum vapor-deposited film had the same structure as the film 18 in FIG.
- Example 2 including a 12 pm PET outer layer having 500 A aluminum film vapor deposited, a 12 ⁇ m PET intermediate layer heat sealed to the outer layer and having 500 A aluminum film vapor deposited and a 60 ⁇ m HDPE inner layer heat sealed to the intermediate layer.
- the other bag had the same structure as the one bag except that another aluminum foil laminated film was laminated over the aluminum vapor-deposited film in 70 % area thereof as in FIG. 9 through a polyurethane adhesive manufactured and sold by Takeda Yakuhin K.K., Japan under product designation "Takerakku A310" (hereinafter referred to as "Takerakku").
- the another aluminum foil laminated film included a 12 ⁇ m protection layer of PET and a 9 ⁇ m aluminum foil laminated to the protection layer through the adhesive "Takerakku” .
- the aluminum foil of the another aluminum foil laminated film was laminated to the outer face of the aluminum vapor-deposited film.
- a bag having the same size as the bags of the Examples 1 and 2 was prepared. This bag used two aluminum vapor-deposited films heat sealed to each other as in FIG. 1, the vapor-deposited films having the same structure as the aluminum vapor-deposited film of Example 1 and using the same materials as the latter. The bag was subjected to the same tests as the bags of Examples 1 and 2. The results are also given in Table 1. It was noted that with respect to water-vapor permeability and carbon dioxide permeability, the bag of Comparative Example was two times as large as the bag of Example 1 and about five or six times as large as the bag of Example 2.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
Abstract
Description
- The present invention relates to an evacuated heat insulation unit (hereinafter referred to as insulation unit) for use in, for example, refrigerators as a heat insulation panel.
- The insulation unit for use in refrigerators has a synthetic resin bag charged with a heat insulation core material, such as a foamed and then crashed fine perlite powder, in a vacuum state. The evacuated insulation unit has a high heat insulating property or a low thermal conductivity of about 0.01 Kcal/m.h. or less since it includes a heat insulation vacuum layer. However, the evacuated insulation unit is degraded in its heat insulating property with lapse of time since a small amount of air permeates through the plastic bag into the evacuated insulation unit.
- When the opposite films of the insulation bag are made of a metallic foil, the evacuated heat insulation bag is excellent in vacuum degree retention since a metallic foil allows only a trace amount of gas to permeate it and hence the insulation unit has a prolonged life. However, the metallic foils of the insulation unit constitute at the sealed peripheries a heat bridge between the outer face and the inner face of the insulation unit, and hence heat conductivity at the peripheries of the insulation unit is rather large, resulting in deterioration in insulation property of the whole insulation unit.
- To avoid this, an attempt has been made to form a bag for the insulation unit with plastic films, made of a polyethylene, polyester, etc, and vapor deposited with a metal such as aluminum. However, this metalizing film bag allows small gas permeation and hence the life of the insulation unit using this bag is not sufficient.
- A further attempt has been made to prolong the life of the insulation unit by the use of a bag using a metallic foil laminated plastic film. Although this metallic foil laminated bag ensures a fairly long life of the insulation unit, there arises the same heat bridge problem as in the metal foil bag previously mentioned. It was noted that in a 500 x 500 x 20 mm insulation unit using a laminated film bag laminated with a 20 um aluminum foil, heat which passes through the peripheries thereof was about five to ten times in quantity as large as heat which passes through a planar portion surrounded by the peripheries. There is a tendency that the smaller the insulation unit, the larger this phenomenon
- Accordingly, it is an object of the present invention to provide an evacuated heat insulation unit which is fairly low in heat conductivity at the peripheral portion thereof, thus providing excellent heat insulation property.
- It is another object of the present invention to provide an evacuated heat insulation unit which is excellent in vacuum degree retention property, thereby ensuring a fairly long period of life.
- With these and other objects in view the present invention provides a plate like insulation unit which includes an evacuated bag having two gas impermeable films sealed at peripheries thereof to form the bag and a heat insulating core material charged into the bag. The one gas impermeable film of the bag is a first film having a first metallic foil laminated to extend to the peripheries thereof, and the other gas permeable film is a second film having a metallic layer vapor deposited.
