EP0180491B1 - Refractory-lining repair process for a metallurgical vessel by flame gunning - Google Patents

Refractory-lining repair process for a metallurgical vessel by flame gunning Download PDF

Info

Publication number
EP0180491B1
EP0180491B1 EP85401782A EP85401782A EP0180491B1 EP 0180491 B1 EP0180491 B1 EP 0180491B1 EP 85401782 A EP85401782 A EP 85401782A EP 85401782 A EP85401782 A EP 85401782A EP 0180491 B1 EP0180491 B1 EP 0180491B1
Authority
EP
European Patent Office
Prior art keywords
layer
process according
gunite
lining
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401782A
Other languages
German (de)
French (fr)
Other versions
EP0180491A1 (en
Inventor
Claude Guenard
Robert Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut de Recherches de la Siderurgie Francaise IRSID
Original Assignee
Institut de Recherches de la Siderurgie Francaise IRSID
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut de Recherches de la Siderurgie Francaise IRSID filed Critical Institut de Recherches de la Siderurgie Francaise IRSID
Priority to AT85401782T priority Critical patent/ATE36407T1/en
Publication of EP0180491A1 publication Critical patent/EP0180491A1/en
Application granted granted Critical
Publication of EP0180491B1 publication Critical patent/EP0180491B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • F27D1/1642Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus
    • F27D1/1647Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus the projected materials being partly melted, e.g. by exothermic reactions of metals (Al, Si) with oxygen
    • F27D1/1652Flame guniting; Use of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices

Definitions

  • the invention relates to the repair of the refractory lining of a metallurgical container (in particular a steelworks converter or a transfer and / or treatment pocket) by spraying through a flame a gunning material.
  • a metallurgical container in particular a steelworks converter or a transfer and / or treatment pocket
  • the material projecting through a flame must contain at least two types of constituents, a first - the main aggregate, of the same nature as that of the material making up the coating to be repaired - which remains solid through the flame and which constitutes the reinforcement of the sprayed product, and a second - the binder: voluntary addition or impurities present in the product - which serves as cement for the main aggregate.
  • the material is delivered in powder form to a burner, which is advantageously a "multidard" burner as described in the French patent document FR-A-2 533 020 in the name of the Applicant.
  • the main aggregate is conventionally a magnesian (based on MgO and CaO) or aluminous (based on alumina AI 2 0 3 ) material.
  • the binder in the first case, is generally based on phosphates or sodium or calcium silicates, whereas in the case of an aluminous aggregate, a binder based on calcium aluminates is usually used. It is also known that a binder consisting of oxygen converter slag (LD, OLP, etc.) can be suitable for both a magnesium aggregate and an aluminous aggregate.
  • the object of the invention is to find a remedy for the poor behavior of the layers projected in the conventional manner.
  • This object is achieved according to the invention by the fact that one puts in place, by projection of a refractory material of gunning through a flame, two superimposed layers of the same material, the first layer having, on the one hand , a total porosity of 15 to 25% in order to promote its adhesion to the coating by impregnation with the slag present on the surface of this coating, and on the other hand, a thickness sufficient to be able to be impregnated with all of this slag, the second layer having an apparent density of at least 3.1 kg / dm 3 in order to promote the resistance of the sprayed material to chemical and mechanical attack by the molten bath which the metallurgical container will contain.
  • the inventors have in fact discovered that the quality of the sprayed layer depends closely on its density (and therefore vice versa, on its porosity). They were able to show that when the sprayed layer is very dense, there is no reaction between the sprayed product and the slag layer remaining on the coating to be repaired. It follows that during the metallurgical operation (refining or bag treatment) following the projection, the intermediate layer of slag melts and causes the detachment of the projected layer.
  • the sprayed layer is porous, there is reaction and interdiffusion between the slag and the sprayed layer, which ensures the latter a good adhesion by impregnation by the slag.
  • the porosity of the layer makes it vulnerable to chemical corrosion and mechanical erosion.
  • an excellent behavior of the sprayed product is obtained by first spraying a porous layer, intended to ensure adhesion by impregnation with the slag, then over, a dense layer, intended to ensure the high resistance to corrosion. and subsequent erosion by the molten metal bath.
  • total porosity designates the ratio of the volume of the pores (open and closed) to the total apparent volume (i.e. matter + pores). This ratio is usually multiplied by 100 in order to be able to express the total porosity in percentages. For flame gunning products, the porosity is almost exclusively open. "Apparent density” is the ratio of the mass of the body to its apparent volume. For the same material, apparent density and porosity are linked by the following relationship: the apparent density is equal to the product of the absolute density by the difference 1-porosity.
  • Porosity is a geometric characteristic independent of the nature of the material, unlike density. Strictly speaking, it is therefore necessary to compare the porosities and not the densities of various products. However, in the remainder of this thesis, taking into account the fact that the products studied have close absolute densities, we will use either concept.
  • FIG. 1 a graph showing on the ordinate the porosity of the projected product (magnesium aggregate MgO-CaO) expressed in%, and on the abscissa the content of binder (calcium phosphate) expressed in% by in relation to the weight of the aggregate.
  • the experiment was carried out with a specific gunning power constant at 2.5 kW / kg.
  • the graph shows that there is a direct relationship of inverse proportionality between the binder content and the porosity.
  • the graph in FIG. 2 was obtained for a product based on MgO, CaO containing 7.5% of binder consisting of calcium phosphate.
  • the apparent density increases linearly to a maximum of 3.30 (or about 7% of porosity) for a power of 6 kW / kg, then stabilizes at this value when the specific power still increases.
  • This value of 3.30 in fact represents the maximum possible value that the density which is measured when cold can reach; the difference between this value and the theoretical density (3.55) of the product seems to correspond to the shrinkage due to the volume contraction of the product during its cooling.
  • FIG. 3 gives the results obtained on products containing 2.5 - 7.5 - 12 - 15 and 20% of binder.
  • a second conclusion is that it is possible to carry out the deposition, in accordance with the invention, by varying the specific power of the burner and in particular by varying the powder flow rate.
  • the recommended thickness of approximately 5 mm for the first layer is in the middle of the range of determined values going from 3 to 8 mm.
  • the layer may be insufficiently thick to incorporate, by diffusion, all of the slag, so that detachments are to be feared following a melting of the residual slag at the interface between the pre refractory lining -existent and the projected layer.
  • the slag may be in insufficient quantity to impregnate the layer throughout its thickness, which can lead to detachments due to the poor mechanical resistance of the surface portion not impregnated with the sprayed layer. .
  • the thicknesses recommended for this second layer are dictated in a nonlimiting manner only by production requirements. Below 1 cm in thickness, repetitive repairs may become too frequent compared to the usual practice which is about one repair every 8 h. Beyond 2 cm, taking into account the powder flow limits, the repair time may exceed the 10 to 15 minutes generally available in the production cycle at the steelworks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

