EP0180619B1 - Procede et dispositif de chauffage par energie electromagnetique - Google Patents

Procede et dispositif de chauffage par energie electromagnetique Download PDF

Info

Publication number
EP0180619B1
EP0180619B1 EP85902320A EP85902320A EP0180619B1 EP 0180619 B1 EP0180619 B1 EP 0180619B1 EP 85902320 A EP85902320 A EP 85902320A EP 85902320 A EP85902320 A EP 85902320A EP 0180619 B1 EP0180619 B1 EP 0180619B1
Authority
EP
European Patent Office
Prior art keywords
hydrocarbon material
electromagnetic energy
deflector
fractions
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85902320A
Other languages
German (de)
English (en)
Other versions
EP0180619A4 (fr
EP0180619A1 (fr
Inventor
William J. Klaila
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electromagnetic Energy Corp
Original Assignee
Electromagnetic Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electromagnetic Energy Corp filed Critical Electromagnetic Energy Corp
Priority to AT85902320T priority Critical patent/ATE70079T1/de
Publication of EP0180619A1 publication Critical patent/EP0180619A1/fr
Publication of EP0180619A4 publication Critical patent/EP0180619A4/fr
Application granted granted Critical
Publication of EP0180619B1 publication Critical patent/EP0180619B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • C10G32/02Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms by electric or magnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • H05B6/804Water heaters, water boilers

