EP0176680A2 - Cross-flow heat exchanger - Google Patents

Cross-flow heat exchanger Download PDF

Info

Publication number
EP0176680A2
EP0176680A2 EP85109109A EP85109109A EP0176680A2 EP 0176680 A2 EP0176680 A2 EP 0176680A2 EP 85109109 A EP85109109 A EP 85109109A EP 85109109 A EP85109109 A EP 85109109A EP 0176680 A2 EP0176680 A2 EP 0176680A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
block
heat exchange
exchange elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85109109A
Other languages
German (de)
French (fr)
Other versions
EP0176680A3 (en
EP0176680B1 (en
Inventor
Hans-Dieter Dipl.-Ing. Schwarz
Werner Dipl.-Ing. Lichtenthäler
Friedrich W. Dr. Dipl.-Chem. Pietzarka
Ludwig Dr. Dipl.-Ing. Mühlhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Priority to AT85109109T priority Critical patent/ATE39022T1/en
Publication of EP0176680A2 publication Critical patent/EP0176680A2/en
Publication of EP0176680A3 publication Critical patent/EP0176680A3/en
Application granted granted Critical
Publication of EP0176680B1 publication Critical patent/EP0176680B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/427Manifold for tube-side fluid, i.e. parallel
    • Y10S165/429Line-connected conduit assemblies
    • Y10S165/431Manifolds connected in series

Definitions

  • the invention relates to a cross-flow heat exchanger made of ceramic material.
  • heat exchangers made of ceramic materials have increasingly been proposed for the transfer of heat at high temperatures and / or corrosive heat exchange media.
  • the state of the art emerges from the following documents:
  • heat exchangers are simultaneously suitable for high working temperatures up to: .400 ° C and, depending on the ceramic material, are resistant to aggressive media, they are particularly suitable for use in cases in which highly heated aggressive gases are to be cooled or heated .
  • Such ceramic heat exchangers can also be used if aggressive condensed phases occur when the temperature falls below the dew point.
  • heat exchanger modules as described in the last-mentioned publication, are distinguished by a large heat exchange surface and are available at low cost through the described production process. With conventional metal heat exchangers, only the highest quality materials can be used, if at all use for the production of such heat exchangers, so that heat transfer in these cases is only possible at extremely high costs.
  • a recuperator is also described in patent specification DE 25 10 893, which is made up of individual shaped blocks.
  • two shaped stones form a channel for a heat exchange medium.
  • a channel for a second heat exchanger medium is only obtained together with a third molded block.
  • the structure of a recuperator is now carried out according to the invention described so that an existing chamber is bricked with shaped stones and wall stones, the shaped stones being provided with grooves and tongues. Short-circuit flows between the two heat exchange media can be avoided if necessary by bricking with mortar. Due to the size of the shaped blocks, the heat exchange area based on the volume of the recuperator is relatively small.
  • a larger structural unit is composed of heat exchanger elements, the individual structural elements also being clamped against one another by bolts, screws and springs.
  • the present invention is based on the object of combining individual cross-flow heat exchanger elements into larger structural units such that the intersecting channels for the heat exchange medium are separated from one another in a gas-tight manner.
  • the heat exchanger according to the invention is constructed from the heat exchanger elements described in the patent DE 26 31 092. These elements are e.g. at a height of approx. 20 cm through up to 60 intersecting channels one above the other, each with 30 parallel to each other, and at a length of approx. 30 cm through up to 10 channels next to each other.
  • the solution to this problem is according to the present invention is that the heat exchanger elements described above are modified so that the layer thickness of the upper and lower boundary surface of the element is increased so much and the webs that form the perpendicular edges are also increased that they allow mechanical processing of all surfaces of the heat exchanger element.
  • the processing of the individual heat exchanger element results in that it is provided on all side surfaces with circumferential projections or elevations.
  • the side surfaces are also provided with a recess on all of their edges, the sectional view of which forms a quarter of the circumference of a symmetrical channel when several heat exchanger elements are joined together. Due to the processing of the side surfaces, the inner parts of the side surfaces provided with openings withdraw somewhat from the excavations or elevations, so that when two heat exchanger elements are assembled, a narrow chamber which is closed all around is created, so that the individual channels do not necessarily have to be arranged exactly congruently with one another.
  • the ceramic heat exchanger according to the invention is now constructed as follows:
  • the bottom of the housing is flat and there is a recess in the cover of the housing, for example the size of the crossing area of the intersecting bushings.
  • a collar is firmly connected to the recess in this recess, which is provided with a sealing surface on its upper edge and can be closed gas-tight with a suitable cover.
  • the individual heat exchanger elements previously processed in the sense of the present invention are now laid dry or in a mortar bed on the bottom of this housing, in which the crossing surface of the passages element by element is filled in, the arrangement either protruding into the passages in all 4 directions or the corner elements being fitted into a recess in the lining.
  • the channels and joints obtained at the abutting edges are sealed with a suitable mass.
  • the second layer of heat exchanger elements is constructed and completed in a completely analogous manner. In this way, the process continues until the complete cross section of all passages has been provided with heat exchanger elements.
  • the recess at the top of the heat exchanger is also filled with heat-resistant and insulating lining material and the cover is fastened to the collar of the heat exchanger housing with a suitable seal in a known manner.
  • the procedure is particularly advantageous if, when using suitable materials and with a suitable choice of the layer thickness, thermal stresses are minimized, if appropriate by means of a multilayer arrangement, if appropriate by selecting different coefficients of thermal expansion.
  • the heat exchanger housing is kept relatively cool, if necessary it is even cooled.
  • One of the ideas of the invention is directed to the fact that by keeping the housing cool, the thermal expansion there is kept smaller or the same as that of the arrangement of heat exchanger elements. As a result, a pressure is exerted on the arrangement of the heat exchanger elements during operation, which ensures that the individual elements are held in position and prevents the formation of cracks or other leaks, which are observed without the application of pressure.
  • the heat exchanger housing therefore does not require any clamping devices.
  • a ceramic diffuser as shown in FIG. 3, is optionally provided in front of the side surfaces of the arrangement of heat exchanger elements, which is supported in the insulation layer or on the housing and is suitable for applying compressive forces to the centrally located elements transfer.
  • the ceramic heat exchanger according to the invention is shown by way of example in FIGS. 1-5.
  • FIG. 6 the projections and elevations provided according to the invention are arranged in mirror image to FIG. 2.
  • a heat exchanger element can be described in detail with reference to FIG. 1.
  • the heat exchanger element (3) which is shown schematically in Figure 1, has the shape of a cube. Visible are 2 vertical side faces and the upper horizontal side face.
  • the side surfaces ran before the processing according to the invention through the planes in which the surfaces of the elevations (14) lie in the finished heat exchanger element.
  • the part of the newly obtained side surfaces covered with the openings for the channels (5 or 4) are offset inwards by the distance (15) from the original side surface.
  • These side surfaces lie in the planes which are indicated by the dashed lines (7).
  • the elevations on the vertical side surfaces initially have a rectangular cross section (6b) and further outward prismatic cross sections (6a), the elevation tapering outwards.
  • the right angles lie in the prismatic cross section of the elevations on the inside, while on the outlet sides of the media (1, 2) they lie on the outside of the elevations.
  • the rectangular cross section of the elevation (12b) and the prismatic cross section are identified by (12a) on the outlet sides.
  • the outer surface of the exit plane jumps back by the distance (13) behind the prismatic part of the elevation.
  • the surfaces (6b, 12c) over which the exit surfaces project are characterized by the legs of the angles (8, 9).
  • the top and bottom of the heat exchanger element has no openings of flow channels.
  • an excavation (3) is drawn on the top, which is delimited by the edge lines (10) and is lowered by the distance (11).
  • the elevations or elevations on the side surfaces serve to enable several heat exchanger elements to be positively fitted to one another.
  • FIGS. 2, 3 and 4 show 3 possibilities from the multitude of conceivable design forms of the elevations or excavations.
  • the heat exchanger element is provided with mirror-symmetrical elevations in profile on the vertical side faces.
  • a ring (16) arranges the individual heat exchanger elements in alignment. It is also possible to see the channel which is formed when individual heat exchanger elements are joined together and which, in cross section, is designed, for example, as a right-angled cross and is closed with sealing compound.
  • FIG. 5 shows an example of the configuration of a cross-flow heat exchanger which contains an arrangement of cross-flow heat exchanger elements. Shown are 4 inlet and outlet connections (18) with the associated flange connections (19) and a cover (20) which is firmly and gas-tightly connected to the body of the heat exchanger by means of screws (21).
  • the flow arrows (1) and (2) indicate the direction of flow of two intersecting heat exchange media.
  • FIG 6 shows a section through the heat exchanger shown in Figure (5) in the plane AA.
  • the inner lining (22) of the heat exchanger and the inlet and outlet connections (18) with the associated flanges (19) are shown schematically.
  • a square arrangement of heat exchanger elements (23) according to the invention is shown schematically.
  • the heat exchange medium (1) flows in the Paper plane, not shown, the heat exchange medium (2) flows vertically through the paper plane.
  • FIG. 7 shows the partial view of a section through the heat exchanger shown in FIG. 5 in the plane - B -.
  • the horizontal arrangement of a layer of heat exchanger elements (23) according to the invention is shown in this sectional view.
  • the heat exchanger elements (23) are surrounded on all sides by a channel (17 and 17a).
  • the channels (17) are arranged horizontally, while the channels (17a) run perpendicular to the paper plane.
  • FIG. 8 shows an exemplary embodiment of a further inventive concept schematically as a sectional view through the abutting edges of four heat exchanger elements.
  • a strip or a layer of green ceramic mass (30) is interposed between suitably designed elevations or outlet surfaces of each element, and is later inserted without pressure or under pressure - stamp pressure or z.
  • B. case pressure at the sintering temperature in a suitable manner, which creates a firm, seamless and tight connection of the elements. (A hot exhaust gas flow is suitable, for example).