1. Process for repairing the refractory lining of a metallurgical vessel by spraying a refractory Gunite material through a flame, characterized in that two superposed layers of the same material are placed in position, the first layer having, on the one hand, a total porosity of 15 to 25% so as to promote its adhesion to the lining by impregnation with the stag present at the surface of the said lining and, on the other hand thickness such that all the stag impregnates the said first layer, the second layer having an apparent density of at least 3.1 kg/dm**3 in order to promote the resistance of the sprayed material against chemical and mechanical attacks by the molten bath which will subsequently be formed in the said vessel.

Description

L'invention concerne la réparation du revêtement réfractaire d'un récipient métallurgique (notamment un convertisseur d'aciérie ou une poche de transfert et/ou de traitement) par projection à travers une flamme d'un matériau de gunitage.The invention relates to the repair of the refractory lining of a metallurgical container (in particular a steelworks converter or a transfer and / or treatment pocket) by spraying through a flame a gunning material.

On sait que le matériau de projection à travers une flamme doit contenir au moins deux types de constituants un premier - le granulat principal, de même nature que celle du matériau composant le revêtement à réparer - qui demeure solide en traversant la flamme et qui constitue l'armature du produit projeté, et un second le - liant : ajout volontaire ou impuretés présentes dans le produit - qui sert de ciment au granulat principal. Le matériau est délivré sous forme de poudre à un brûleur, qui est avantageusement un brûleur "multidard" tel que décrit dans le document de brevet français FR-A-2 533 020 au nom du Demandeur.It is known that the material projecting through a flame must contain at least two types of constituents, a first - the main aggregate, of the same nature as that of the material making up the coating to be repaired - which remains solid through the flame and which constitutes the reinforcement of the sprayed product, and a second - the binder: voluntary addition or impurities present in the product - which serves as cement for the main aggregate. The material is delivered in powder form to a burner, which is advantageously a "multidard" burner as described in the French patent document FR-A-2 533 020 in the name of the Applicant.