Definitions

  • the present invention relates to the treatment of hydrocarbon material with electromagnetic energy, and more particularly to a method and apparatus for recovering fractions from hydrocarbon material, facilitating the removal and cleansing of hydrocarbon fluids.
  • a process including the steps of: generating electromagnetic energy in the frequency range from about 300 megahertz to about 300 gigahertz; transmitting the generated electromagnetic energy to the hydrocarbon material; sensing the temperature of the hydrocarbon material; and periodically interrupting the generation of electromagnetic energy as required to ensure that the sensed temperature remains within specified limits.
  • US-A-4,376,034 discloses a method in which a deflector of microwave energy sweeps hydrocarbon material throughout the entire depth of the formation.
  • the present invention represents an improvement over the method and apparatus disclosed in the aforementioned reissue patent for facilitating the removal of hydrocarbon fluids as well as providing a novel method and apparatus for recovering fractions from hydrocarbon fluids.
  • a method for sequentially recovering fractions from hydrocarbon material comprising the steps of:- continuously generating electromagnetic energy in the frequency range of from about 300 megahertz to about 300 gigahertz; deflecting the generated electromagnetic energy to the hydrocarbon material by means of a deflector; exposing the hydrocarbon material to the electromagnetic energy; sensing the temperature of the hydrocarbon material at a plurality of selected locations; moving the deflector so as to deflect the electromagnetic energy to a plurality of locations in the hydrocarbon material as a function of the sensed temperatures, thereby exposing different locations of the hydrocarbon material to the electromagnetic energy and controlling the heating of the hydrocarbon material as a function of the temperatures sensed at the plurality of locations; sequentially separating the hydrocarbon and other material into fractions; and removing the resulting fractions.
  • a plurality of frequencies within the aforementioned frequency range or in combination with frequencies outside this range may be utilized in accordance with the lossiness of the fractions to be removed.
  • the temperature of the high viscosity hydrocarbon fluid may be precisely controlled by changing the broadcast location for the electromagnetic energy to effectively sweep the hydrocarbon fluid to optimize oil production while decreasing its viscosity to facilitate its separation and removal from a vessel.
  • a plurality of RF frequencies spaced far enough apart to preclude wave cancellation and having varying field strengths may be used simultaneously in accordance with their absorptivity by the various fractions to be recovered so as to achieve maximum efficiencies in recovering the fractions.
  • the method further comprises the step of providing an inert gas shield to prevent released gases from interfering with the process.
  • apparatus for sequentially recovering fractions from hydrocarbon material comprising: a container for the hydrocarbon material; radio frequency generator means positioned proximate to the container for generating electromagnetic energy in the frequency range of less than 300 megahertz to about 300 gigahertz for heating hydrocarbon material; a radiotransparent applicator and conical deflector means positioned in said container; waveguide means for coupling said radio frequency generator to said applicator; a plurality of temperature sensing means arranged for detecting the temperature of the hydrocarbon material at various levels within said container; and means for moving said deflector within said container to change the broadcast location to various levels to which the electromagnetic energy is directed for heating the hydrocarbon material, the broadcast location being selected as a function of the temperature detected at the various levels to facilitate the recovery of fractions from said material.
  • the deflector is unidirectional and has a concave deflecting surface to concentrate the deflected electromagnetic energy in a particular direction.
  • the apparatus comprises control signal means for activating said moving means with a control signal propagated through said waveguide means, said control signal having a different bandwidth than that of the electromagnetic energy for heating the hydrocarbon material.
  • an apparatus in accordance with the present invention is illustrated at 14 for use with a vessel or open or closed top oil storage tank 15 or mud pit.
  • the hydrocarbon fluid, such as oil, stored in the tank 15 often contains water, sulfur, solids and other undesired constituents or contaminates, including bacterial and algae, as well as scale and rust, all of which may be considered as basic sediment.
  • the contamination and viscosity of the oil will often increase to the point where the LACT (Lease Acquisition Custody Transfer) measurement is often too great for pipeline acceptance.
  • the apparatus 14 not only heats the oil to decrease its viscosity and increase its fluency, but also separates water, sulfur and basic sediment from the oil in the tank 15, resulting in clean oil.
  • the exiting gases, including sulfur may be collected via a collection line and holding tank (not shown) which are in communication with the top of the tank 15.
  • the apparatus 14 includes a radio frequency (RF) generator 16 which includes a magnetron 17 or klystron, or other similar device, such as a solid state oscillator as disclosed in the aforementioned reissue patent, which is capable of generating radio waves in the frequency range of 300 megahertz to about 300 gigahertz and generally utilizing from 1KW to 1MW or more of continuous wave power.
  • RF radio frequency
  • a plurality of magnetrons 17 or oscillators, or a klystron may be used to generate a plurality of heating frequencies which are far enough apart to prevent interference and which may have greater absorptivity to certain fractions which it is desired to remove.
  • the oscillator may be modified or another oscillator may be provided to generate a frequency outside of this range for use with the aforementioned frequencies in accordance with the lossiness of the fractions to be removed.
  • the magnetron 17 is mechanically coupled to an applicator 18 which is transparent to radio waves in the aforementioned frequency range.
  • the applicator 18 is in the shape of an elongated tube with an open upper end 19 and a closed bottom end 20.
  • the applicator is preferably constructed from radiotransparent materials so that it is permeable to RF waves in the desired frequency range but impermeable to liquids and gases.
  • the applicator is attached to a tubular waveguide 21 which passes through metal tank cover 22 that is bolted and grounded to the tank 15 by a plurality of nuts and bolts 24.
  • a metal transition member 26 which includes a flanged end 28, is bolted to one end of 90 o metal elbow 30 by bolts and nuts 32.
  • the tubular end 33 of the transition member 26 is attached to the tubular waveguide 21.
  • the other end 34 of the 90 o elbow 30 is bolted to one end of rectangular metal waveguide portion 36 by nuts and bolts 38.
  • the other end of the rectangular waveguide 36 is coupled to WR x coaxial transition member 40 with nuts and bolts 42.
  • Flexible coaxial member 44 is fitted with flanged ends 46 and 48 which have internal gas barriers to allow the flexible coaxial member 44 to be charged with an inert gas refrigerant, such as Freon, to increase its power carrying capacity while preventing the flow of any gases emanating from the hydrocarbon fluid back into the RF generator 16, which may result from a rupture or leakage in the applicator 18.
  • Flanged end 46 is coupled to the WR x coaxial transition member 52 with bolts and nuts 54.
  • the flanged end of the coaxial x WR transition member 52 is coupled to the RF generator 16 through an extension 56.
  • a controller 58 controls the energization of the RF generator 16 and receives signals from a plurality of temperature sensors 60 A-E arranged within the tank 15.
  • the controller 58 is coupled to the sensors 60 A-E by wires or by fiberoptic transmission lines 62.
  • the sensors 60 A-E are vertically spaced at predetermined locations within the tank 15.
  • a generally conically shaped energy deflector 64 is arranged within the applicator 18 for upward and downward movement to control the broadcast locations for the electromagnetic energy propagated through the applicator 18.
  • This upward and downward movement is provided by a motor 66 which drives a pulley 68 causing it to wind or unwind cable 70 attached to the energy deflector 64, thereby controlling the vertical broadcast location of the deflector 64 within the tank 15.
  • a separate frequency may be transmitted through the waveguide 36 to activate the motor 66.
  • the energy deflector 64 is initially located near the bottom of the applicator 14 and moved gradually upward.