Abstract

A gas-tight crossflow heat exchanger consisting of a metal casing with two gas inlet nozzles and two gas outlet nozzles, at least one installation cover on the top of the casing, a block consisting of a number of ceramic heat-exchange elements mounted completely accurately in cuboid form with gas ducts arranged in layers one above the other and running at right angles to each other, four side surfaces having gas-duct openings, and the bottom and top surfaces being free of openings, the heat exchanger further consisting of thermal insulation between the metal casing and the block of ceramic heat-exchange elements. Gas-tightness is achieved by each heat-exchange element being provided on all four duct-free edges of each side surface with recesses and elevations, with a sealing strip installed between each opposing elevation and recess, each heat-exchange element being provided on the floor and cover surfaces with at least one recess or elevation and of the same shape, and the thermal insulation between the metal casing and the block of ceramic heat-exchange elements enclosing the block providing non-positive structural locking in the direction of the gas inlet and gas outlet nozzles.

Description

Die Erfindung betrifft einen Kreuzstromwärmeaustauscher aus keramischen Material. Bei der Übertragung von Wärme bei hohen Temperaturen und/oder korrosiven Wärmeaustauschermedien wurden in der jüngeren Vergangenheit vermehrt Wärmeaustauscher aus keramischen Materialien vorgeschlagen. Der Stand der Technik geht aus folgenden Schriften hervor:

Figure imgb0001
The invention relates to a cross-flow heat exchanger made of ceramic material. In the recent past, heat exchangers made of ceramic materials have increasingly been proposed for the transfer of heat at high temperatures and / or corrosive heat exchange media. The state of the art emerges from the following documents:
Figure imgb0001

Da solche Wärmeaustauscher gleichzeitig für hohe Arbeitstemperaturen bis zu :.400 °C geeignet sind und, je nach keramischem Werkstoff, resistent sind gegen aggressive Medien, eignen sie sich besonders für den Einsatz in solchen Fällen, in denen hocherhitzte aggressive Gase abgekühlt oder aufgeheizt werden sollen. Auch dann, wenn bei Taupunktsunterschreitungen aggressive kondensierte Phasen entstehen, können solche keramischen Wärmeaustauscher eingesetzt werden. Besonders Wärmeaustauschermodule, wie sie in der letztgenannten Veröffentlichung beschrieben sind, zeichnen sich durch eine große Wärmeaustauschfläche aus und werden durch das beschriebene Herstellungsverfahren kostengünstig verfügbar. Bei herkömmlichen Wärmeaustauschern aus Metall lassen sich, wenn überhaupt, nur höchstwertige Werkstoffe zur Herstellung solcher Wärmeaustauscher verwenden, so daß eine Wärmeübertragung in diesen Fällen nur zu außerordentlich hohen Kosten möglich ist.Since such heat exchangers are simultaneously suitable for high working temperatures up to: .400 ° C and, depending on the ceramic material, are resistant to aggressive media, they are particularly suitable for use in cases in which highly heated aggressive gases are to be cooled or heated . Such ceramic heat exchangers can also be used if aggressive condensed phases occur when the temperature falls below the dew point. In particular, heat exchanger modules, as described in the last-mentioned publication, are distinguished by a large heat exchange surface and are available at low cost through the described production process. With conventional metal heat exchangers, only the highest quality materials can be used, if at all use for the production of such heat exchangers, so that heat transfer in these cases is only possible at extremely high costs.