On rappelle que le granulat principal est classiquement un matériau magnésien (à base de MgO et CaO) ou alumineux (à base d'alumine AI203). Le liant, dans le premier cas, est généralement à base de phosphates ou de silicates de sodium ou de calcium, alors que dans le cas d'un granulat alumineux, on emploie habituellement un liant à base d'aluminates de calcium. On sait également qu'un liant constitué par du laitier de convertisseur à l'oxygène (LD, OLP ...) peut convenir à la fois à un granulat magnésien et à un granulat alumineux.It will be recalled that the main aggregate is conventionally a magnesian (based on MgO and CaO) or aluminous (based on alumina AI 2 0 3 ) material. The binder, in the first case, is generally based on phosphates or sodium or calcium silicates, whereas in the case of an aluminous aggregate, a binder based on calcium aluminates is usually used. It is also known that a binder consisting of oxygen converter slag (LD, OLP, etc.) can be suitable for both a magnesium aggregate and an aluminous aggregate.

Il a été observé que le comportement des couches projetées de manière classique n'est souvent pas satisfaisant lors de la remise en service du récipient suivant la projection: dans certains cas, le produit projeté se détache de la paroi, dans d'autres cas, il subit une forte corrosion chimique et une érosion mécanique de la part du bain métallique en fusion contenu dans le récipient.It has been observed that the behavior of the conventionally sprayed layers is often not satisfactory when the container is put back into service following the spraying: in some cases, the sprayed product detaches from the wall, in other cases, it undergoes strong chemical corrosion and mechanical erosion from the molten metal bath contained in the container.

Le but de l'invention est de trouver un remède à la mauvaise tenue des couches projetées de manière classique.The object of the invention is to find a remedy for the poor behavior of the layers projected in the conventional manner.

Ce but est atteint selon l'invention par le fait que l'on met en place, par projection d'une matière réfractaire de gunitage à travers une flamme, deux couches superposées de la même matière, la première couche ayant, d'une part, une porosité totale de 15 à 25 % afin de favoriser son adhérence au revêtement par imprégnation par le laitier présent à la surface de ce revêtement, et d'autre part, une épaisseur suffisante pour pouvoir être imprégnée par la totalité de ce laitier, la seconde couche ayant une densité apparente d'au moins 3,1 kg/dm3 afin de favoriser la résistance de la matière projetée aux agressions chimiques et mécaniques du bain en fusion que va contenir le récipient métallurgique.This object is achieved according to the invention by the fact that one puts in place, by projection of a refractory material of gunning through a flame, two superimposed layers of the same material, the first layer having, on the one hand , a total porosity of 15 to 25% in order to promote its adhesion to the coating by impregnation with the slag present on the surface of this coating, and on the other hand, a thickness sufficient to be able to be impregnated with all of this slag, the second layer having an apparent density of at least 3.1 kg / dm 3 in order to promote the resistance of the sprayed material to chemical and mechanical attack by the molten bath which the metallurgical container will contain.

Les inventeurs ont en effet découvert que la qualité de la couche projetée dépend étroitement de sa densité (et donc inversement, de sa porosité). Ils ont pu parvenir à montrer que lorsque la couche projetée est très dense, il n'y a pas de réaction entre le produit projeté et la couche de laitier subsistant sur le revêtement à réparer. Il s'ensuit que lors de l'opération métallurgique (affinage ou traitement en poche) suivant la projection, la couche intermédiaire de laitier fond et entraîne le détachement de la couche projetée.The inventors have in fact discovered that the quality of the sprayed layer depends closely on its density (and therefore vice versa, on its porosity). They were able to show that when the sprayed layer is very dense, there is no reaction between the sprayed product and the slag layer remaining on the coating to be repaired. It follows that during the metallurgical operation (refining or bag treatment) following the projection, the intermediate layer of slag melts and causes the detachment of the projected layer.

Lorsqu'au contraire la couche projetée est poreuse, il y a réaction et interdiffusion entre le laitier et la couche projetée, ce qui assure à celle-ci une bonne adhérence par imprégnation par le laitier. Malheureusement, la porosité de la couche rend celle-ci vulnérable à la corrosion chimique et à l'érosion mécanique.When, on the contrary, the sprayed layer is porous, there is reaction and interdiffusion between the slag and the sprayed layer, which ensures the latter a good adhesion by impregnation by the slag. Unfortunately, the porosity of the layer makes it vulnerable to chemical corrosion and mechanical erosion.