  • the magnetron 17 may run continuously at full power to operate at the greatest efficiency, the temperature at various layers within the hydrocarbon fluid are effectively controlled, so that the production of oil is maximized, and the life of the magnetron 17 is prolonged.
  • the motor 66 is connected to a power source (not shown) through controller 58 by line 72.
  • the controller 58 activates the motor 66 to move the deflector 64 thereby changing the broadcast location for the electromagnetic energy in response to the temperatures sensed by sensors 60 A-E.
  • the frequency and period of application of the electromagnetic energy is controlled by the controller 58 which may be preset or programmed for continuous or intermittent upward and downward cycling to achieve homogeneous heating of the hydrocarbon fluid or localized heating to achieve the highest yield or best production of oil at minimum energy cost.
  • the broadcast location of the energy deflector 64 may be preset to provide predetermined controlled continuous or intermittent sweeping of the electromagnetic energy through the hydrocarbon fluid by employing a conventional timer and limit stops for the motor 66.
  • Valves 74 A-D may be located in the vertical wall of the tank 15 to draw off the oil after treatment with electromagnetic energy. After heating with electromagnetic energy, as shown in Fig. 1, there is a bottom layer 76 which is essentially basic sediment and water. Above the bottom layer 76 is an intermediate layer 78 which is a mixture of mostly oil with some basic sediment and water. Finally, above the layer 78 is a top layer 80 which represents the resulting oil which has been cleansed and is free of basic sediment and water. An access hatch 73 is provided for removing the resulting basic sediment, which may include "drilling mud" solids. Any bacteria and algae present in the hydrocarbon fluid are disintegrated by the RF waves, with their remains forming part of the basic sediment.
  • a conventional conduction heater 75 such as a gun barrel heater, may extend into the tank 15.
  • Heater 75 circulates hot gases through piping 77 to provide a low cost source of heat to further heat the oil once the water and basic sediment has been separated from the oil and the oil is sufficiently liquified or fluid for convection currents to flow. These convection currents further aid in reducing the viscosity of the oil and removing fine sediment.
  • a spark arrester 79 is provided in the piping 77 to eliminate any sparks in the exiting gases. The cleansed oil may be passed through a filter to remove any remaining fine sediment.
  • clean oil is readily and easily separated from basic sediment and water. This is accomplished by heating the hydrocarbon fluid in the tank 15 with electromagnetic energy which causes the water molecules which are normally encapsulated within the oil to expand rupturing the encapsulated oil film. Heating can be accomplished with radio frequency waves because water has a greater dielectric constant and greater loss tangent than oil, which results in a high lossiness, thereby allowing it to absorb significantly more energy than the oil in less time resulting in rapid expansion of the volume of the water molecules within the oil film, causing the oil film to rupture. The water molecules then combine into a heavier than oil mass which sinks to the bottom of the tank, carrying most of the sediment present in the oil with it.
  • brine or salt water may be spread across the surface of the top layer of oil 80 after the viscosity of the oil 80 has been lowered, through heating with electromagnetic energy in accordance with the present invention.
  • the heavier salt water will rapidly gravitate through the layer 80 of oil toward the bottom of the tank 15, carrying the fine sediment with it.
  • Layers 76, 78 and 80 have resulted from treating hydrocarbon fluid containing oil, basic sediment and water stored in tank 15, by sweeping the fluid with electromagnetic energy in accordance with the apparatus in Fig. 1 having a power output of 50 KW for approximately 4 hours.
  • the power output and time of exposure will vary with the volume of the tank 15, the constituents or contaminates present in the hydrocarbon fluid, and the length of time during which the hydrocarbon fluid has been stored in the tank 15.
  • hydrocarbons, sulfurs, chlorides, water (fresh or saline), and sediment and metals remain passive, reflect or absorb electromagnetic energy at different rates
  • exposure of the hydrocarbon fluid to electromagnetic energy in accordance with the present invention will separate the aforementioned constituents from the original fluid in generally the reverse order of the constituents listed above. Further, acids and condensible and non-condensible gases are also separated at various stages during the electromagnetic energy heating process.
  • the applicator 18 and energy deflector 64 are shown enlarged relative to that illustrated in Fig. 1.
  • the deflector 64 is suspended within the applicator by the dielectric cable 70 which is constructed of radiotransparent materials which are strong, heat resistant and have a very low dielectric constant and loss tangent.
  • the height of the energy deflector 64 will determine the angle of deflection of the electromagnetic energy.
  • an alternative embodiment for the deflector 64 shown in Fig. 1 is illustrated as 82.
  • the deflector 64 shown in Fig. 1 is illustrated as 82.
  • the deflector 82 has a greater angle of deflection (lesser included angle) than the deflector 64 to cause the deflected waves to propagate from the applicator 18 in a slightly downward direction below a horizontal plane through the deflector 82.
  • This embodiment enables the radio frequency to penetrate into payzones which may be positioned below the end of a well bore, when the method and apparatus is utilized for in situ heating in a geological substrate.
  • the energy deflector 82 is suspended by a fiberoptic cable 84 which provides temperature readings.
  • individual fiberoptic strands of the cable 84 are oriented to detect conditions at various locations in a vessel or borehole.
  • the information transmitted to the remote ends of the fiberoptic strands can be converted into digital signals converter for recording and/or controlling power output levels and positioning of the deflector 82.
  • the frequency for use with the fiberoptic strands is selected to be sufficiently different from the frequency of the RF generator 16 to prevent interference or cancellation.
  • the radiotransparent applicator 18 is is brazed to waveguide 21 at 88 for downhole applications where the high temperatures encountered would be detrimental to a fiberglass applicator.
  • an energy deflector designated 88 Arranged within the applicator 18 is another embodiment of an energy deflector designated 88 which is constructed of pyroceram or other dielectric material with a helical wound band of reflective material 90, such as stainless steel. Instead of providing the aforementioned band of metal 90, a spiral portion of the alumina or silicon nitride energy reflector 88 may be sintered and metallized to provide the desired reflective band.
  • waveguide coupling from the RF generator 16 may also be utilized to send control signals from the controller to the motor or other mechanism for raising and lowering the RF deflector.
  • the frequency for such control signals must be selected to be sufficiently different from the frequency or frequencies selected for the electromagnetic energy which heats the hydrocarbon fluid to prevent interference or cancellation.
  • FIG. 5 another form of energy deflector shown at 91 is essentially a right triangle in cross section with a concave surface 93 for focusing all of the deflected electromagnetic energy in a particular direction to heat a predetermined volume in a vessel or a particular payzone or coal seam in subsurface applications.
  • another form of energy deflector shown at 94 includes interconnected segments 95A-95D which provide one angle for deflection of the electromagnetic energy when the deflector is abutting the applciator 18 and another angle of deflection for the electromagnetic energy when the cable 70 is pulled upwardly causing the segments 95A-95D to retract.
  • Other means may be employed to change the angle of deflection of the deflector 94, such as a remote controlled motor.
  • drilling mud The disposal of drilling fluids known as "drilling mud" has become a severe problem for the oil industry.
  • an apparatus 150 is shown positioned in an injection well 152 located adjacent at least one producing well 154.
  • the apparatus 150 includes an RF generator 158 which is electrically coupled to a power source (not shown).
  • a magnetron 160 positioned within the RF generator 158 radiates microwave energy from an antenna or probe 162 into waveguide section 164 for propagation.
  • a waveguide extension 166 has one end coupled to the waveguide section 164 with bolts and nuts 168 and its other end coupled to a waveguide to coaxial adapter 170 with bolts and nuts 172.