In der letztzitierten Patentschrift, DE 26 31 092, wird ein modular aufgebautes Wärmeaustauscherelement aus keramischem Material beschrieben. Durch Werkstoffauswahl und durch die Wahl geringer Schichtdicken der Trennwände zwischen den einzelnen Kanälen, die schichtweise, kreuzweise angeordnet sind, ist es dem Erfinder gelungen, das Schadensrisiko durch Temperaturwechselbeanspruchung, das einer weiten Verbreitung solcher keramischer Wärmeaustauscher in der Technik bisher entgegenstand, zu minimieren und gleichzeitig die Wärmeaustauschfläche, die in einem gegebenen Volumen zur Verfügung steht, zu maximieren. Für die großtechnische Anwendung, insbesondere Durchsatz großer Volumina, ergeben sich für einzelne Elemente außerordentlich große räumliche Abmessungen. Die Herstellung derartig großer Elemente bereitet nun aber Schwierigkeiten, da einerseits die einzelnen Module, bestehend aus "grüner" keramischer Masse nach dem Zusammenfügen zu einem Wärmeaustauscherelement gebrannt werden müssen. Dazu sind große Brennkammern und sorgfältige Abkühlverfahren notwendig, um das Auftreten von Rissen aufgrund von Thermospannungen zu vermeiden. Andererseits können derartig große Elemente nur mit außerordentlich großem Risiko transportiert werden. Treten Schäden an solchen großen Elementen auf, ist das ganze Element wertlos.In the last cited patent, DE 26 31 092, a modular heat exchanger element made of ceramic material is described. Through the selection of materials and the choice of small layer thicknesses of the dividing walls between the individual channels, which are arranged in layers, crosswise, the inventor has succeeded in minimizing and at the same time minimizing the risk of damage caused by thermal cycling, which has hitherto prevented the widespread use of such ceramic heat exchangers in technology maximize the heat exchange area available in a given volume. For large-scale use, in particular throughput of large volumes, there are extremely large spatial dimensions for individual elements. The production of such large elements now presents difficulties, since on the one hand the individual modules, consisting of "green" ceramic mass, have to be burned to form a heat exchanger element. This requires large combustion chambers and careful cooling procedures to avoid the occurrence of cracks due to thermal stresses. On the other hand, such large elements can only be transported with an extremely high risk. If damage occurs to such large elements, the whole element is worthless.

In DE 26 31 092 erreicht der Erfinder eine Vergrößerung der Wärmeaustauschfläche und eine Vergrößerung des Durchsatzes der Wärmeaustauschermedien dadurch, daß er Doppelmodule schafft, die durch ein System von Trennwänden zu einer größeren Einheit zusammengesetzt werden. In der Patentschrift DE 27 07 290 beschreibt der Erfinder einen Wärmeaustauscher, aufgebaut aus einzelnen Elementen, die Ihrerseits mit Zwischenlagern aus keramischen Fasermaterial zu größeren Baueinheiten zusammengesetzt werden. Der Erfinder sieht vor, durch Nuten und Stege die Öffnungen, durch die die Wärmeaustauschermedien fließen, zur Deckung zu bringen.In DE 26 31 092, the inventor achieves an increase in the heat exchange area and an increase in the throughput of the heat exchange media by creating double modules which are assembled into a larger unit by a system of partition walls. In the patent DE 27 07 290, the inventor describes a heat exchanger made up of individual elements For their part, be assembled with intermediate storage from ceramic fiber material to larger units. The inventor provides for the openings through which the heat exchange media flow to be covered by grooves and webs.

In der Offenlegungsschrift DE 29 34 973 werden gerippte Lagen aus keramischem Material miteinander verklebt und so ein Wärmeaustauscherelement erhalten. Das erhaltene Wärmeaustauscherelement wird nun von einem aus Platten bestehenden metallischen Gehäuse umgeben. Die Platten werden durch Bolzen, Schrauben und Federn gegen die Seitenflächen des Wärmeaustauscherelementes gedrückt, wobei die Dichtungsmaterialien federnd und nachgiebig sein sollen. Das Zusammensetzen mehrerer Wärmeaustauscherelemente zu einer größeren Baueinheit wird in dieser Erfindung nicht vorgesehen.In the published patent application DE 29 34 973, ribbed layers made of ceramic material are glued together and thus a heat exchanger element is obtained. The heat exchanger element obtained is now surrounded by a metallic housing consisting of plates. The plates are pressed against the side surfaces of the heat exchanger element by means of bolts, screws and springs, the sealing materials being intended to be resilient and flexible. The assembly of several heat exchanger elements into a larger structural unit is not provided in this invention.

Auch in der Patentschrift DE 25 10 893 wird ein Rekuperator beschrieben, der aus einzelnen Formsteinen aufgebaut ist. Hier bilden jeweils 2 Formsteine einen Kanal für ein Wärmeaustauschermedium. Erst zusammen mit einem 3. Formstein ergibt sich auch ein Kanal für ein 2. Wärmeaustauchermedium. Der Aufbau eines Rekuperators vollzieht sich nun gemäß der beschriebenen Erfindung so, daß eine vorhandene Kammer mit Formsteinen und Wandsteinen ausgemauert wird, wobei die Formsteine mit Nuten und Federn versehen sind. Kurzschlußströmungen zwischen den beiden Wärmeaustauschermedien können gegebenenfalls durch Vermauern mit Mörtel vermieden werden. Durch die Größe der Formsteine ist die auf das Volumen des Rekuperators bezogene Wärmeaustauschfläche verhältnismäßig klein. Eine Verkleinerung der Kanäle, welches eine Erhöhung der wärmeaustauschenden Fläche in einem gegebenen Volumen bedeutet, ist mit den vorgeschlagenen Formsteinen nahezu unmöglich, da das Vermauern mit abnehmender Größe der Formsteine immer schwieriger wird, und ein interessantes Verhältnis von wärmeaustauschender Fläche zu Rekuperatorvolumen so nicht erreicht werden kann.A recuperator is also described in patent specification DE 25 10 893, which is made up of individual shaped blocks. Here two shaped stones form a channel for a heat exchange medium. A channel for a second heat exchanger medium is only obtained together with a third molded block. The structure of a recuperator is now carried out according to the invention described so that an existing chamber is bricked with shaped stones and wall stones, the shaped stones being provided with grooves and tongues. Short-circuit flows between the two heat exchange media can be avoided if necessary by bricking with mortar. Due to the size of the shaped blocks, the heat exchange area based on the volume of the recuperator is relatively small. A reduction in the size of the channels, which means an increase in the heat-exchanging area in a given volume, is almost impossible with the proposed stones, since bricking becomes increasingly difficult with decreasing size of the stones, and is interesting The ratio of the heat-exchanging area to the recuperator volume cannot be achieved.

Auch in der Offenlegungsschrift DE 29 37 342 wird eine größere Baueinheit aus Wärmetauscherelementen zusammengesetzt, wobei ebenfalls die einzelnen Bauelemente durch Bolzen, Schrauben und Federn gegeneinander gespannt werden.In the published patent application DE 29 37 342, too, a larger structural unit is composed of heat exchanger elements, the individual structural elements also being clamped against one another by bolts, screws and springs.

In der europäischen Patentanmeldung 0 043 113 wird ein Kreuzstromwärmeaustauscher beschrieben, der aus keramischen Wärmeaustauchermodulen besteht, die ebenfalls über eine Spannvorrichtung, bestehend aus Schrauben, Federn und Bolzen gegeneinander gedrückt und so gasdicht in Verbindung gebracht werden.In European patent application 0 043 113 a cross-flow heat exchanger is described, which consists of ceramic heat exchanger modules, which are also pressed against each other via a tensioning device, consisting of screws, springs and bolts, and are thus connected gas-tight.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, einzelne Kreuzstromwärmeaustauscherelemente zu größeren Baueinheiten so zusammenzufassen, daß die sich kreuzenden Kanäle für das Wärmeaustauschermedium voneinander gasdicht getrennt werden.-Der erfindungsgemäße Wärmeaustauscher baut sich aus den in der Patentschrift DE 26 31 092 beschriebenen Wärmeaustauscherelementen auf. Diese Elemente kennzeichnen sich z.B. bei einer Höhe von ca. 20 cm durch bis zu 60 sich kreuzende Kanäle übereinander, wobei jeweils 30 zueinander paralel verlaufen, und bei einer Länge von ca. 30 cm durch bis zu 10 Kanälen nebeneinander.The present invention is based on the object of combining individual cross-flow heat exchanger elements into larger structural units such that the intersecting channels for the heat exchange medium are separated from one another in a gas-tight manner. The heat exchanger according to the invention is constructed from the heat exchanger elements described in the patent DE 26 31 092. These elements are e.g. at a height of approx. 20 cm through up to 60 intersecting channels one above the other, each with 30 parallel to each other, and at a length of approx. 30 cm through up to 10 channels next to each other.