Selon l'invention, on obtient un excellent comportement du produit projeté en commençant par projeter une couche poreuse, destinée à assurer l'adhérence par imprégnation par le laitier, puis par dessus, une couche dense, destinée à assurer la résistance élevée à la corrosion et à l'érosion ultérieures par le bain de métal en fusion.According to the invention, an excellent behavior of the sprayed product is obtained by first spraying a porous layer, intended to ensure adhesion by impregnation with the slag, then over, a dense layer, intended to ensure the high resistance to corrosion. and subsequent erosion by the molten metal bath.

Pour une bonne compréhension de l'invention, on rappelle qu'on désigne, par "porosité totale," le rapport du volume des pores (ouverts et fermés) au volume apparent total (i.e. matière + pores). Ce rapport est habituellement multiplié par 100 afin de pouvoir exprimer la porosité totale en pourcentages. Pour les produits de gunitage à la flamme, la porosité est presque exclusivement ouverte. La "densité apparente" est le rapport de la masse du corps à son volume apparent. Pour un même matériau, densité apparente et porosité sont liées par la relation suivante: la densité apparente est égale au produit de la densité absolue par la différence 1-porosité.For a good understanding of the invention, it is recalled that the term “total porosity” designates the ratio of the volume of the pores (open and closed) to the total apparent volume (i.e. matter + pores). This ratio is usually multiplied by 100 in order to be able to express the total porosity in percentages. For flame gunning products, the porosity is almost exclusively open. "Apparent density" is the ratio of the mass of the body to its apparent volume. For the same material, apparent density and porosity are linked by the following relationship: the apparent density is equal to the product of the absolute density by the difference 1-porosity.

La porosité est une caractéristique géométrique indépendante de la nature du matériau, au contraire de la densité. En toute rigueur, il faut donc comparer les porosités et non les densités de divers produits. Toutefois, dans la suite de ce mémoire, compte tenu du fait que les produits étudiés possèdent des densités absolues voisines, on recourra indifféremment à l'une ou l'autre notion.Porosity is a geometric characteristic independent of the nature of the material, unlike density. Strictly speaking, it is therefore necessary to compare the porosities and not the densities of various products. However, in the remainder of this thesis, taking into account the fact that the products studied have close absolute densities, we will use either concept.

D'autres avantages et caractéristiques apparaîtront à la lecture de l'exposé qui va suivre, où il sera fait référence aux graphiques annexés qui représentent:

  • - en figure 1, l'influence de la teneur en liant présent dans le produit projeté sur sa porosité,
  • - en figure 2, le rôle de la puissance spécifique sur la densité apparente et la porosité totale des couches projetées ;
  • - en figure 3, l'influence de la teneur en liant sur la densité apparente des produits projetés ;

en figure 4, la puissance nécessaire pour obtenir une densité apparente donnée en fonction d'une teneur en liant.Other advantages and characteristics will appear on reading the following description, where reference will be made to the attached graphics which represent:
  • in FIG. 1, the influence of the content of binder present in the sprayed product on its porosity,
  • - in Figure 2, the role of the specific power on the apparent density and the total porosity of the projected layers;
  • - In Figure 3, the influence of the binder content on the apparent density of the sprayed products;

in FIG. 4, the power necessary to obtain a given apparent density as a function of a binder content.

Les inventeurs ont établi en figure 1 un graphique portant en ordonnée la porosité du produit projeté (granulat magnésien MgO-CaO) exprimée en %, et en abscisse la teneur en liant (phosphate de calcium) exprimée en % par rapport au poids de granulat. L'expérience a été menée avec une puissance spécifique de gunitage constante à 2,5 kW/kg. Le graphique montre qu'il existe une relation directe de proportionnalité inverse entre la teneur en liant et la porosité.The inventors have established in FIG. 1 a graph showing on the ordinate the porosity of the projected product (magnesium aggregate MgO-CaO) expressed in%, and on the abscissa the content of binder (calcium phosphate) expressed in% by in relation to the weight of the aggregate. The experiment was carried out with a specific gunning power constant at 2.5 kW / kg. The graph shows that there is a direct relationship of inverse proportionality between the binder content and the porosity.

Des expériences réalisées en four expérimental, ainsi qu'en poche à acier et en convertisseur, ont permis de déterminer la relation entre la puissance spécifique (quantité de chaleur fournie par le brûleur par kilogramme de poudre de matériau de gunitage) et la densité ou, inversement, la porosité de la couche projetée.Experiments carried out in an experimental furnace, as well as in a steel ladle and in a converter, made it possible to determine the relationship between the specific power (quantity of heat supplied by the burner per kilogram of powder of gunning material) and the density or, conversely, the porosity of the sprayed layer.