  • a flexible coaxial waveguide 174 is coupled at one end to the adapter 170 through a gas barrier fitting 176.
  • waveguide 174 is coupled to a coaxial to waveguide adapter 178 through a gas barrier member 180.
  • a transformation member 182 is coupled at one end to the adapter 178 with bolts and nuts 184. The other end of the transformation member 182 is coupled to a tubular waveguide 186.
  • a radiotransparent applicator 188 is attached to the tubular waveguide 186 at 187.
  • the applicator 188 and energy deflector may include any of the types illustrated in Figs. 2-6 for broadcasting RF waves. Further, the energy deflector will be coupled to a raising and lowering means, e.g., of the type illustrated in Fig. 1.
  • the waveguide 186 is positioned within a casing 190 formed in the well 152.
  • the well head 191 is capped by a sealing gland 192 which effectively seals the waveguide 186 therein.
  • a plurality of thermocouples 194 are positined in the well 152 between the casing 190 and the waveguide 186 and extend to a location adjacent the bottom of the well 152.
  • Leads 196, which connect the thermocouples 194 to a controller (not shown) extend through a packer seal 198.
  • the packer seal 198 would not be used if it is desired to produce the resulting oil, water and gases through the annular space 199 between the casing 190 and waveguide 186.
  • the expansion of the oil, water and gases will drive the same up through the annulus 199 until the constituents in the immediate vicinity of the applicator 188 are removed. Subsequently, the annulus 199 can be packed off with the packer seal 198 and the hydrocarbons further heated to drive the resulting oil, water and gas to the producing well 154. For example, if the temperature of the oil is increased to 400 o F, there is approximately a 40% increase in the volume of the oil.
  • the RF energy emanating from the applicator 188 heats the hydrocarbon material in the geological substrate causing the release of water, gases, and oil, with the hot oil, water and gas flowing into the bottom of the producing well 154 after the deflected RF energy melts sufficiently through the solidified oil to establish a flow path to the producing well 154.
  • the pump set 200 pumps the oil, water and gas mixture through a perforated gas pipe 202, centered in the well casing 210 by centralizer 204 and production string 206 located in well casing 210 to a takeout pipe 208. Specifically, the pump set 200 moves a sucker rod 212 up and down in the production string 206 to draw oil, water and gas through the production string into the take-out pipe 208.
  • the injection well 152 illustrated in Fig. 7 may be fitted with supplementary drive means, such as pressurized steam or carbon dioxide for injection into the geological substrate through the annulus 199 formed between the well casing 190 and the waveguide 186 to aid in further heating the hydrocarbon material, but more importantly to drive the heated water, gas and oil to the producing well 154.
  • supplementary drive means such as pressurized steam or carbon dioxide for injection into the geological substrate through the annulus 199 formed between the well casing 190 and the waveguide 186 to aid in further heating the hydrocarbon material, but more importantly to drive the heated water, gas and oil to the producing well 154.
  • Carbon dioxide may be employed as the driving medium.
  • apparatus 220 for in situ production of oil, gas water and sulfur from oil shale, coal, peat, lignite or tar sands by co-generation.
  • a well 222 is formed through the overburden 224 and into the bedding plane 226.
  • the well 222 includes a steel casing 230 and a waveguide 232 positioned within the casing and coupled to a radiotransparent applicator 234 housing an energy deflector 236, as described in Figs. 1-6.
  • Means to raise and lower the energy deflector 236 described in Fig. 1 should be included, but the same has been eliminated for clarity.
  • the waveguide 232 is affixed to the well head 238 with a packing gland seal 240 and to transition elbow 242 which includes a gas barrier. Coupled to the remote end of the transition elbow 242 is a flexible coaxial waveguide 244 which is coupled to an RF generator 246 which includes a magnetion, klystron or solid state oscillator (not shown). Current is supplied to the RF generator 246 from an electric generator 248 driven by a turbine 250. High pressure steam is supplied to the turbine 250 from a boiler 252.
  • Low pressure extraction steam which exits from the turbine 250 is supplied to the annulus 254 between the casing 230 and the waveguide 232 in the well 222 by a steam line 251.
  • the application of low pressure steam to the oil shale, coal, peat, lignite or tar sands, in addition to the RF energy serves to decrease the viscosity of the kerogen or oil in the formation, causing the water, oil and gas to expand and flow into the open hole pump 256, where it is forced upwardly under tis own expansion and by the steam pressure to the surface with the oil and gas entering exit oil line 258 and the steam entering steam return line 260.
  • the steam entering the steam return line 260 can be demineralized in demineralizer 262, condensed in condensate tank 264 and resupplied to the boiler 252.
  • the entering oil and gas is transmitted from the oil line 258 to a conventional liquid/gas separator 261.
  • the separated oil is then transmitted to a storage tank for pipeline transmission.
  • a canted or angled energy deflector 280 has a particular use in a well bore 282 in which the payzone 284 is inclined or offset relative to the well bore 282 so that the radio frequency energy can be directed to the seam or payzone 284.
  • the deflector 280 is arranged at the bottom of an applicator 286 which is coupled to a waveguide 288 with an E.I.A. flange 290.
  • a corrosion resistant covering 292 surrounds the waveguide 288 and flange 290.
  • Extending downwardly from the casing 292 is a perforated liner 294 which is transparent to RF waves and protects the applicator 286.
  • a coaxial waveguide arrangement is illustrated at 300 for in situ production of oil through a small diameter well bore 302.
  • the well bore 302 includes a casing 304 and a perforated radiotransparent liner 306 which extends downwardly therefrom.
  • a coaxial waveguide 308 is positioned within the well bore 302 and coupled to a radiotransparent applicator 310 with an E.I.A flange 312.
  • a fiberglass or other corrosion resistant covering 314 surrounds the waveguide 308 and the flange 312.
  • the waveguide 308 includes a hollow central conductor 316 which is maintained in a spaced relationship from an outer conductor 317 with dielectric spacers 319, only one of which is shown.
  • the conductor 316 extends through the applicator 310 for interconnection with a submersible pump 318 positioned within the liner 306.
  • the interior of the central conductor 316 includes a fiberglass or polyethylene lining 320 to provide a production conduit through which oil is pumped to the surface.
  • the pumped oil helps to cool the inner conductor 316 by absorbing heat therefrom which in turn helps to maintain a lower viscosity in the producing oil by further heating it.
  • the cooling effect of the oil on the central conductor 316 prevents overheating and dielectric breakdown of the dielectric spacers 319.
  • the pump 318 is electrically driven, receiving power through a power cable 322.
  • the pump 318 may be pneumatically or hydraulically operated or actuated by a magnetic field produced by RF waves which have a different frequency than that of the RF waves used for heating.
  • the coaxial waveguide 308 is smaller in diameter than the waveguide illustrated in Fig. 9 to allow access to wells 302 having small diameter bores.
  • the pump 318 is supported by support wires 324 or rods coupled between eyelets 323 affixed to the pump and eyelets 315 affixed to the flange 312.
  • a dielectric oil pipe 326 has one end coupled to the pump 318 with a flange 328 and passes through a central opening 330 in the energy deflector 332. A liquid tight seal is applied therebetween. The other end of the oil pipe 326 is coupled to the central conductor 316 with a dielectric coupling member 334.
  • the RF waves propagated through the waveguide 308 are radiated or broadcast outwardly from the portion of the central conductor, designated 336, which functions as a 1/4 wave monopole antenna. Any Rf waves that travel past the antenna 336 are deflected by the energy deflector 332.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Microbiology (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cleaning In General (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Pens And Brushes (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)
  • Building Environments (AREA)
  • Liquid Crystal (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Processing Of Solid Wastes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Closures For Containers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Stoves And Ranges (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Claims (21)