Die Lösung dieser Aufgabe besteht nun nach der vorliegenden Erfindung darin, daß die oben beschriebenen Wärmeaustauscherelemente so modifiziert werden, daß die Schichtdicke der oberen und unteren Begrenzungsfläche des Elementes so stark vergrößert wird und die Stege, die die senkrecht stehenden Kanten bilden, ebenfalls so vergrößert werden, daß sie eine mechanische Bearbeitung aller Flächen des Wärmeaustauscherelementes ermöglichen. Die Bearbeitung des einzelnen Wärmeaustauscherelements resultiert darin, daß es an allen Seitenflächen mit an den Rändern umlaufenden Aushebungen oder Erhebungen versehen wird. Diese Aushebungen bzw. Erhebungen sind nun so gestaltet, daß die Aushebungen, die Matrix für die Erhebungen darstellen. Auf jeweils gegen- überliegenden Seitenflächen des Wärmeaustauschereiements befinden sich auf der einen Seite Aushebungen, auf der gegenüberliegenden Seite die entsprechenden Erhebungen. Die Seitenflächen werden darüber hinaus an all ihren Kanten mit einer Aussparung versehen, deren Schnittbild ein Viertel des Umfangs eines symmetrischen Kanals bildet, wenn mehrere Wärmeaustauscherelemente zusammengefügt werden. Durch die Bearbeitung der Seitenflächen treten die mit Öffnungen versehenen inneren Partien der Seitenflächen gegenüber den Aushebungen bzw. Erhebungen etwas zurück, so daß beim Zusammensetzen zweier Wärmeaustauscherelemente eine ringsherum geschlossene schmale Kammer entsteht, so daß nicht notwendigerweise die einzelnen Kanäle genau deckungsgleich voreinander angeordnet sein müssen. Der erfindungsgemäße keramische Wärmeaustauscher baut sich nun wie folgt auf:The solution to this problem is according to the present invention is that the heat exchanger elements described above are modified so that the layer thickness of the upper and lower boundary surface of the element is increased so much and the webs that form the perpendicular edges are also increased that they allow mechanical processing of all surfaces of the heat exchanger element. The processing of the individual heat exchanger element results in that it is provided on all side surfaces with circumferential projections or elevations. These excavations or surveys are now designed so that the excavations represent the matrix for the surveys. In each counter überlie g side surfaces of the Wärmeaustauschereiements are located on one side levies, on the opposite side the corresponding projections. The side surfaces are also provided with a recess on all of their edges, the sectional view of which forms a quarter of the circumference of a symmetrical channel when several heat exchanger elements are joined together. Due to the processing of the side surfaces, the inner parts of the side surfaces provided with openings withdraw somewhat from the excavations or elevations, so that when two heat exchanger elements are assembled, a narrow chamber which is closed all around is created, so that the individual channels do not necessarily have to be arranged exactly congruently with one another. The ceramic heat exchanger according to the invention is now constructed as follows:

Ein geeignetes Gehäuse z.B. aus metallischen Werkstoffen mit in einer Ebene angeordneten, senkrecht aufeinander stenenden Durchführungen und Ansätzen mit Anschlußflanschen wird mit einem temperaturbeständigen isolierenden, wenig oder nicht kompressiblen Material ausgemauert. Der Boden des Gehauses ist eben und im Deckel des Gehäuses befindet sich eine Aussparung von der Größe z.B. der Kreuzungsfläche der sich kreuzenden Durchführungen. Auf diese Aussparung ist ein Kragen fest mit dem Gehäuse verbunden, der an seiner oberen Kante mit einer Dichtfläche versehen ist und mit einem geeigneten Deckel gasdicht verschlossen werden kann. Auf den Boden dieses Gehäuses werden nun trocken oder in einem Mörtelbett die einzelnen zuvor im Sinne der vorliegenden Erfindung bearbeiteten Wärmeaustauscherelemente verlegt, in dem die Kreuzungsfläche der Durchlässe Element für Element ausgefüllt wird, wobei in allen 4 Richtungen die Anordnung entweder in die Durchlässe hineinragt oder die Eckelemente in eine Aussparung der Ausmauerung eingepaßt werden. Nachdem die erste Lage der Wärmeaustauscherelemente komplett hergestellt ist, werden die an den Stoßkanten erhaltenen Kanäle und Fugen mit einer geeigneten Masse verschlossen. Die 2. Lage von Wärmeaustauscherelementen wird ganz analog aufgebaut und fertiggestellt. Auf diese Weise wird fortgefahren bis der komplette Querschnitt aller Durchlässe mit Wärmeaustauscherelementen versehen ist. Nachdem alle Kanäle und Fugen an den Stoßkanten der einzelnen Wärmeaustauscherelemente mit einer geeigneten Ausgußmasse verschlossen wurden, wird auch die Aussparung an der Oberseite des Wärmeaustauschers mit wärmebeständigem und isolierendem Ausmauerungsmaterial ausgefüllt und der Deckel auf den Kragen des Wärmeaustauschergehäuses mit einer geeigneten Dichtung in bekannter Weise befestigt.A suitable housing made of metallic materials, for example, with bushings and lugs with connecting flanges arranged in a plane, perpendicular to one another, is bricked up with a temperature-resistant insulating, little or not compressible material. The bottom of the housing is flat and there is a recess in the cover of the housing, for example the size of the crossing area of the intersecting bushings. A collar is firmly connected to the recess in this recess, which is provided with a sealing surface on its upper edge and can be closed gas-tight with a suitable cover. The individual heat exchanger elements previously processed in the sense of the present invention are now laid dry or in a mortar bed on the bottom of this housing, in which the crossing surface of the passages element by element is filled in, the arrangement either protruding into the passages in all 4 directions or the corner elements being fitted into a recess in the lining. After the first layer of the heat exchanger elements has been completely produced, the channels and joints obtained at the abutting edges are sealed with a suitable mass. The second layer of heat exchanger elements is constructed and completed in a completely analogous manner. In this way, the process continues until the complete cross section of all passages has been provided with heat exchanger elements. After all channels and joints at the abutting edges of the individual heat exchanger elements have been sealed with a suitable pouring compound, the recess at the top of the heat exchanger is also filled with heat-resistant and insulating lining material and the cover is fastened to the collar of the heat exchanger housing with a suitable seal in a known manner.