- In the drawings:
- FIG. 1 is a perspective view of a bag for an insulation unit according to the present invention;
- FIG. 2 is a perspective view of the insulation unit using the bag in FIG. 1;
- FIG. 3 is a cross-sectional view of the insulation unit along the line III-III in FIG. 2 with a modified scale for illustration purpose;
- FIG. 4 is an enlarged cross-sectional view of part of the metallic foil laminated film in FIG. 3;
- FIG. 5 is an enlarged cross-sectional view of part of the aluminum vapor-deposited film in FIG. 3;
- FIG. 6 is a plan view of a modified form of the insulation unit in FIG. 2;
- FIG. 7 is a cross-sectional view of the insulation unit along the line VII-VII in FIG. 6 with a modified scale;
- FIG. 8 is an enlarged cross-sectional view of part of the aluminum vapor-deposited film in FIG. 7, having an aluminum foil bonded to it;
- FIG. 9 is a cross-sectional view of a still modified form of the insulation unit in FIG. 2 with a modified scale; and
- FIG. 10 is an enlarged cross-sectional view of part of the aluminum vapor-deposited film in FIG. 9 having an aluminum foil laminated film bonded to it.
- In FIGS. 2 and 3, the
reference numeral 10 designates an evacuated heat insulation panel including a vacuum packedbag 12 and a heat insulatingcore material 14 charged into it. The heat insulatingcore material 14 may include: a fine powder such as a finely crashed perlite and a microballoon; an inorganic material powder such as silica, magnesium carbonate, a diatomaceous earth and calcium silicate; a moulding of calcium silicate; a fine glass fiber; asbestos; a heat insulating material such as a foamed plastic material; and like insulating materials. The vacuum packedbag 12 has twofilms peripheries 12A, and includes a planar portion A and a peripheral portion B surrounding the planar portion A. - The
film 16 is, as shown in FIG. 4, a laminated film including anouter layer 20 of a synthetic resin, anintermediate layer 22 of a metallic foil laminated to theouter layer 20 and aninner layer 24 of a synthetic resin. Theouter layer 20 is a polyethylene film (hereinafter referred to as PE film), polyethylene terephthalate (hereinafter as PET), nylon film, polyvinylidene chloride film, biaxially oriented polypropylene film or a film of a similar resin. The outer layer typically has a thickness about 12 pm to 25 pm. Theinner layer film 24 may be made of, for example, a polyolefin resin such as a low density polyethylene (hereinafter as LDPE), high density polyethylene (HDPE) and polypropylene (PP). The inner layer typically has athickness 30 µm to 100 pm and may be made of LDPE, HDPE, PP and a like material. The outer andinner layers metallic foil 22 may be made of aluminum, iron, stainless steel, tin or a similar material. When an aluminum foil is used, themetallic foil 22 has typically a thickness about 9 pm to about 30 pm. Themetallic foil 22 may be provided to either the outer face or the inner face of thefilm 16. As illustrated in FIG. 3, themetallic foil 22 is provided to reach the same extent as thelayers metallic foil 22 may be laminated to the outer andinner layers - The
other film 18 is a laminated film including, for example, an outermostPET film layer 26 having afirst aluminum layer 28 vapor deposited, an intermediatePET film layer 29 having asecond aluminum layer 30 vapor deposited and an innermostPE film layer 32. The outermost andintermediate layers inner layer 20 of thefilm 16 in FIG. 4. Theinnermost layer 32 may be made of the same material as thelower layer 24 of thefilm 16 in FIG. 4 and may have a thickness equal to the thickness of thelower layer 24. Each vapor-deposited aluminum layer preferably has a thickness about 0.05 pm to about 0.07 pm. - These