  1. Un procédé de récupération séquentielle de fractions d'une matière à base d'hydrocarbure, comprenant les opérations consistant à :

    former de manière continue de l'énergie électromagnétique dans la gamme de fréquences d'environ 300 mégahertz à environ 300 gigahertz ;

    dévier l'énergie électromagnétique ainsi formée vers la matière à base d'hydrocarbure au moyen d'un déflecteur ;

    exposer la matière à base d'hydrocarbure à l'énergie électromagnétique ;

    détecter la température de la matière à base d'hydrocarbure au niveau d'un ensemble d'emplacements sélectionnés ;

    déplacer le déflecteur afin de dévier l'énergie électromagnétique vers un ensemble d'emplacements dans la matière à base d'hydrocarbure en fonction des températures détectées, en exposant ainsi différents emplacements de la matière à base d'hydrocarbure à l'énergie électromagnétique et en commandant le chauffage de la matière à base d'hydrocarbure en fonction des températures détectées au niveau de l'ensemble des emplacements ;

    séparer séquentiellement la matière à base d'hydrocarbure et autre en fractions ; et

    éliminer les fractions résultantes.
  2. Un procédé comme revendiqué à la revendication 1, dans lequel la matière à base d'hydrocarbure est du charbon, des sables asphaltiques, du schiste bitumineux, de la tourbe, de la lignite, ou du pétrole.
  3. Un procédé comme revendiqué à la revendication 1 ou 2, comprenant l'opération consistant à créer un ensemble de fréquences d'absorption d'énergie les plus efficaces des fractions désirées en vue de leur séparation de ladite matière.
  4. Un procédé comme revendiqué à la revendication 3, dans lequel une des fréquences à laquelle l'énergie électromagnétique est créée est en-dessous de 300 mégahertz.
  5. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant l'opération consistant à faire varier la ou les fréquences auxquelles l'énergie électromagnétique est formée de façon à créer l'énergie d'absorption la plus efficace en vue d'une séparation de la fraction désirée de la matière à base d'hydrocarbure.
  6. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant l'opération consistant à balayer de manière périodique la matière à base d'hydrocarbure avec une énergie électromagnétique, en commençant près du fond de la matière à base d'hydrocarbure et en se déplaçant vers le haut.
  7. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant l'opération consistant à créer un écran protecteur en gaz inerte afin d'empêcher les gaz dégagés d'interférer avec le processus.
  8. Un procédé comme revendiqué dans une revendication précédente quelconque, pour récupérer des fractions d'une matière à base d'hydrocarbure trouvée dans un substrat géologique.
  9. Un procédé comme revendiqué à la revendication 8, comprenant l'opération consistant à appliquer un gaz sous pression au substrat géologique afin de faciliter l'élimination des fractions.
  10. Un procédé comme revendiqué dans une revendication précédente quelconque, comprenant l'opération consistant à faire varier les emplacements auxquels l'énergie électromagnétique formée est déviée afin de commander les températures à l'intérieur de ladite matière pour empêcher à une quelconque eau présente d'atteindre son point d'ébullition.
  11. Un procédé comme revendiqué dans une revendication précédente quelconque, dans lequel l'opération consistant à éliminer des fractions comprend l'opération consistant à éliminer le pétrole séparé de l'eau quittant la matière, du soufre et du résidu sédimentaire de base.
  12. Un procédé comme revendiqué à la revendication 11, comprenant les opérations consistant à :