Besonders vorteilhaft wird verfahren, wenn bei Verwendung geeigneter Materialien und bei geeigneter Wahl der Schichtdicke thermische Spannungen, ggf. durch mehrschichtige Anordnung, ggf. durch Wahl von unterschiedlichen thermischen Ausdehnungskoeffizienten behaftete Materialien minimiert werden. Das Wärmeaustauschergehäuse wird verhältnismäßig kühl gehalten, ggf. wird es sogar zwangsgekühlt. Einer der Erfindungsgedanken richtet sich darauf, daß durch Kühlhalten des Gehäuses die thermische Ausdehnung dort kleiner oder gleich gehalten wird als die der Anordnung von Wärmeaustauscherelementen. Dadurch wird im Betriebsfall auf die Anordnung der Wärmeaustauscherelemente eine Pressung ausgeübt, die sicherstellt, daß die einzelnen Elemente in Position gehalten werden und die Bildung von Rissen oder sonstigen undichten Stellen, die ohne Anwendung von Druck beobachtet werden, unterbunden werden. Das Wärmeaustauschergehäuse benötigt daher keinerlei Spannvorrichtungen.The procedure is particularly advantageous if, when using suitable materials and with a suitable choice of the layer thickness, thermal stresses are minimized, if appropriate by means of a multilayer arrangement, if appropriate by selecting different coefficients of thermal expansion. The heat exchanger housing is kept relatively cool, if necessary it is even cooled. One of the ideas of the invention is directed to the fact that by keeping the housing cool, the thermal expansion there is kept smaller or the same as that of the arrangement of heat exchanger elements. As a result, a pressure is exerted on the arrangement of the heat exchanger elements during operation, which ensures that the individual elements are held in position and prevents the formation of cracks or other leaks, which are observed without the application of pressure. The heat exchanger housing therefore does not require any clamping devices.

Im Sinne der Erfindung wird ggf. auch ein keramischer Leitapparat, wie er in Figur 3 dargestellt ist, vor die Seitenflächen der Anordnung aus Wärmeaustauscherelementen vorgesehen, der sich in der Isolationsschicht bzw. am Gehäuse abstützt und geeignet ist, Pressungskräfte auf die zentral gelegenen Elemente zu übertragen.In the sense of the invention, a ceramic diffuser, as shown in FIG. 3, is optionally provided in front of the side surfaces of the arrangement of heat exchanger elements, which is supported in the insulation layer or on the housing and is suitable for applying compressive forces to the centrally located elements transfer.

Der erfindungsgemäße keramische Wärmeaustauscher ist beispielhaft in den Figuren 1 - 5 dargestellt.The ceramic heat exchanger according to the invention is shown by way of example in FIGS. 1-5.

  • Figur 1 zeigt ein Wärmeaustauscherelement gemäß Patenschrift DE 26 31 092, welches erfindungsgemäß modifiziert und durch Oberflächenbearbeitung in geeigneter Weise gestaltet wurde.Figure 1 shows a heat exchanger element according to patent DE 26 31 092, which was modified according to the invention and designed in a suitable manner by surface processing.
  • Figur 2 zeigt die aneinanderstoßenden Ecken von 4 Elementen in einer Schnittdarstellung, wobei der Schnitt durch eine Fläche erfolgte, die in Figur 1 durch die Koordinaten A-A angedeutet ist.FIG. 2 shows the abutting corners of 4 elements in a sectional view, the cut being made through an area which is indicated in FIG. 1 by the coordinates A-A.
  • Figur 3 zeigt einen erfindungsgemäßen keramischen Wärmeaustauscher in Außenansicht.FIG. 3 shows a ceramic heat exchanger according to the invention in an external view.
  • Figur 4 zeigt einen Schnitt durch den erfindungsgemäßen Wärmeaustauscher entsprechend einer senkrechten Fläche zu B-B.Figure 4 shows a section through the heat exchanger according to the invention corresponding to a surface perpendicular to B-B.
  • Figur 5 zeigt einen Schnitt durch den erfindungsgemäßen Wärmeaustauscher in einer Fläche senkrecht A-A in Figur 3.FIG. 5 shows a section through the heat exchanger according to the invention in a surface perpendicular to A-A in FIG. 3.

In Figur 6 sind die erfindungsgemäß vorgesehenen Aushebungen und Erhebungen spiegelbildlich angeordnet zu Figur 2.In FIG. 6, the projections and elevations provided according to the invention are arranged in mirror image to FIG. 2.

In Figur 7 erfolgt die Zentrierung der einzelnen Wärmeaustauscherelemente durch eine Hülse.In Figure 7, the centering of the individual heat exchanger elements takes place through a sleeve.

Im einzelnen kann ein Wärmeaustauscherelement anhand von Figur 1 beschrieben werden. Das Wärmeaustauscherelement (3), welches in Figur 1 schematisch dargestellt ist, besitzt Würfelgestalt. Sichtbar dargestellt sind 2 senkrecht stehende Seitenflächen und die obere waagerechte Seitenfläche. Im Wärmeaustauscherelementenrohling verliefen die Seitenflächen vor der erfindungsgemäßen Bearbeitung durch die Ebenen, in denen im fertigbearbeiteten Wärmeaustauscherelement die Oberflächen der Erhebungen (14) liegen. Der mit den Öffnungen für die Kanäle (5 bzw. 4) belegte Teil der neu erhaltenen Seitenflächen liegen um den Abstand (15) von der ursprünglichen Seitenfläche nach innen versetzt. Diese Seitenflächen liegen in den Ebenen, die durch die gestrichelten Linien (7) angedeutet sind. Die Erhebungen auf den senkrecht stehenden Seitenflächen haben anfangs rechtwinkeligen Querschnitt (6b) und weiter nach außen prismatische Querschnitte (6a), wobei sich die Erhebung nach außen hin verjüngen. An den Eintrittsöffnungen der Medien (1, 2) liegen die rechten Winkel im prismatischen Querschnitt der Erhebungen auf der Innenseite, während sie an den Austrittsseiten der Medien (1, 2) an den Außenseiten der Erhebungen liegen.A heat exchanger element can be described in detail with reference to FIG. 1. The heat exchanger element (3), which is shown schematically in Figure 1, has the shape of a cube. Visible are 2 vertical side faces and the upper horizontal side face. In the heat exchanger element blank, the side surfaces ran before the processing according to the invention through the planes in which the surfaces of the elevations (14) lie in the finished heat exchanger element. The part of the newly obtained side surfaces covered with the openings for the channels (5 or 4) are offset inwards by the distance (15) from the original side surface. These side surfaces lie in the planes which are indicated by the dashed lines (7). The elevations on the vertical side surfaces initially have a rectangular cross section (6b) and further outward prismatic cross sections (6a), the elevation tapering outwards. At the inlet openings of the media (1, 2), the right angles lie in the prismatic cross section of the elevations on the inside, while on the outlet sides of the media (1, 2) they lie on the outside of the elevations.