films sides 12A by a conventional manner such as heat sealing to form abag 12 with oneopen end 12B as illustrated in FIG. 1 and then aheat insulating material 14 is charged into it through theopen end 12B. Then, thebag 12 is placed within a conventional vacuum packer for evacuation, during which theopen end 12B of thebag 12 is sealed likewise. Thus, theinsulation unit 10 as shown in FIG. 2 is produced, having sealedportions 12C of thebag 12 placed at peripheries thereof. The central portions of thefilms insulation unit 10. - With such a construction, the
insulation unit 10 does not produce any heat bridge between thefilms film 16 has ametallic foil 22. Thus, heat flows between thefilms insulation unit 10. - The
metallic foil 22 prevents gas permeation through thefilm 16 and thereby considerably reduces the gas permeation area of the vacuum packedbag 10 and hence the flow rate of the gas which permeates the bag. This maintains a predetermined vacuum degree in the interior of theunit 10 for a fairly long period of time and hence prolongs the life of theinsulation unit 10. Themetallic foil 22 is provided to thefilm 16 to extend to the edges thereof, and hence a continuous laminating process of themetallic foil 22 may be made. That is, a long metallic foil for thefoil 22 may be continuously provided between two long sheets of films for thefilms film 16. This enables ease of fabrication of thefilm 16 and thus reduction in manufacturing cost of thebag 10. Themetallic foil 22 is sandwiched between thefilms metallic foil 22 is bonded to these films through an adhesive, in the use of theinsulation unit 10 for a double walled portion of a refrigerator, the bonding of themetallic foil 22 is not deteriorated due to Freon gas produced from a foamed urethane, etc which is used for fixing theunit 10 to the double walled portion. Thus, refrigerators using theinsulation unit 10 ensure a predetermined heat insulation performance for a fairly long period of time. - FIGS. 6 to 8 illustrate a modified form of the present invention, with an improved heat insulation property. In FIGS. 6 to 8, parts similar to parts of the embodiment in FIGS. 1 to 5 are designated by like reference characters and explanations thereof are omitted. The modified
insulation unit 40 is distinct from theinsulation unit 10 in FIGS. 2 to 5 in that ametallic foil 42 is provided to thefilm 18. Themetallic foil 42 is centrally bonded to the planar portion of the outer face of thefilm 18 through an adhesive 44, such as polyurethane adhesive, as shown in FIGS. 6 to 8. Themetallic foil 42 may be attached to thefilm 18 by heat sealing and may be placed on the inner face of thefilm 18 or between the components of thefilm 18. Theunit 40 of this modification is larger in metallic foil covered area than theunit 10 and hence has an improved gas impermeability, thus providing a superior performance in vacuum degree retention. - In FIGS. 9 and 10, there is illustrated a still modified form of the
insulation unit 10 in FIGS. 2 to 5. This modifiedinsulation unit 50 has the same structure as theunit 10 except that a metallic foil laminatedfilm 52 is attached to the aluminum vapor-depositedfilm 18 instead of themetallic foil 42 in theinsulation unit 40 in FIGS. 6 to 8. The metallic foil laminatedfilm 52 includes aprotection layer 54 and ametallic foil 56 which is laminated at its one face to theprotection layer 54 for protection. The metallic foil laminatedfilm 52 is attached to thefilm 18 by laminating the other face of themetallic foil 56 to theoutermost film layer 26 of thefilm 18 through anadhesive compound 58 such as acrylic adhesive compound. Themetallic foil 56 may be laminated to theoutermost film layer 26 through a conventional adhesive for dry laminating, such as polyurethane adhesive. Theprotection layer 54 may be made of the same film as theoutermost layer 26 of thefilm 18 of theinsulation unit 10. When theinsulation unit 50 is used in a solvent such as Freon, it is preferable to adopt lamination of themetallic foil 56 through an adhesive rather than through adhesive compound. It is preferable to apply the metallic foil laminatedfilm 52 over only a portion of theunit 50 which effectively contributes to heat insulation of theunit 50, thus preventing theunit 50 from degrading in heat insulation property. - There were prepared two bags 400 mm wide and 400 mm long. One bag (Example 1) used an aluminum foil laminated film and an aluminum vapor-deposited film heat sealed to the aluminum laminated film as in FIG. 1. The aluminum foil laminated film had the same structure as the