Le graphique de la figure 2 a été obtenu pour un produit à base de MgO, CaO contenant 7,5 % de liant constitué par du phosphate de calcium.The graph in FIG. 2 was obtained for a product based on MgO, CaO containing 7.5% of binder consisting of calcium phosphate.

Lorsque la puissance spécifique est voisine de 0, la densité apparente est celle du produit projeté à froid ; sa valeur est proche de celle du produit en vrac (densité = 1,50 soit environ 60 % de porosité). Lorsque la puissance spécifique croît, la densité apparente augmente linéairement jusqu à un maximum de 3,30 (soit environ 7 % de porosité) pour une puissance de 6 kW/kg, puis se stabilise à cette valeur lorsque la puissance spécifique croît encore.When the specific power is close to 0, the apparent density is that of the product sprayed cold; its value is close to that of the bulk product (density = 1.50 or about 60% porosity). When the specific power increases, the apparent density increases linearly to a maximum of 3.30 (or about 7% of porosity) for a power of 6 kW / kg, then stabilizes at this value when the specific power still increases.

Cette valeur de 3,30 représente en fait la valeur maximale possible que peut atteindre la densité qui est mesurée à froid ; l'écart entre cette valeur et la densité théorique (3,55) du produit semble correspondre au retrait dû à la contraction volumique du produit lors de son refroidissement.This value of 3.30 in fact represents the maximum possible value that the density which is measured when cold can reach; the difference between this value and the theoretical density (3.55) of the product seems to correspond to the shrinkage due to the volume contraction of the product during its cooling.

Ainsi, pour ce type de matériau, il est inutile d'opérer avec une puissance spécifique supérieure à 6 kW/kg.Thus, for this type of material, it is useless to operate with a specific power greater than 6 kW / kg.

La relation linéaire existant entre densité apparente et puissance spécifique traduit le fait que lorsque cette dernière augmente (et que donc la concentration en particules dans la flamme diminue), le nombre de particules de liant atteignant leur température de fusion augmente en raison d'un meilleur échange thermique dans la flamme (convection) et entre particules (rayonnement).The linear relationship between apparent density and specific power reflects the fact that when the latter increases (and therefore the particle concentration in the flame decreases), the number of binder particles reaching their melting temperature increases due to a better heat exchange in the flame (convection) and between particles (radiation).

Pour accroître la densité, tout en réduisant la consommation en énergie, des essais ont été réalisés sur des produits possédant des teneurs variées en éléments de liaison. La figure 3 donne les résultats obtenus sur des produits contenant 2,5 - 7,5 - 12 - 15 et 20% de liant.To increase the density, while reducing energy consumption, tests have been carried out on products having various contents of bonding elements. FIG. 3 gives the results obtained on products containing 2.5 - 7.5 - 12 - 15 and 20% of binder.

On constate, lorsque la teneur en liant croît, un décalage des maxima admissibles de puissance spécifique vers les faibles valeurs pour une densité de 3,30, le maximum est voisin de 7,3 kW/kg pour une teneur en liant de 2,5 %, et n'est plus que de 3 kW/kg pour 20 % de liant. En combinant ces données, il est possible de définir, pour un type de produit et en fonction de sa composition, la puissance spécifique nécessaire pour atteindre la valeur de densité d souhaitée (fig. 4).When the binder content increases, there is a shift in the maximum allowable specific power towards low values for a density of 3.30, the maximum is close to 7.3 kW / kg for a binder content of 2.5 %, and is only 3 kW / kg for 20% of binder. By combining these data, it is possible to define, for a type of product and according to its composition, the specific power necessary to reach the desired density value d (fig. 4).

Il ressort clairement de la figure 4 que pour de faibles valeurs de puissance spécifique, il suffit d'une faible variation de puissance (par variation du débit de poudre par exemple), pour entraîner une variation importante de densité) alors que pour des puissances plus élevées) une variation identique a des effets moins marqués sur la densité.It is clear from FIG. 4 that for low values of specific power, a small variation in power is sufficient (by variation of the powder flow rate for example, to cause a significant variation in density) whereas for more powerful identical variation has less marked effects on density.

Une première conclusion est qu'accroître la puissance spécifique est un bon moyen pour améliorer l'homogénéité des couches projetées, mais il se solde également par une augmentation du coût énergétique.A first conclusion is that increasing the specific power is a good way to improve the homogeneity of the projected layers, but it also results in an increase in the energy cost.

Une seconde conclusion est qu'il est possible de procéder à la déposition, conformément à l'invention, en faisant varier la puissance spécifique du brûleur et notamment en faisant varier le débit de poudre.A second conclusion is that it is possible to carry out the deposition, in accordance with the invention, by varying the specific power of the burner and in particular by varying the powder flow rate.