An den Austrittsseiten ist der rechteckige Querschnitt der Erhebung (12b) und der prismatische Querschnitt gekennzeichnet durch (12a). Die Außenfläche der Austrittsebene springt um den Abstand (13) hinter den prismatischen Teil der Erhebung zurück. Während die Flächen (6b, 12c) über die die Austrittsflächen vorspringen, sind die Aushebungen durch die Schenkel der Winkel (8, 9) gekennzeichnet. Die Oberseite und Unterseite des Wärmeaustauscherelements besitzt keine Öffnungen von Strömungskanälen. Hier ist beispielsweise an der Oberseite eine Aushebung (3) gezeichnet, die von den Kantenlinien (10) begrenzt wird und um den Abstand (11) abgesenkt ist. Nicht dargestellt, auf der Unterseite, ist eine Erhebung, ebenfalls begrenzt durch die Kanten (10), sie ragt um den Abstand (11) über die Unterseite hinaus. Die Aushebungen bzw. Erhebungen auf den Seitenflächen dienen dazu, daß mehrere Wärmeaustauscherelemehte formschlüssig aneinandergesetzt werden können.The rectangular cross section of the elevation (12b) and the prismatic cross section are identified by (12a) on the outlet sides. The outer surface of the exit plane jumps back by the distance (13) behind the prismatic part of the elevation. While the surfaces (6b, 12c) over which the exit surfaces project, the excavations are characterized by the legs of the angles (8, 9). The top and bottom of the heat exchanger element has no openings of flow channels. Here, for example, an excavation (3) is drawn on the top, which is delimited by the edge lines (10) and is lowered by the distance (11). Not shown, on the bottom, is an elevation, also limited by the edges (10), it protrudes by the distance (11) beyond the underside. The elevations or elevations on the side surfaces serve to enable several heat exchanger elements to be positively fitted to one another.

In den Figuren 2, 3 und 4 sind aus der Vielzahl der denkbaren Gestaltungsformen der Erhebungen bzw. Aushebungen 3 Möglichkeiten gezeigt. In Figur 4 wird abweichend von der bisher beschriebenen Form das Wärmeaustauscherelement an den senkrecht stehenden Seitenflächen spiegelsymmetrisch mit im Profil rechteckigen Erhebungen versehen. Ein Ring (16) ordnet die einzelnen Wärmeaustauscherelemente fluchtend aneinander. Erkennbar wird darüber hinaus der beim Aneinanderfügen von einzelnen Wärmeaustauscherelementen entstehende, im Querschnitt beispielsweise als ein rechtwinkliges Kreuz ausgebildete Kanal, der mit Dichtungsmasse verschlossen wird.FIGS. 2, 3 and 4 show 3 possibilities from the multitude of conceivable design forms of the elevations or excavations. In FIG. 4, deviating from the shape described so far, the heat exchanger element is provided with mirror-symmetrical elevations in profile on the vertical side faces. A ring (16) arranges the individual heat exchanger elements in alignment. It is also possible to see the channel which is formed when individual heat exchanger elements are joined together and which, in cross section, is designed, for example, as a right-angled cross and is closed with sealing compound.

Figur 5 zeigt beispielhaft die Ausgestaltung eines Kreuzstromwärmeaustauschers, der eine Anordnung von Kreuzstromwärmeaustauscherelementen enthält. Dargestellt sind 4 Ein- bzw. Auslaufstutzen (18) mit den dazugehörigen Flanschanschlüssen (19) und ein Deckel (20), der mit Schrauben (21) mit dem Körper des Wärmeaustauschers fest und gasdicht verbunden ist. Die Strompfeile (1) und (2) deuten die Strömungsrichtung zweier sich kreuzender Wärmeaustauschermedien an.FIG. 5 shows an example of the configuration of a cross-flow heat exchanger which contains an arrangement of cross-flow heat exchanger elements. Shown are 4 inlet and outlet connections (18) with the associated flange connections (19) and a cover (20) which is firmly and gas-tightly connected to the body of the heat exchanger by means of screws (21). The flow arrows (1) and (2) indicate the direction of flow of two intersecting heat exchange media.

Figur 6 zeigt einen Schnitt durch den in Figur (5) dargestellten Wärmeaustauscher in der Ebene A-A. Schematisch dargestellt ist die innere Auskleidung (22) des Wärmeaustauschers sowie die Ein- bzw. Auslaufstutzen (18) mit den dazugehörigen Flanschen (19). Im Zentrum des Wärmeaustauschers ist eine quadratische Anordnung von erfindungsgemäßen Wärmeaustauscherelementen (23) schematisch dargestellt. Das Wärmeaustauschermedium (1) strömt in der Papierebene, nicht dargestellt, das Wärmeaustauschermedium (2) senkrecht durch die Papierebene strömt.Figure 6 shows a section through the heat exchanger shown in Figure (5) in the plane AA. The inner lining (22) of the heat exchanger and the inlet and outlet connections (18) with the associated flanges (19) are shown schematically. In the center of the heat exchanger, a square arrangement of heat exchanger elements (23) according to the invention is shown schematically. The heat exchange medium (1) flows in the Paper plane, not shown, the heat exchange medium (2) flows vertically through the paper plane.

In Figur 7 ist die Teilansicht eines Schnittes durch den in Figur 5 dargestellten Wärmeaustauscher in der Ebene - B - gezeichnet. Neben dem Auslaufstutzen für das Wärmeaustauschermedium 1 (19) mit den dazugehörigen Flansch (19) und der Auskleidung des Wärmeaustauschers (22) ist in diesem Schnittbild die horizontale Anordnung einer Schicht aus erfindungsgemäßen Wärmeaustauscherelementen (23) dargestellt. Die Wärmeaustauscherelemente (23) sind allseitig von einem Kanal (17 und 17a) umgeben. Die Kanäle (17) sind in der Horizontalen angeordnet, während die Kanäle (17a) senkrecht zur Papierebene verlaufen.FIG. 7 shows the partial view of a section through the heat exchanger shown in FIG. 5 in the plane - B -. In addition to the outlet connection for the heat exchange medium 1 (19) with the associated flange (19) and the lining of the heat exchanger (22), the horizontal arrangement of a layer of heat exchanger elements (23) according to the invention is shown in this sectional view. The heat exchanger elements (23) are surrounded on all sides by a channel (17 and 17a). The channels (17) are arranged horizontally, while the channels (17a) run perpendicular to the paper plane.

In Fig. 8 ist eine pempielhafte Ausführung eines weiteren erfinderischen Gedankens schematisch als Schnittbild durch die Stoßkanten von vier Warmeaustauscherelementen gezeigt. Zwischen geeignet gestalteten Erhebungen bzw. Austrittsflachen jedes Elementes allseits umlaufend angeordnet sind, wird ein Streifen bzw. eine Schicht aus gruner keramischer Masse (30) zwischengelegt und später drucklos oder unter Druck -Stempeldruck oder z. B. Gehäusedruck- bei Sintertemperatur auf geeignete Weise getempert, wodurch eine feste, fugenlose und dichte Verbindung der Elemente entsteht. (Geeignet ist z. B. ein heißer Abgasstrom).8 shows an exemplary embodiment of a further inventive concept schematically as a sectional view through the abutting edges of four heat exchanger elements. A strip or a layer of green ceramic mass (30) is interposed between suitably designed elevations or outlet surfaces of each element, and is later inserted without pressure or under pressure - stamp pressure or z. B. case pressure at the sintering temperature in a suitable manner, which creates a firm, seamless and tight connection of the elements. (A hot exhaust gas flow is suitable, for example).