film 16 in FIG. 4, including a 12 µm PET outer layer having 500 Å aluminum vapor-deposited, 9 pm aluminum foil heat sealed to the outer layer, and a 60 pm HDPE inner layer heat sealed to the aluminum foil. The aluminum vapor-deposited film had the same structure as thefilm 18 in FIG. 5, including a 12 pm PET outer layer having 500 A aluminum film vapor deposited, a 12 µm PET intermediate layer heat sealed to the outer layer and having 500 A aluminum film vapor deposited and a 60 µm HDPE inner layer heat sealed to the intermediate layer. The other bag (Example 2) had the same structure as the one bag except that another aluminum foil laminated film was laminated over the aluminum vapor-deposited film in 70 % area thereof as in FIG. 9 through a polyurethane adhesive manufactured and sold by Takeda Yakuhin K.K., Japan under product designation "Takerakku A310" (hereinafter referred to as "Takerakku"). The another aluminum foil laminated film included a 12 µm protection layer of PET and a 9 µm aluminum foil laminated to the protection layer through the adhesive "Takerakku" . The aluminum foil of the another aluminum foil laminated film was laminated to the outer face of the aluminum vapor-deposited film. - Each bag thus prepared was subjected to a water-vapor permeability test in which the bag was placed in the atmosphere of 65 % RH at 27 °C and a carbon dioxide permeability test in which the bag was placed in carbon dioxide atmosphere of 1.1 atm at 30 C. The results are given in Table 1. It was noted that the water-vapor permeability and the carbon dioxide permeability of the bag of Example 2 was about 1/3 of those of the bag of Example 1. It is presumed that an insulation unit using the bag of Example 2 will be three times in life as long as an insulation unit using the bag of Example 1. In other words, it is presumed that the former will necessitate an adsorbent, which is contained in it for adsorbing gases entering through the bag films, in an amount about a third as much as the latter for the equal length of life, thus being less expensive than the latter.
- A bag having the same size as the bags of the Examples 1 and 2 was prepared. This bag used two aluminum vapor-deposited films heat sealed to each other as in FIG. 1, the vapor-deposited films having the same structure as the aluminum vapor-deposited film of Example 1 and using the same materials as the latter. The bag was subjected to the same tests as the bags of Examples 1 and 2. The results are also given in Table 1. It was noted that with respect to water-vapor permeability and carbon dioxide permeability, the bag of Comparative Example was two times as large as the bag of Example 1 and about five or six times as large as the bag of Example 2.
Claims (4)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP184058/84 | 1984-12-04 | ||
JP18405884U JPS6197693U (en) | 1984-12-04 | 1984-12-04 | |
JP179380/85 | 1985-11-21 | ||
JP17938085U JPH0325510Y2 (en) | 1985-11-21 | 1985-11-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0184415A1 true EP0184415A1 (en) | 1986-06-11 |
EP0184415B1 EP0184415B1 (en) | 1990-12-05 |
Family
ID=26499256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19850308757 Expired - Lifetime EP0184415B1 (en) | 1984-12-04 | 1985-12-02 | Evacuated heat insulation unit |
Country Status (3)
Country | Link |
---|---|
US (1) | US4669632A (en) |
EP (1) | EP0184415B1 (en) |
DE (1) | DE3580837D1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2227080A (en) * | 1988-12-12 | 1990-07-18 | Greiner Schaumstoffwerk | Device for thermal and/or sound insulation and a method for the production of such devices |