Ainsi, dans sa forme de réalisation la plus avantageuse, le procédé de l'invention comprend les étapes suivantes.

  • - avant projection, réchauffage de la paroi à réparer à l'aide du brûleur pour en éliminer le laitier superflu (si l'épaisseur de laitier est supérieure à quelques millimètres) ;
  • - en début de projection, mise en place d'une couche de quelques millimètres (avantageusement 5 mm, épaisseur optimale pour permettre, par diffusion, une imprégnation de toute la couche par du laitier sans compromettre la résistance de l'ensemble) de produit à porosité comprise entre 15 et 25 % (un écart avec cette gamme conduite soit à des risques de décollement en-deçà de 150/0, soit à une usure plus rapide et à des écaillages au-delà de 25%);
  • - ensuite, projection d'un produit très dense (3,1 à 3,3 kg/dm3), la différence de densité étant obtenue en faisant varier le débit de poudre dans le brûleur. L'épaisseur de cette deuxième couche est de 1 à 2 cm en projection classique mais peut atteindre, si on le souhaite, des valeurs supérieures sans inconvénient pour l'invention.
Thus, in its most advantageous embodiment, the method of the invention comprises the following steps.
  • - before projection, reheating of the wall to be repaired using the burner to remove excess slag (if the slag thickness is greater than a few millimeters);
  • - at the start of the projection, placement of a layer of a few millimeters (advantageously 5 mm, optimal thickness to allow, by diffusion, an impregnation of the entire layer by slag without compromising the resistance of the whole) of product to porosity between 15 and 25% (a deviation from this range leads either to risks of delamination below 150/0, or to faster wear and flaking beyond 25%);
  • - then, projection of a very dense product (3.1 to 3.3 kg / dm 3 ), the difference in density being obtained by varying the powder flow rate in the burner. The thickness of this second layer is 1 to 2 cm in conventional projection but can reach, if desired, higher values without disadvantage for the invention.

On signale que l'épaisseur préconisée de 5 mm environ pour la première couche se situe au milieu de la gamme de valeurs déterminées allant de 3 à 8 mm. En-deçà de 3 mm en effet, la couche peut être insuffisamment épaisse pour incorporer, par diffusion, la totalité du laitier, de sorte que des décollements sont à craindre suite à une fusion du laitier résiduel à l'interface entre le revêtement réfractaire pré-existant et la couche projetée. Au-delà de 8 mm, au contraire, le laitier peut être en quantité insuffisante pour imprégner la couche dans toute son épaisseur, ce qui peut conduire à des décollements en raison de la mauvaise résistance mécanique de la partie superficielle non imprégnée de la couche projetée.It is pointed out that the recommended thickness of approximately 5 mm for the first layer is in the middle of the range of determined values going from 3 to 8 mm. In fact, below 3 mm, the layer may be insufficiently thick to incorporate, by diffusion, all of the slag, so that detachments are to be feared following a melting of the residual slag at the interface between the pre refractory lining -existent and the projected layer. Beyond 8 mm, on the contrary, the slag may be in insufficient quantity to impregnate the layer throughout its thickness, which can lead to detachments due to the poor mechanical resistance of the surface portion not impregnated with the sprayed layer. .

Pour ce qui concerne la gamme de densité préconisée pour la deuxième couche (entre 3,1 et 3,3 kg/dm3), on indique que:

  • - dans le cas des poches de transfert ou de traitement, le facteur prépondérant étant les chocs thermiques répétitifs dus à la fréquence relativement élevée des opérations de remplissage et de vidange, on choisira de préférence des valeurs de densité moins élevées, i.e. de 3,1 à 3,2 kg/dm3 ;
  • - à l'inverse, pour les convertisseurs d'affinage, le facteur d'usure prépondérant étant l'érosion à la fois chimique et mécanique de la part du bain en fusion, on optera pour les densités les plus élevées, i.e. supérieures à 3,2 kg/dm3.
Regarding the density range recommended for the second layer (between 3.1 and 3.3 kg / dm 3 ), it is indicated that:
  • - in the case of transfer or treatment bags, the predominant factor being repetitive thermal shocks due to the relatively high frequency of filling and emptying operations, lower density values will preferably be chosen, ie from 3.1 to 3.2 kg / dm3;
  • - conversely, for refining converters, the predominant wear factor being both chemical and mechanical erosion on the part of the molten bath, we will opt for the highest densities, ie greater than 3 , 2 kg / dm 3 .