    détecter un ensemble de températures locales dans la matière à base d'hydrocarbure ; et

    dévier ladite énergie vers les emplacements sélectionnés en déplaçant l'emplacement du déflecteur à l'aide d'un applicateur radiotransparent.
  13. Un procédé comme revendiqué à la revendication 11 ou 12, comprenant l'opération consistant à faire varier la fréquence et l'intensité de ladite énergie en vue de l'absorption la plus efficace pour séparer le pétrole, l'eau et le sédiment de base.
  14. Appareil pour la récupération séquentielle de fractions à partir de matière à base d'hydrocarbure, comprenant :

    un récipient pour la matière à base d'hydrocarbure ;

    des moyens formant générateur de fréquences radioélectriques placés près du récipient afin de former une énergie électromagnétique dans la gamme de fréquences de moins d'environ 300 mégahertz à environ 300 gigahertz ;

    des moyens formant applicateur radiotransparent et déflecteur conique placés dans ledit récipient ;

    des moyens formant guide d'ondes pour coupler ledit générateur de fréquences radioélectriques audit applicateur ;

    un ensemble de moyens de détection de température prévu pour détecter la température de la matière à base d'hydrocarbure à différents niveaux à l'intérieur dudit récipient ; et

    des moyens pour déplacer ledit déflecteur à l'intérieur dudit récipient afin de changer l'emplacement de la transmission vers différents niveaux auxquels l'énergie électromagnétique est dirigée en fonction de la température détectée aux différents niveaux afin de faciliter la récupération de fractions à partir de ladite matière.
  15. Appareil comme revendiqué à la revendication 14, dans lequel lesdits moyens de déplacement comprennent un moteur ainsi qu'un dispositif de commande couplés électriquement audit moteur, ledit moteur étant couplé auxdits moyens formant déflecteur afin de déplacer lesdits moyens formant déflecteur en réponse à l'actionnement dudit moteur par ledit dispositif de commande.
  16. Appareil comme revendiqué à la revendication 14 ou 15, dans lequel lesdits moyens formant déflecteur sont conformés de manière que l'énergie électromagnétique se propage vers l'extérieur et vers le bas à partir desdits moyens formant déflecteur en dessous d'un plan horizontal traversant lesdits moyens formant déflecteur, l'appareil comprenant en outre des moyens pour faire varier l'angle de déflection.
  17. Appareil comme revendiqué à la revendication 16, dans lequel lesdits moyens formant déflecteur sont unidirectionnels, en présentant une surface déflectrice concave pour concentrer, dans une direction particulière, l'énergie électromagnétique déviée.
  18. Appareil comme revendiqué dans une des revendications 14 à 17, dans lequel lesdits moyens formant guide d'ondes comprennent une partie coaxiale souple présentant des barrières à gaz montées à l'intérieur afin que la partie coaxiale souple puisse être chargée de réfrigérant afin d'augmenter la capacité de transport d'énergie des moyens formant guide d'ondes pour empêcher l'écoulement de tous gaz émanant de ladite matière à base d'hydrocarbure en retour dans lesdits moyens formant générateur de fréquences radioélectriques.
  19. Appareil comme revendiqué dans une des revendications 14 à 18, dans lequel lesdits moyens de déplacement comprennent un câble à fibres optiques couplé auxdits moyens formant déflecteur, ledit câble à fibres optiques comprenant des brins individuels de fibres optiques orientés pour détecter les conditions de température à divers emplacements à l'intérieur du récipient.
  20. Appareil comme revendiqué dans une des revendications 14 à 19, dans lequel lesdits moyens formant générateur de fréquences radioélectriques créent un ensemble de fréquences selon les fractions que l'on désire éliminer afin de créer les fréquences d'absorption d'énergie les plus efficaces pour une séparation des fractions de la matière à base d'hydrocarbure.
  21. Appareil comme revendiqué dans une des revendications 14 à 20, comprenant des moyens formant un signal de commande pour activer lesdits moyens de déplacement avec un signal de commande propagé à travers lesdits moyens formant guide d'ondes, ledit signal de commande présentant une largeur de bandes différente de celle de l'énergie électromagnétique permettant de chauffer la matière à base d'hydrocarbure.
EP85902320A 1984-04-20 1985-04-19 Procede et dispositif de chauffage par energie electromagnetique Expired - Lifetime EP0180619B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85902320T ATE70079T1 (de) 1984-04-20 1985-04-19 Verfahren und vorrichtung mit elektromagnetischer heizung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60239984A 1984-04-20 1984-04-20
US602399 1984-04-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP88115385A Division EP0307003A3 (fr) 1984-04-20 1985-04-19 Chauffage par l'énergie électromagnétique
EP88115385.2 Division-Into 1988-09-20