GB2267329A (en) * | 1992-05-14 | 1993-12-01 | Rolls Royce Plc | Thermal insulation structure |
EP0685512A1 (en) * | 1994-05-27 | 1995-12-06 | Bayer Ag | Process for producing open-celled rigid polyurethane foams |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT210748Z2 (en) * | 1987-06-12 | 1989-01-11 | Magneti Marelli Spa | ELECTRIC ACCUMULATORS AND ACCUMULATOR BATTERIES PROVIDED WITH A CASE REFLECTIVE TO INFRARED RADIATIONS |
DE3800551A1 (en) * | 1988-01-12 | 1989-07-20 | Unilever Nv | Package for sheathed welding electrodes or similar hygroscopic objects and laminated film to produce such a package |
US5129519A (en) * | 1989-09-05 | 1992-07-14 | Minnesota Mining And Manufacturing Company | Packaging container |
US5018328A (en) * | 1989-12-18 | 1991-05-28 | Whirlpool Corporation | Multi-compartment vacuum insulation panels |
US5091233A (en) * | 1989-12-18 | 1992-02-25 | Whirlpool Corporation | Getter structure for vacuum insulation panels |
US5082335A (en) * | 1989-12-18 | 1992-01-21 | Whirlpool Corporation | Vacuum insulation system for insulating refrigeration cabinets |
FI85004C (en) * | 1990-01-26 | 1992-02-25 | Devipack Oy | FOERPACKNINGSAEMNE OCH FOERFARANDE FOER HOPMONTERING AV FOERPACKNINGEN. |
US5094899A (en) * | 1990-09-06 | 1992-03-10 | Owens-Corning Fiberglas Corporation | High r super insulation panel |
US5270092A (en) * | 1991-08-08 | 1993-12-14 | The Regents, University Of California | Gas filled panel insulation |
US5284692A (en) * | 1991-10-24 | 1994-02-08 | Bell Dennis J | Electrostatic evacuated insulating sheet |
ATE169663T1 (en) * | 1992-06-05 | 1998-08-15 | Battelle Memorial Institute | METHOD FOR CATALYTIC CONVERSION OF ORGANIC MATERIALS INTO A PRODUCT GAS |
DE69304701T2 (en) * | 1992-06-08 | 1997-01-30 | Getters Spa | EVACUATED THERMAL INSULATION, IN PARTICULAR A COVER OF A DEWAR TANK OR ANY OTHER CRYOGENIC DEVICE |
US5866228A (en) * | 1993-11-22 | 1999-02-02 | Mitsubishi Chemical Corporation | Vacuum heat-insulator |
US5601897A (en) * | 1994-10-17 | 1997-02-11 | Owens-Corning Fiberglass Technology Inc. | Vacuum insulation panel having carbonized asphalt coated glass fiber filler |
JPH11505591A (en) * | 1995-03-16 | 1999-05-21 | オウェンス コーニング | Vacuum insulating panel having blended wool filler and method of manufacturing the same |
US5706969A (en) * | 1995-03-27 | 1998-01-13 | Nippon Sanso Corporation | Insulated container, insulating material, and manufacturing method of the insulated container |
US5527411A (en) * | 1995-03-31 | 1996-06-18 | Owens-Corning Fiberglas Technology, Inc. | Insulating modular panels incorporating vacuum insulation panels and methods for manufacturing |
US5798154A (en) * | 1995-12-13 | 1998-08-25 | Bryan; Lauri | Flex wrapped vacuum insulator |
HRP970104A2 (en) * | 1996-03-22 | 1998-02-28 | Bayer Ag | Vacuum insulating panels wraped on both sides by a foil containing metal or by a metal covering layer |
DE19700628C2 (en) * | 1997-01-10 | 2003-03-20 | Reinz Dichtungs Gmbh | Method for producing a heat shield and a heat shield produced using the method |
US5987833A (en) * | 1997-06-24 | 1999-11-23 | Owens Corning Fiberglas Technology, Inc. | Vacuum packaged batt |
US6109712A (en) * | 1998-07-16 | 2000-08-29 | Maytag Corporation | Integrated vacuum panel insulation for thermal cabinet structures |
US6513974B2 (en) | 1998-09-17 | 2003-02-04 | Thomas G. Malone | Inflatable insulating liners for shipping containers |
DE19915456A1 (en) * | 1999-04-01 | 2000-10-05 | Bsh Bosch Siemens Hausgeraete | Vacuum insulated wall, e.g. a refrigerator housing or door, has inner and outer thermoplastic linings with a water vapor and gas permeability reducing system |
ATE374686T1 (en) * | 1999-04-12 | 2007-10-15 | Isuzu Motors Ltd | HEAT-INSULATING MASONRY ELEMENT AND METHOD FOR THE PRODUCTION THEREOF |
CN1157284C (en) * | 1999-06-30 | 2004-07-14 | 松下电器产业株式会社 | Vacuum thermal insulating material, insulated equipment and electric water heater using said material |