Quant aux épaisseurs préconisées pour cette deuxième couche, elles sont dictées de façon non limitative uniquement par les impératifs de production. En-deçà de 1 cm d'épaisseur, les réparations répétitives risquent de devenir trop fréquentes par rapport à la pratique habituelle qui est d'environ une réparation toutes les 8 h. Au-delà de 2 cm, compte tenu des limites en débit de poudre, le temps de réparation risque de dépasser les 10 à 15 minutes généralement disponibles dans le cycle de production à l'aciérie.As for the thicknesses recommended for this second layer, they are dictated in a nonlimiting manner only by production requirements. Below 1 cm in thickness, repetitive repairs may become too frequent compared to the usual practice which is about one repair every 8 h. Beyond 2 cm, taking into account the powder flow limits, the repair time may exceed the 10 to 15 minutes generally available in the production cycle at the steelworks.

Enfin, pour atteindre à coup sûr les puissances spécifiques élevées nécessaires à l'explication de cette seconde couche à haute densité, il est vivement conseillé d'utiliser le canon de gunitage décrit dans la demande de brevet français n° 82/15261 déjà citée et constitué schématiquement par un faisceau de nombreux tubes accolés de petit diamètre agissant comme autant de petits brûleurs et recevant chacun à leur extrémité de sortie une fraction égale du débit total de poudre.Finally, to achieve the high specific powers necessary for the explanation of this second high density layer, it is strongly advised to use the gun of gunning described in the French patent application n ° 82/15261 already cited and schematically constituted by a bundle of numerous small diameter joined tubes acting like so many small burners and each receiving at their outlet end an equal fraction of the total powder flow rate.

Claims (9)

1. Process for repairing the refractory lining of a metallurgical vessel by spraying a refractory Gunite material through a flame, characterized in that two superposed layers of the same material are placed in position, the first layer having, on the one hand, a total porosity of 15 to 25 % so as to promote its adhesion to the lining by impregnation with the stag present at the surface of the said lining and, on the other hand thickness such that all the stag impregnates the said first layer, the second layer having an apparent density of at least 3.1 kg/ dm3 in order to promote the resistance of the sprayed material against chemical and mechanical attacks by the molten bath which will subsequently be formed in the said vessel.
2. Process according to Claim 1, characterized in that the thickness of the said first layer is between 3 and 8 mm.
3. Process according to Claim 2, characterized in that the said thickness is 5 mm.
4. Process according to Claim 1, for the repair of the refractory lining of a metallurgical transfer ladle or treatment ladle, characterized in that the apparent density of the second layer does not exceed 3.2 kg/dm3.
5. Process according to Claim 1 for the repair of the refractory lining of a steelworks converter, characterized in that the apparent density of the second layer is at least 3.2 kg/dm3.
6. Process according to Claim 1, 2 or 3, characterized in that the thickness of the second layer is between 1 ans 2 cm.
7. Pricess according to Claim 1, characterized in that the said two superposed layers are placed in position by means of a gun for applying Gunite, which gun consists of a bundle of adjoining tubes, each receiving at its outlet end an equal proportion of the total flow of Gunite material in powder form.
8. Process according to Claim 1, characterized in that the density of the superposed layers is varied by varying the specific power of the Gunite application.
9. Process according to Claim 8, characterized in that the specific power of the Gunite application is varied by varying the flow rate of the Gunite material.
EP85401782A 1984-09-21 1985-09-16 Refractory-lining repair process for a metallurgical vessel by flame gunning Expired EP0180491B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401782T ATE36407T1 (en) 1984-09-21 1985-09-16 METHOD OF REPAIRING THE REFRACTORY OF A METALLURGICAL VESSEL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8414552A FR2570811B1 (en) 1984-09-21 1984-09-21 METHOD OF GUNITING THROUGH A FLAME WITH THE PLACEMENT OF TWO LAYERS OF PRODUCTS WITH DIFFERENT DENSITIES
FR8414552 1984-09-21

Publications (2)

Publication Number Publication Date
EP0180491A1 EP0180491A1 (en) 1986-05-07
EP0180491B1 true EP0180491B1 (en) 1988-08-10

Family

ID=9307957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401782A Expired EP0180491B1 (en) 1984-09-21 1985-09-16 Refractory-lining repair process for a metallurgical vessel by flame gunning

Country Status (5)

Country Link
EP (1) EP0180491B1 (en)
JP (1) JPS6183875A (en)
AT (1) ATE36407T1 (en)
DE (1) DE3564338D1 (en)
FR (1) FR2570811B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717720A1 (en) * 1994-03-23 1995-09-29 Daussan & Co Coating for protecting the interior of a metallurgical container, device and method for applying this coating.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1015515A (en) * 1962-12-28 1966-01-05 Quigley Co Improvements in or relating to multiple coatings of refractory compositions for hot furnace repair
FR1437713A (en) * 1965-03-31 1966-05-06 Union Carbide Corp Furnace coating process
BE891980A (en) * 1982-02-01 1982-05-27 Centre Rech Metallurgique PROCESS FOR DEPOSITING A PROTECTIVE COATING ON THE INTERIOR WALL OF A CONTINUOUS CASTING DISTRIBUTOR BASKET

Also Published As

Publication number Publication date
ATE36407T1 (en) 1988-08-15
EP0180491A1 (en) 1986-05-07
FR2570811A1 (en) 1986-03-28
FR2570811B1 (en) 1988-04-08
JPS6183875A (en) 1986-04-28
DE3564338D1 (en) 1988-09-15

Similar Documents

Publication Publication Date Title
EP0721388B1 (en) Casting part comprising an external layer appropriate to form a gas impervious layer, and implementation process
EP0214882B1 (en) Protective lining for the interior of a metallurgical vessel, and process for making the lining
FR2649096A1 (en) METHOD FOR FORMING POROUS REFRACTORY MASS AND MATERIAL COMPOSITION THEREFOR
BE1005914A4 (en) Method and blend for forming a coherent refractory mass on a surface.
LU87602A1 (en) PROCESS FOR FORMING A REFRACTORY MASS AND SPRAY LANCE OF A MIXTURE OF PARTICLES
EP0180491B1 (en) Refractory-lining repair process for a metallurgical vessel by flame gunning
FR2765892A1 (en) PROCESS FOR COATING BY GAS PHASE DIFFUSION OF PARTS MADE OF HEAT-RESISTANT MATERIAL WITH A COATING MATERIAL
FR2650271A1 (en) CERAMIC WELDING METHOD AND MIXTURE OF POWDERS FOR SUCH A METHOD
CA2169472C (en) Casting part comprising an external layer appropriate to form a gas impervious layer, and implementation process
EP0093040A1 (en) Process for increasing the life of gas-permeable refractory elements in the bottoms of metallurgical vessels, especially for steel-basic-oxygen furnaces
CA2444550C (en) Method of recycling metallic coated scrap pieces
EP0495327B1 (en) Process and composition for repairing of refractories by in-situ soldering
CA1273198A (en) Multilayered refractory structure, and wall fitted with a structure of the kind
WO1995034395A9 (en) Casting part comprising an external layer appropriate to form a gas impervious layer, and implementation process
BE1017675A3 (en) DRY MIXTURE FOR THE TREATMENT OF REFRACTORY SUBSTRATES AND METHOD FOR CARRYING OUT SAME.
FR2707084A1 (en) Anticorrosion coating for refractory components made of vitreous silica
EP0367434A2 (en) Cermet welding
EP0093039B1 (en) Process for increasing the gas-permeability of fire-proof elements in the bottoms of metallurgical vessels, and materials for carrying it out
JP3911716B2 (en) Thermal spraying repair layer of furnace wall and repair method
BE891980A (en) PROCESS FOR DEPOSITING A PROTECTIVE COATING ON THE INTERIOR WALL OF A CONTINUOUS CASTING DISTRIBUTOR BASKET
JP2706160B2 (en) Construction method of ceramic liner for molten metal
LU84609A1 (en) PROCESS FOR DEPOSITING A PROTECTIVE COATING ON THE INTERIOR WALL OF A CONTINUOUS CASTING DISTRIBUTOR BASKET
BE878364A (en) TUBULAR LANCE FOR THE REFINING AND REFINING PROCESS OF MELTED METALS
JPH09202914A (en) Method for repairing refractory of vacuum refining vessel
BE473983A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19861011

17Q First examination report despatched

Effective date: 19871022

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT LU NL SE

REF Corresponds to:

Ref document number: 36407

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3564338

Country of ref document: DE

Date of ref document: 19880915

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910829

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910919

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911003

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911015

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911017

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920916

Ref country code: GB

Effective date: 19920916

Ref country code: AT

Effective date: 19920916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920930

BERE Be: lapsed

Owner name: INSTITUT DE RECHERCHES DE LA SIDERURGIE FRANCAISE

Effective date: 19920930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

EUG Se: european patent has lapsed

Ref document number: 85401782.9

Effective date: 19930406