Claims (3)

1. Kreuzstrom-Wärmetauscher bestehend aus a) einem Metall-Gehäuse mit je zwei Gaseintritts- und Gasaustrittsstutzen, b) mindestens einem Einbaudeckel auf der Oberseite des Gehäuses, c) einem Block aus einer Vielzahl von keramischen Wärmetauschelementen versatzfrei gesetzt in Quaderform mit kreuzweise übereinander geschichteten Gaskanälen, wobei vier Seitenflächen Gaskanalöffnungen aufweisen und die Boden- und Deckenflächen öffnungsfrei sind, d) einer wärmeisolierung zwischen dem Metall-Gehäuse und dem Block aer keramischen Wärmetauschelemente,
dadurch gekennzeichnet , daß e) jedes Wärmetauschelement an allen vier kanalfreien Seitenrändern jeder Seitenfläche mit Aushebungen bzw. Erhebungen versehen ist, so daß gegenüberliegende Wärmetauschelemente ineinander passen und sich die Seitenflächen im Gaskanalbereich nicht berühren, so daß eine flache Hohlkammer zwischen benachbarten Wärmetauschelementen entsteht, f) zwischen je einer gegenüberliegenden Aushebung and einer Erhebung ein Dichtstreifen angeordnet ist, g) jedes Wärmetauschelement an den Boden- und Deckelflächen mit mindestens einer Erhebung bzw. Aushebung gleicher Form versehen ist um formschlüssig ineinander zu passen, h) die Wärmeisolierung zwischen dem Metallgehäuse und dem Block der keramischen Wärmetauschelemente den Block formschlüssig an Boden und Deckel und kraftschlüssig in Richtung der Gaseintritts- und Gasaustrittsstutzen umschließt.
1. Cross-flow heat exchanger consisting of a) a metal housing with two gas inlet and gas outlet connections each, b) at least one installation cover on the top of the housing, c) a block composed of a multiplicity of ceramic heat exchange elements set in a cuboid shape with gas ducts stacked crosswise one above the other, four side surfaces having gas duct openings and the floor and ceiling surfaces being open, d) thermal insulation between the metal housing and the block of ceramic heat exchange elements,
characterized in that e) each heat exchange element is provided with elevations or elevations on all four channel-free side edges of each side surface, so that opposite heat exchange elements fit into one another and the side surfaces in the gas channel area do not touch, so that a flat hollow chamber is formed between adjacent heat exchange elements, f) a sealing strip is arranged between each opposite lifting and one elevation, g) each W ärmetauschelement at the bottom and top faces with at least one elevation or excavation of the same shape is provided to fit positively interengaging, h) the heat insulation between the metal housing and the block of ceramic heat exchange elements encloses the block in a form-fitting manner on the bottom and cover and in a non-positive manner in the direction of the gas inlet and gas outlet connections.
2. Kreuzstrom-Wärmetauscher nach Anspruch 1;
dadurch gekennzeichnet , daß die Aushebungen bzw. Erhebungen am Seitenrand einer Seitenfläche profiliert sind und zwischen gegenüberliegenden ein Kanal entsteht, der mit hitzebeständigem Material ausgefüllt ist.
2. cross-flow heat exchanger according to claim 1;
characterized in that the protrusions or elevations are profiled on the side edge of a side surface and a channel is formed between the opposite, which is filled with heat-resistant material.
3. Kreuzstrom-Wärmetauscher nach Anspruch 1 oder 2,
dadurch gekennzeichnet , daß dem Block der Wärmetauscnelemente an den Seitenflächen je eine Stützwabe vorgesetzt ist.
3. cross-flow heat exchanger according to claim 1 or 2,
characterized in that a support honeycomb is placed in front of the block of heat exchange elements on the side surfaces.
EP85109109A 1984-09-29 1985-07-20 Cross-flow heat exchanger Expired EP0176680B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85109109T ATE39022T1 (en) 1984-09-29 1985-07-20 CROSS-FLOW HEAT EXCHANGER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3435911A DE3435911A1 (en) 1984-09-29 1984-09-29 CROSS CURRENT HEAT EXCHANGER
DE3435911 1984-09-29

Publications (3)

Publication Number Publication Date
EP0176680A2 true EP0176680A2 (en) 1986-04-09
EP0176680A3 EP0176680A3 (en) 1986-12-17
EP0176680B1 EP0176680B1 (en) 1988-11-30

Family

ID=6246767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109109A Expired EP0176680B1 (en) 1984-09-29 1985-07-20 Cross-flow heat exchanger

Country Status (9)

Country Link
US (1) US4681157A (en)
EP (1) EP0176680B1 (en)
JP (1) JPS61105096A (en)
AT (1) ATE39022T1 (en)
DD (1) DD236982A5 (en)
DE (2) DE3435911A1 (en)
NO (1) NO853808L (en)
SU (1) SU1426468A3 (en)
ZA (1) ZA857471B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706634B4 (en) * 1997-02-20 2006-06-29 Klingenburg Gmbh Cross counter flow plate heat exchanger
DE19815218B4 (en) * 1998-04-04 2008-02-28 Behr Gmbh & Co. Kg Bed heat exchanger
DE10033908C1 (en) * 2000-07-12 2001-11-15 Bosch Gmbh Robert Micro heat exchanger has heat exchange block provided with perpendicular flow channels in alternating planes
CN1299082C (en) * 2003-10-24 2007-02-07 上海工程技术大学 Preheater with controllable wind temperature for porcelain clay and methal
JP4667298B2 (en) * 2006-04-24 2011-04-06 株式会社豊田中央研究所 Heat exchanger and heat exchange type reformer
JP4735393B2 (en) * 2006-04-24 2011-07-27 株式会社豊田中央研究所 Heat exchanger and heat exchange type reformer
CN104215103B (en) * 2014-09-24 2016-11-30 中科苏派能源科技靖江有限公司 Pottery heat exchanger plates and the ceramic heat exchange core body assembled by it
CN104266525B (en) * 2014-09-24 2016-04-06 中科苏派能源科技靖江有限公司 The air preheater of pottery heat exchanger plates and assembling thereof
CN104697377A (en) * 2015-03-02 2015-06-10 中科苏派能源科技靖江有限公司 Ceramic heat exchange plate and air preheater
US10228196B2 (en) * 2017-02-03 2019-03-12 Schneider Electric It Corporation Method and apparatus for modular air-to-air heat exchanger