US20030128898A1 (en) * | 1999-09-17 | 2003-07-10 | Malone Thomas G. | Inflatable insulating liners including phase change material |
US20040074208A1 (en) * | 2000-05-30 | 2004-04-22 | Advantek, Inc. | Vacuum insulation panels and method for making same |
WO2002034644A2 (en) * | 2000-10-27 | 2002-05-02 | Andrea Meli | Isothermal bag for bottles and foodstuffs |
US6755568B2 (en) | 2000-12-21 | 2004-06-29 | Cargo Technology, Inc. | Inflatable insulating liners for shipping containers and method of manufacture |
JP2004099145A (en) * | 2002-09-12 | 2004-04-02 | Thermos Kk | Thermally insulated container |
DE102004050549B4 (en) * | 2004-08-09 | 2014-02-13 | Va-Q-Tec Ag | Foil-covered vacuum insulation panel and method of making the same |
GB2428254A (en) * | 2005-07-08 | 2007-01-24 | Acoustic & Insulation Mfg Ltd | Vacuum packed insulation product |
DE102005045726A1 (en) * | 2005-09-23 | 2007-04-05 | Va-Q-Tec Ag | Process for producing a film-wrapped vacuum insulation body |
EP2484951B1 (en) * | 2005-10-18 | 2018-01-31 | LG Electronics Inc. | Vacuum insulation panel and insulation structure of refrigerator applying the same |
WO2008144634A2 (en) * | 2007-05-18 | 2008-11-27 | Cabot Corporation | Filling fenestration units |
WO2009032763A1 (en) | 2007-08-28 | 2009-03-12 | Fi-Foil Company, Inc. | A system and method for insulating items using a reflective or inflatable insulation panel |
US20090179541A1 (en) * | 2007-12-12 | 2009-07-16 | Nanopore, Inc. | Vacuum insulation panel with smooth surface method for making and applications of same |
US20090233038A1 (en) * | 2008-02-15 | 2009-09-17 | Eldon Coppersmith | Thermal and sound building insulation panels having internal vacuum |
US20130101779A1 (en) * | 2010-08-23 | 2013-04-25 | Lg Electronics Inc. | Vacuum insulation material |
KR20120033165A (en) * | 2010-09-29 | 2012-04-06 | 엘지전자 주식회사 | Vacuum insulation material for refrigerator and adiabatic structure in refrigerator cabinet having the same |
EP2794429B1 (en) * | 2011-12-20 | 2016-03-30 | Carrier Corporation | Cargo container, method |
US9744752B2 (en) | 2012-01-24 | 2017-08-29 | Inflatek Innovations, Llc | Inflatable panel and method of manufacturing same |
US9606587B2 (en) * | 2012-10-26 | 2017-03-28 | Google Inc. | Insulator module having structure enclosing atomspheric pressure gas |
KR20150034319A (en) * | 2013-09-26 | 2015-04-03 | (주)엘지하우시스 | Vacuum insulation panel and method of manufacturing the same |
US9430006B1 (en) | 2013-09-30 | 2016-08-30 | Google Inc. | Computing device with heat spreader |
US8861191B1 (en) | 2013-09-30 | 2014-10-14 | Google Inc. | Apparatus related to a structure of a base portion of a computing device |
US9689604B2 (en) * | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US9442514B1 (en) | 2014-07-23 | 2016-09-13 | Google Inc. | Graphite layer between carbon layers |
US9688454B2 (en) | 2014-08-05 | 2017-06-27 | Sonoco Development, Inc. | Double bag vacuum insulation panel for steam chest molding |
CN105605863B (en) | 2014-11-13 | 2018-01-02 | 松下知识产权经营株式会社 | Vacuum heat insulation material |
KR102442071B1 (en) * | 2015-10-19 | 2022-09-13 | 삼성전자주식회사 | Refrigerator amd producing method of same |
US11788279B1 (en) * | 2019-03-21 | 2023-10-17 | Insulxtreme Corp | Composite insulation batt |
US11111665B2 (en) | 2019-03-21 | 2021-09-07 | Insulxtreme Corp | Composite insulation batt |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2033461A5 (en) * | 1969-02-06 | 1970-12-04 | Verolme Vacuumtechnik | Heat insulating material |
DE2750457A1 (en) * | 1976-12-21 | 1978-06-22 | Gen Electric | THERMAL INSULATION STRUCTURE |
EP0015411A1 (en) * | 1979-03-01 | 1980-09-17 | Remis Gesellschaft für Entwicklung und Vertrieb von technischen Elementen mit beschränkter Haftung | Sheet made from insulating material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE471231A (en) * | 1943-01-30 | |||