Publications (3)

Publication Number Publication Date
EP0180619A1 EP0180619A1 (fr) 1986-05-14
EP0180619A4 EP0180619A4 (fr) 1986-10-02
EP0180619B1 true EP0180619B1 (fr) 1991-12-04

Family

ID=24411185

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88115385A Ceased EP0307003A3 (fr) 1984-04-20 1985-04-19 Chauffage par l'énergie électromagnétique
EP85902320A Expired - Lifetime EP0180619B1 (fr) 1984-04-20 1985-04-19 Procede et dispositif de chauffage par energie electromagnetique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP88115385A Ceased EP0307003A3 (fr) 1984-04-20 1985-04-19 Chauffage par l'énergie électromagnétique

Country Status (12)

Country Link
EP (2) EP0307003A3 (fr)
JP (1) JPS61501931A (fr)
KR (1) KR890003463B1 (fr)
AT (1) ATE70079T1 (fr)
AU (1) AU586820B2 (fr)
BR (1) BR8506617A (fr)
CA (1) CA1261735A (fr)
DE (1) DE3584819D1 (fr)
MX (1) MX159060A (fr)
NO (5) NO171687C (fr)
WO (1) WO1985004893A1 (fr)
ZA (1) ZA852948B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077400A (en) * 1997-09-23 2000-06-20 Imperial Petroleum Recovery Corp. Radio frequency microwave energy method to break oil and water emulsions
US5914014A (en) * 1997-09-23 1999-06-22 Kartchner; Henry H. Radio frequency microwave energy apparatus and method to break oil and water emulsions
US6086830A (en) * 1997-09-23 2000-07-11 Imperial Petroleum Recovery Corporation Radio frequency microwave energy applicator apparatus to break oil and water emulsion
WO2007081493A2 (fr) 2005-12-14 2007-07-19 Mobilestream Oil, Inc. Recuperation d'hydrocarbures et de combustibles fossiles par rayonnement micro-onde
EP2131633A1 (fr) * 2008-05-28 2009-12-09 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé de refroidissement d'un plasma micro-onde et système de destruction sélective de molécules chimiques utilisant ce procédé
MX2010013531A (es) * 2008-06-27 2010-12-21 Schlumberger Technology Bv Aparato para mejorar la calidad del petroleo crudo y sistema que lo incorpora.
US8365478B2 (en) * 2009-02-12 2013-02-05 Red Leaf Resources, Inc. Intermediate vapor collection within encapsulated control infrastructures
CA2704575C (fr) 2009-05-20 2016-01-19 Conocophillips Company Enrichissement d'hydrocarbures en tete de puits au moyen de micro- ondes
US9353612B2 (en) * 2013-07-18 2016-05-31 Saudi Arabian Oil Company Electromagnetic assisted ceramic materials for heavy oil recovery and in-situ steam generation
CA3215161A1 (fr) * 2015-02-25 2016-09-01 1836272 Alberta Ltd. Procede et appareil de raffinage d'hydrocarbures fonctionnant avec de l'energie electromagnetique
HUE060177T2 (hu) * 2016-02-08 2023-02-28 Proton Tech Inc In-situ eljárás hidrogén elõállítására földalatti szénhidrogén-telepekbõl
CA3119393A1 (fr) * 2018-10-16 2020-04-23 1863815 Ontario Limited Appareils et modes de chauffage par micro-ondes des fluides

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104711A (en) * 1963-09-24 haagensen
US31241A (en) * 1861-01-29 Improvement in compositions of caoutchouc
US2757738A (en) * 1948-09-20 1956-08-07 Union Oil Co Radiation heating
US2809154A (en) * 1948-10-15 1957-10-08 Kindred L Storrs Heat treatment of substances for the recovery of decomposition products
US2906680A (en) * 1956-02-10 1959-09-29 Union Carbide Corp Process for recovery of petroleum
US3133592A (en) * 1959-05-25 1964-05-19 Petro Electronics Corp Apparatus for the application of electrical energy to subsurface formations
US3092514A (en) * 1959-05-25 1963-06-04 Petro Electronics Corp Method and apparatus for cleaning and thawing flow lines and the like
US3170519A (en) * 1960-05-11 1965-02-23 Gordon L Allot Oil well microwave tools
US3462575A (en) * 1967-05-31 1969-08-19 Holaday Ind Inc Microwave heating device
US3503868A (en) * 1967-11-06 1970-03-31 Carl D Shields Method of extracting and converting petroleum from oil shale
US3843457A (en) * 1971-10-14 1974-10-22 Occidental Petroleum Corp Microwave pyrolysis of wastes
US3778578A (en) * 1971-11-10 1973-12-11 R Long Apparatus for producing super heated fluids
CA1095400A (fr) * 1976-05-03 1981-02-10 Howard J. Rowland Traitement sur place de gisements de matieres organiques
USRE31241E (en) 1976-06-14 1983-05-17 Electromagnetic Energy Corporation Method and apparatus for controlling fluency of high viscosity hydrocarbon fluids
US4140179A (en) * 1977-01-03 1979-02-20 Raytheon Company In situ radio frequency selective heating process
CA1108081A (fr) * 1977-02-23 1981-09-01 William H. Dumbaugh, Jr. Extraction du petrole en presence dans les schistes et les sables bitumineux
US4153533A (en) * 1977-09-07 1979-05-08 Kirkbride Chalmer G Shale conversion process
US4376034A (en) * 1979-12-17 1983-03-08 Wall Edward T Method and apparatus for recovering carbon products from oil shale
JPS5699290A (en) * 1979-12-30 1981-08-10 Teikei Ri Extraction of oil from oil shale
HU185401B (en) * 1980-12-23 1985-02-28 Olajipari Foevallal Tervezoe Method for obtaining shale oil? heavy oil, kerogene or tar from medium of occurence theirs
US4401553A (en) * 1982-09-15 1983-08-30 Tosco Corporation System and method for lowered hydrogen sulfide emissions from oil shale