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR462152A (en) * 1913-09-03 1914-01-21 Andre Angelo Fresneau Special refractory brick for the construction of chambers for the circulation of hot gases and air or other gases, for heat recovery, heating, and other applications
US1721938A (en) * 1925-08-27 1929-07-23 Hartford Empire Co Recuperator and tile structure therefor
FR691775A (en) * 1930-02-28 1930-10-27 Collector
US1804393A (en) * 1927-03-23 1931-05-12 Verne W Aubel Heat recuperator or regenerator structure
US2577170A (en) * 1949-11-14 1951-12-04 Green Annan R Checker-brick
FR1088732A (en) * 1952-10-14 1955-03-09 Lorraine Carbone Improvements relating to heat exchangers
FR1368454A (en) * 1962-08-31 1964-07-31 Hoechst Ag heat exchanger for corrosive environments
GB1078868A (en) * 1964-11-12 1967-08-09 Dietrich Schwemann Heat exchange column
FR1524145A (en) * 1967-02-08 1968-05-10 Heat exchanger
DE2510893A1 (en) * 1975-03-13 1976-09-23 Didier Werke Ag CERAMIC RECUPERATOR
US3986549A (en) * 1975-07-14 1976-10-19 Modine Manufacturing Company Heat exchanger
DE2631092A1 (en) * 1976-07-10 1978-01-12 Rosenthal Technik Ag CERAMIC ALTERNATING LAYER HEAT EXCHANGER IN MODULAR DESIGN
DE2937342A1 (en) * 1978-09-22 1980-04-10 Ceraver CERAMIC HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF
US4298059A (en) * 1978-09-23 1981-11-03 Rosenthal Technik Ag Heat exchanger and process for its manufacture
EP0043113A2 (en) * 1980-06-26 1982-01-06 GTE Products Corporation Ceramic heat recuperative apparatus
DE3416908A1 (en) * 1983-05-11 1984-11-15 Stettner & Co, 8560 Lauf Heat sink
EP0093472B1 (en) * 1982-05-03 1987-03-18 Veitscher Magnesitwerke-Actien-Gesellschaft Prismatic hollow brick of refractory material for the checker work of chambers of a glass melting furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL68089C (en) *
US1687236A (en) * 1926-07-28 1928-10-09 Decarie Incinerator Corp Heat regenerator
GB1016313A (en) * 1962-08-31 1966-01-12 Hoechst Ag Improvements in and relating to heat exchangers
US4083400A (en) * 1976-05-13 1978-04-11 Gte Sylvania, Incorporated Heat recuperative apparatus incorporating a cellular ceramic core
US4305455A (en) * 1979-02-28 1981-12-15 Lipets Adolf U Multipass corrosion proof air heater

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR462152A (en) * 1913-09-03 1914-01-21 Andre Angelo Fresneau Special refractory brick for the construction of chambers for the circulation of hot gases and air or other gases, for heat recovery, heating, and other applications
US1721938A (en) * 1925-08-27 1929-07-23 Hartford Empire Co Recuperator and tile structure therefor
US1804393A (en) * 1927-03-23 1931-05-12 Verne W Aubel Heat recuperator or regenerator structure
FR691775A (en) * 1930-02-28 1930-10-27 Collector
US2577170A (en) * 1949-11-14 1951-12-04 Green Annan R Checker-brick
FR1088732A (en) * 1952-10-14 1955-03-09 Lorraine Carbone Improvements relating to heat exchangers
FR1368454A (en) * 1962-08-31 1964-07-31 Hoechst Ag heat exchanger for corrosive environments
GB1078868A (en) * 1964-11-12 1967-08-09 Dietrich Schwemann Heat exchange column
FR1524145A (en) * 1967-02-08 1968-05-10 Heat exchanger
DE2510893A1 (en) * 1975-03-13 1976-09-23 Didier Werke Ag CERAMIC RECUPERATOR
US3986549A (en) * 1975-07-14 1976-10-19 Modine Manufacturing Company Heat exchanger
DE2631092A1 (en) * 1976-07-10 1978-01-12 Rosenthal Technik Ag CERAMIC ALTERNATING LAYER HEAT EXCHANGER IN MODULAR DESIGN
DE2937342A1 (en) * 1978-09-22 1980-04-10 Ceraver CERAMIC HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF
US4298059A (en) * 1978-09-23 1981-11-03 Rosenthal Technik Ag Heat exchanger and process for its manufacture
EP0043113A2 (en) * 1980-06-26 1982-01-06 GTE Products Corporation Ceramic heat recuperative apparatus
EP0093472B1 (en) * 1982-05-03 1987-03-18 Veitscher Magnesitwerke-Actien-Gesellschaft Prismatic hollow brick of refractory material for the checker work of chambers of a glass melting furnace
DE3416908A1 (en) * 1983-05-11 1984-11-15 Stettner & Co, 8560 Lauf Heat sink

Also Published As

Publication number Publication date
JPS61105096A (en) 1986-05-23
DD236982A5 (en) 1986-06-25
DE3566573D1 (en) 1989-01-05
EP0176680A3 (en) 1986-12-17
ZA857471B (en) 1986-09-24
ATE39022T1 (en) 1988-12-15
US4681157A (en) 1987-07-21
SU1426468A3 (en) 1988-09-23
EP0176680B1 (en) 1988-11-30
DE3435911A1 (en) 1986-04-03
NO853808L (en) 1986-04-01

Similar Documents

Publication Publication Date Title
DE2615579A1 (en) HEAT EXCHANGER
EP0163866A1 (en) Ceiling and wall construction
EP0176680B1 (en) Cross-flow heat exchanger
DE2660373B1 (en) Fluid-flowed cooling element
EP0274694A1 (en) Heat exchange module made of burned ceramic material
DE2631092C2 (en) Ceramic alternating layer heat exchanger in modular design
DE4038844A1 (en) Refractory stone for a heat regenerator of a glass melting furnace as well as an arrangement of such stones
DE3446649A1 (en) Lining for high-temperature gas turbines
EP0107243B1 (en) Horizontal checkerwork for chambers of a regeneratively heated furnace
DE4129092A1 (en) FIRE-RESISTANT MOLDING STONE ELEMENT FOR A HEAT EXCHANGER
DE19808810C1 (en) Hollow block for the chamber edge grid of a glass melting furnace
DE4021081A1 (en) Hollow flat building component - comprises rigid plates held apart by distance pieces
DE3643749A1 (en) HEAT EXCHANGER MODULE FROM BURNED CERAMIC MATERIAL
DE3512891A1 (en) INTERCOOLER FOR INTERNAL COMBUSTION ENGINES
DE3042557A1 (en) Solar power plant heat exchanger - has cylindrical ceramic wall pressurised inwards guiding medium through layers from outside
EP0114065A2 (en) Building brick
DE2510893C3 (en) Ceramic recuperator with shaped stones
EP0867674A2 (en) Drying chamber or tunnel and pre-heater for ceramic green shaped bodies
DE920978C (en) Circumferential regenerative preheater with sealing plates
DE3008079A1 (en) Heat exchanger for hot and/or corrosive media - using ceramic tubes located in ceramic chamber, esp. to reclaim heat from corrosive waste gas
DE879552C (en) Heat exchanger
EP0058984A1 (en) Tile stove
DE1075135B (en) Cross-flow plate heat exchanger with m the flow channels between the plates arranged wave-shaped heat transfer elements and method for its manufacture
EP0033485B1 (en) Brick for the construction of a double-lining glazed-tile stove
DE3212330A1 (en) FIREPLACE SHAPED STONE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870116

17Q First examination report despatched

Effective date: 19870515

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 39022

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3566573

Country of ref document: DE

Date of ref document: 19890105

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910619

Year of fee payment: 7

Ref country code: LU

Payment date: 19910619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910628

Year of fee payment: 7

Ref country code: BE

Payment date: 19910628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910701

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910710

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910726

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920720

Ref country code: GB

Effective date: 19920720

Ref country code: AT

Effective date: 19920720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

Ref country code: BE

Effective date: 19920731

BERE Be: lapsed

Owner name: UHDE G.M.B.H.

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85109109.0

Effective date: 19930204