US2934811A (en) * | 1959-03-06 | 1960-05-03 | Condenser Machinery Corp | Method of increasing capacitance |
US3307318A (en) * | 1964-02-27 | 1967-03-07 | Dow Chemical Co | Foam plastic filler method |
US4269323A (en) * | 1978-02-03 | 1981-05-26 | Nippon Sanso Kabushiki Kaisha | Heat insulated tank |
JPS5796852A (en) * | 1980-12-09 | 1982-06-16 | Matsushita Electric Ind Co Ltd | Heat insulating material |
US4581285A (en) * | 1983-06-07 | 1986-04-08 | The United States Of America As Represented By The Secretary Of The Air Force | High thermal capacitance multilayer thermal insulation |
-
1985
- 1985-12-02 EP EP19850308757 patent/EP0184415B1/en not_active Expired - Lifetime
- 1985-12-02 DE DE8585308757T patent/DE3580837D1/en not_active Expired - Fee Related
- 1985-12-03 US US06/804,198 patent/US4669632A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2033461A5 (en) * | 1969-02-06 | 1970-12-04 | Verolme Vacuumtechnik | Heat insulating material |
DE2750457A1 (en) * | 1976-12-21 | 1978-06-22 | Gen Electric | THERMAL INSULATION STRUCTURE |
EP0015411A1 (en) * | 1979-03-01 | 1980-09-17 | Remis Gesellschaft für Entwicklung und Vertrieb von technischen Elementen mit beschränkter Haftung | Sheet made from insulating material |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2227080A (en) * | 1988-12-12 | 1990-07-18 | Greiner Schaumstoffwerk | Device for thermal and/or sound insulation and a method for the production of such devices |
GB2267329A (en) * | 1992-05-14 | 1993-12-01 | Rolls Royce Plc | Thermal insulation structure |
EP0685512A1 (en) * | 1994-05-27 | 1995-12-06 | Bayer Ag | Process for producing open-celled rigid polyurethane foams |
US5698601A (en) * | 1994-05-27 | 1997-12-16 | Bayer Aktiengesellschaft | Process for the production of open-celled rigid polyurethane foams useful as insulating materials |
Also Published As
Publication number | Publication date |
---|---|
EP0184415B1 (en) | 1990-12-05 |
US4669632A (en) | 1987-06-02 |
DE3580837D1 (en) | 1991-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4669632A (en) | Evacuated heat insulation unit | |
EP0263511B1 (en) | Vacuum insulation panel | |
CA2032111C (en) | Multi-compartment vacuum insulation panels | |
US4444821A (en) | Vacuum thermal insulation panel | |
US6001449A (en) | Insulation panel with getter material support | |
US4313993A (en) | Laminated insulation | |
US5236758A (en) | Heat insulator and method of making same | |
EP0434226A2 (en) | Getter structure for vacuum insulation panels | |
US4215798A (en) | Container for cryogenic liquid | |
JPH0791594A (en) | Vacuum insulating body and method for manufacturing the same | |
JP2015007450A (en) | Vacuum heat insulation material vacuum-packaged doubly | |
JPH0341198Y2 (en) | ||
JPS6060396A (en) | Heat-insulating structure | |
WO2017029727A1 (en) | Vacuum heat insulation material and heat insulation box | |
JPS59137777A (en) | Heat-insulator pack | |
JPH10169889A (en) | Heat insulation material pack | |
JP3132139B2 (en) | Insulation | |
JP2005315346A (en) | Vacuum insulator | |
JPH0557905B2 (en) | ||
JP3033259B2 (en) | Oxygen absorber package | |
GB2397076A (en) | Flexible vacuum insulation panel | |
JP3111574B2 (en) | Oxygen absorber package | |
WO1980002398A1 (en) | Composite layered film | |
JPS6114280A (en) | Hygroscopic packing material | |
GB2289015A (en) | Flexible barrier film for evacuated insulation panels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19861209 |
|
R17P | Request for examination filed (corrected) |
Effective date: 19861201 |
|
17Q | First examination report despatched |
Effective date: 19880310 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3580837 Country of ref document: DE Date of ref document: 19910117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961125 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961206 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19961231 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971202 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980901 |