Also Published As

Publication number Publication date
NO171687C (no) 1993-04-21
KR890003463B1 (ko) 1989-09-21
NO864023L (no) 1986-02-13
NO864026L (no) 1986-02-13
CA1261735A (fr) 1989-09-26
NO864024D0 (no) 1986-10-09
NO864026D0 (no) 1986-10-09
AU4237485A (en) 1985-11-15
EP0180619A4 (fr) 1986-10-02
AU586820B2 (en) 1989-07-27
NO855178L (no) 1986-02-13
NO161876C (no) 1989-10-04
DE3584819D1 (de) 1992-01-16
KR860700043A (ko) 1986-01-31
NO161726C (no) 1989-09-20
NO864023D0 (no) 1986-10-09
EP0180619A1 (fr) 1986-05-14
BR8506617A (pt) 1986-04-15
NO864025D0 (no) 1986-10-09
EP0307003A2 (fr) 1989-03-15
NO161726B (no) 1989-06-12
ZA852948B (en) 1985-12-24
NO864024L (no) 1986-02-13
ATE70079T1 (de) 1991-12-15
NO161876B (no) 1989-06-26
NO864025L (no) 1986-02-13
NO171687B (no) 1993-01-11
MX159060A (es) 1989-04-13
WO1985004893A1 (fr) 1985-11-07
EP0307003A3 (fr) 1989-09-13
JPS61501931A (ja) 1986-09-04

Similar Documents

Publication Publication Date Title
US5055180A (en) Method and apparatus for recovering fractions from hydrocarbon materials, facilitating the removal and cleansing of hydrocarbon fluids, insulating storage vessels, and cleansing storage vessels and pipelines
EP0180619B1 (fr) Procede et dispositif de chauffage par energie electromagnetique
CN107787391B (zh) 使用陶瓷材料和微波去除凝结物阻塞的系统和方法
US5065819A (en) Electromagnetic apparatus and method for in situ heating and recovery of organic and inorganic materials
US3133592A (en) Apparatus for the application of electrical energy to subsurface formations
US4144935A (en) Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US2244255A (en) Well clearing system
USRE30738E (en) Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4140180A (en) Method for in situ heat processing of hydrocarbonaceous formations
CA2055053C (fr) Systemes robuste de chauffage electrique pour puits d'hydrocarbures
US7441597B2 (en) Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (RAGD)
US4790375A (en) Mineral well heating systems
US4538682A (en) Method and apparatus for removing oil well paraffin
CN105247014B (zh) 用于处理采矿副产物的系统、方法和设备
US7889146B2 (en) Microwave demulsification of hydrocarbon emulsion
US6152356A (en) Hydraulic mining of tar sand bitumen with aggregate material
WO2010045102A1 (fr) Systèmes et procédés de formation de trous de forage souterrains
WO2014159902A2 (fr) Système de circulation et de gestion de fluides de forage en boucle fermée
NZ532089A (en) Installation and use of removable heaters in a hydrocarbon containing formation
WO2004009958A1 (fr) Appareil et procede pour collecter des ressources de gaz d'hydrocarbures souterraines
US3092514A (en) Method and apparatus for cleaning and thawing flow lines and the like
US4398597A (en) Means and method for protecting apparatus situated in a borehole from closure of the borehole
EA005650B1 (ru) Система и способ электрического нагрева скважины
USRE31241E (en) Method and apparatus for controlling fluency of high viscosity hydrocarbon fluids
JPS60500269A (ja) 液体媒体の加熱方法及び装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860424

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELECTROMAGNETIC ENERGY CORPORATION

A4 Supplementary search report drawn up and despatched

Effective date: 19861002

17Q First examination report despatched

Effective date: 19880316

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19911204

Ref country code: BE

Effective date: 19911204

Ref country code: AT

Effective date: 19911204

Ref country code: LI

Effective date: 19911204

Ref country code: CH

Effective date: 19911204

Ref country code: SE

Effective date: 19911204

Ref country code: NL

Effective date: 19911204

REF Corresponds to:

Ref document number: 70079

Country of ref document: AT

Date of ref document: 19911215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3584819

Country of ref document: DE

Date of ref document: 19920116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920419

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST