EP0175157B1 - Process for boriding metal and metal alloys by means of solid boriding agents - Google Patents

Process for boriding metal and metal alloys by means of solid boriding agents Download PDF

Info

Publication number
EP0175157B1
EP0175157B1 EP85110451A EP85110451A EP0175157B1 EP 0175157 B1 EP0175157 B1 EP 0175157B1 EP 85110451 A EP85110451 A EP 85110451A EP 85110451 A EP85110451 A EP 85110451A EP 0175157 B1 EP0175157 B1 EP 0175157B1
Authority
EP
European Patent Office
Prior art keywords
boriding
fluidized bed
metal
boron
borating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85110451A
Other languages
German (de)
French (fr)
Other versions
EP0175157A3 (en
EP0175157A2 (en
Inventor
Alfred Graf Dipl.-Ing. Von Matuschka (Fh)
Norbert Trausner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elektroschmelzwerk Kempten GmbH
Original Assignee
Elektroschmelzwerk Kempten GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektroschmelzwerk Kempten GmbH filed Critical Elektroschmelzwerk Kempten GmbH
Priority to AT85110451T priority Critical patent/ATE42577T1/en
Publication of EP0175157A2 publication Critical patent/EP0175157A2/en
Publication of EP0175157A3 publication Critical patent/EP0175157A3/en
Application granted granted Critical
Publication of EP0175157B1 publication Critical patent/EP0175157B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • C23C8/70Boronising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising

Definitions

  • the parts to be borated are arranged in containers and tightly surrounded with boron-releasing powder.
  • the containers are then placed in a preheated oven and kept at temperatures around 800 ° C to 1100 ° C, then cooled and then emptied.
  • the borating agent usually contains crystalline or amorphous boron, boron carbide, ferroboron, borax or mixtures of at least two of these components as a boron-releasing substance, for example carbon black as fillers.
  • the temperature treatment is carried out in chamber, pot, belt conveyor, chain conveyor or vacuum ovens.
  • This patent therefore teaches the teaching of a metal coating process in a fluidized bed, in which solid and gaseous reactants react to form volatile compounds, which then decompose in the specified temperature range when they come into contact with the metal surfaces to be coated, forming a metal coating thereon, this thermal decomposition reaction being caused by Application of negative pressure is favored.
  • Suggestions for a boronization process in a fluidized bed, in which a boride diffusion layer is to be generated by exclusively solid reaction participants in a thermochemical reaction on the metal surfaces to be borated from iron and non-ferrous metals could not be derived from this prior art.
  • the activators required to trigger this thermochemical reaction in the temperature range customary for boronization processes cannot be introduced into the reaction space as gaseous reactants, but must be available as solids in close contact with the boron-releasing solids.
  • the object of the invention is therefore to provide a method for producing a solid borating agent To develop a granular form which enables a metal to be easily and quickly borated in a fluidized bed with fluidizing gas which is not involved in the chemical reaction.
  • the shape and size of the particles alone are not decisive, but rather the combination of the components required for boronizing (boron donors, activators, fillers) in one and the same particle. This is to ensure that the essential components hit the surface to be borated at the same time, but also that premature disintegration of the granules under the hard fluidized bed conditions is avoided.
  • boron granules which consists of almost spherical particles with a particle size of 0.025 mm to 5.0 mm based on boron-releasing substances, activators, fillers and binders, the boron granules by spray drying an aqueous suspension from the constituents mentioned using emulsifiers, auxiliaries and binders, selected from mono-, di- and / or polysaccharides, at temperatures between 120 ° C to 750 ° C.
  • the boron granules produced by this process are preferably used for boronizing metals and metal alloys in a fluidized bed at a temperature of 580 ° C. to 1300 ° C., the fluidized bed being generated with fluidizing gas which is not involved in the chemical reaction.
  • a borating agent in granular form is known from DE-A-2 127 096 (H. Krzyminski, Manual Gold- und Silber-Scheideweg 14, 1972).
  • the known boron powders cannot be used in this process because of their grain size and grain distribution.
  • all solid formulations of borating agents produced according to the invention can be used for boronizing in the fluidized bed, the almost spherical grain of which can be kept in a fluidized state at the reaction temperature in the flowing gaseous medium. Almost spherical particles with a grain size of 0.05 to 2.0 mm are preferred.
  • the boron granules produced according to the invention can be formulated, for example, from all powders which have hitherto been successfully used for boronizing metals.
  • boron-releasing substances they can contain amorphous or crystalline boron, boron carbide, borax or metal borides, or mixtures of at least two of these substances.
  • Boron carbide is particularly preferred. Soot, silicon carbide, aluminum, magnesium and silicon oxides, silicates, non-boronable metals, their mixtures or similar substances can serve as fillers which are also extenders.
  • the borating agents can contain all substances, individually or in a mixture, which were previously used as activators in the boriding of metals and their alloys. Complex fluorides, in particular potassium tetrafluoroborate, are preferred.
  • a method that is not typical for this purpose is used to granulate the borating agent: spray drying.
  • This process is generally used to make highly disperse and redispersible particles, i.e. H. Particles of low mechanical stability are used.
  • the spray drying of the boron mixture forms particles which are mechanically stable and, owing to their almost spherical geometry, their particle size, their narrow particle size distribution and their dimensional stability, are particularly suitable for use in a fluidized bed process under reaction conditions.
  • binders, a dispersing agent which is inert towards the powder constituents and emulsifiers are added to the powder to be granulated.
  • Saccharides, disaccharides, polysaccharides and mixtures of at least two of these substances are preferred as binders.
  • Water is preferred as the dispersing agent which is inert towards the powder components for environmental and cost reasons.
  • 10 to 100 percent by weight, preferably 20 to 70 percent by weight, of dispersing agent are added. It is possible to use more dispersants, but it requires higher energy consumption or lower throughput when spray drying.
  • Emulsifiers can be added to the mixture to be granulated.
  • auxiliary substances such as protective colloids, anti-foaming agents and spraying aids can be added.
  • Binder is preferably used in amounts of 2 to 30 percent by weight, based on the sum of the weight of dry granules, i.e. H. boron-releasing substance, fillers and activators, emulsifiers, auxiliaries and binders used; Amounts between 5 and 20 percent by weight are particularly preferred.
  • the amounts of boron-imparting substance can be between 2 and 90 percent by weight, based on the dry granulate, depending on the affinities of the surfaces to be borated.
  • the activator is used in amounts of 1 to 15, preferably 3 to 8 percent by weight. Larger amounts of activator have no advantages.
  • the boriding granulate can be used as the only bulk material, but it can also be used in a mixture with a granulate which is inert to the boron-releasing substance.
  • Such inert granules can consist, for example, of the fillers mentioned above.
  • the fluidized bed boriding process is carried out in a retort made of a gas-tight material which is stable at the reaction temperature, preferably in ceramic or ceramic-coated retorts.
  • Inert gases and gas mixtures or reducing gases are preferably used as fluidizing gases and gas mixtures used.
  • inert gases or gas mixtures are nitrogen, argon and their mixtures.
  • reducing gases or gas mixtures are hydrogen, ammonia cracking gas, forming gas (5-30% hydrogen, 70-95% nitrogen), hydrocarbons, mixtures of at least two of these reducing gases and mixtures of at least one reducing gas with at least one inert gas.
  • the boriding process is carried out at temperatures from 580 ° C. to 1300 ° C., preferably at 580 ° C. to 1100 ° C., in particular at 800 ° C. to 1100 ° C.
  • the fluidized bed boring process allows a continuous or semi-continuous procedure for boring individual and serial parts, also in connection with subsequent treatments. In general, it is advisable to preheat the workpieces to be borated before the actual boriding step. Borier granules that have largely been used up can be removed from the fluidized bed during the process, for example by suction or pneumatic conveying; Unused borating agent can be added to the reactor at any time. Fully continuous operation can be achieved, for example, by guiding the boric agent stream in the moving bed.
  • the boriding process can be followed by other process steps that have proven themselves in metal treatment. Boronizing steels can be followed, for example, by diffusion annealing, austenitizing, quenching and / or tempering.
  • the fluidized bed process allows a more economical use of the relatively expensive boriding medium.
  • the fluidized bed boron creates a closed boride layer of uniform thickness.
  • the fluidized bed process can borate all metals and metal alloys that could also be borated in the previously known processes. Examples of these metals or metal alloys are iron, cobalt, nickel, titanium, steels, hard metal and alloys which contain iron, cobalt, nickel and / or titanium.
  • a single-phase iron boride layer is achieved on the surface of iron-containing alloys or iron, ie the iron boride formed consists essentially of Fe 2 B.
  • Most other processes produce two-phase layers, one phase of which contains Fe 2 B and the other of which FeB. Tensions can occur in such two-phase layers containing iron boride, which ultimately lead to cracks.
  • a plate made of Ck 45 steel was suspended in a boriding agent prepared according to A in a fluidized bed at 920 ° C. and kept at this temperature for 2 hours. After this time . cooled the sample in the raised shaft of the fluidized bed furnace in the gas atmosphere. Forming gas (95% nitrogen, 5% hydrogen) was used as the fluidizing gas. The surface of the sample was free of borating agent. Under these boriding conditions, a single-phase boride layer with a thickness of approx. 100 ⁇ m was created.
  • Pawls and switch cams made of St 37 K steel were borated according to Example 1, but for 3 hours, at 920 ° C. in a fluidized bed. Forming gas (90% nitrogen, 10% hydrogen) was used as the fluidizing gas.
  • the cut examination showed a single-phase boride layer thickness of approx. 140 IL m.
  • the gears were removed from the fluidized bed and then quenched in an oil bath.
  • the gears had a single-phase boride layer 30 wm thick.
  • the duration of the treatment from preparation to the end of curing was approximately 2 hours. According to the previously known methods, a treatment cycle of at least two days was necessary to achieve an equivalent result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A process is provided for boriding metals and metal alloys in a fluidized bed at a temperature of from about 580 DEG to about 1300 DEG C. As a boriding agent, there was used a granular material comprising essentially spherical particles having a particle size of from about 0.025 to about 5.00 mm, which granular material was manufactured by spray drying a preferably aqueous suspension or dispersion based on materials that yield boron, and which can contain fillers, extenders and binders.

Description

Es ist bekannt, auf Metallen oder Metallegierungen durch Reaktion mit borhaltigen Materialien sehr harte Oberflächen aus Boriden zu erzeugen. Diese Oberflächenhärtung kann mittels gasförmiger Stoffe wie Diboran oder Borhalogenide, flüssiger Medien, wie Boraxschmelzen oder auch fester Borierungsmittel auf Metalloberflächen erreicht werden. Aus toxikologischen, wirtschaftlichen und technologischen Gründen konnten sich in der Praxis nur feste Borierungsmittel durchsetzen, d. h. Pulver und Pasten.It is known to produce very hard surfaces from borides on metals or metal alloys by reaction with boron-containing materials. This surface hardening can be achieved by means of gaseous substances such as diborane or boron halides, liquid media such as borax melts or solid borating agents on metal surfaces. For toxicological, economic and technological reasons, only solid borating agents could prevail in practice, i. H. Powders and pastes.

Verfahren zum Borieren von Metallen und Metallegierungen mittels Pulver bzw. Pasten sind in DE-PS 17 96 215 (H. Kunst, Elektroschmelzwerk Kempten GmbH ; ausgegeben am 26. Juli 1973), DE-PS 21 46 472 (W. Fichtl et al., Elektroschmelzwerk Kempten GmbH, ausgegeben am 7. September 1978), DE-PS 22 08 734 (G. Wiebke et al. Elektroschmelzwerk Kempten GmbH, ausgegeben am 31, Juli 1980) und DE-AS 23 61017 (E. Preuschen, Vac-Hyd Processing GmbH, bekanntgemacht am 30. August 1979) eingehend beschrieben.Methods for boronizing metals and metal alloys using powders or pastes are described in DE-PS 17 96 215 (H. Kunst, Elektroschmelzwerk Kempten GmbH; issued July 26, 1973), DE-PS 21 46 472 (W. Fichtl et al. , Elektroschmelzwerk Kempten GmbH, issued on September 7, 1978), DE-PS 22 08 734 (G. Wiebke et al. Elektroschmelzwerk Kempten GmbH, issued on July 31, 1980) and DE-AS 23 61017 (E. Preuschen, Vac- Hyd Processing GmbH, announced on August 30, 1979) described in detail.

Beim Pulverborieren werden die zu borierenden Teile in Behälter angeordnet und mit borabgebendem Pulver dicht umgeben. Die Behälter werden dann in einen vorgeheizten Ofen geschoben und bei Temperaturen um 800 °C bis 1 100 °C gehalten, danach abgekühlt und anschließend entleert.In powder boriding, the parts to be borated are arranged in containers and tightly surrounded with boron-releasing powder. The containers are then placed in a preheated oven and kept at temperatures around 800 ° C to 1100 ° C, then cooled and then emptied.

Beim Pastenborieren (DE-AS 23 61 017) wird eine möglichst gleichmäßig dicke Schicht des Borierungsmittels auf das Werkstück aufgetragen, getrocknet und bei Temperaturen von ca. 800 °C bis 1 100 °C mehrere Stunden lang behandelt.In paste boriding (DE-AS 23 61 017), a layer of the borating agent that is as uniformly thick as possible is applied to the workpiece, dried and treated for several hours at temperatures of approximately 800 ° C. to 1100 ° C.

Das Boriermittel enthält üblicherwiese kristallines oder amorphes Bor, Borcarbid, Ferrobor, Borax oder Gemische von mindestens zwei dieser Komponenten als borabgebende Substanz, als Füllstoffe beispielsweise Ruß. Siliciumcarbid, Kieselsäure, Aluminium- oder Magnesiumoxid und als Aktivatoren insbesondere komplexe Fluoride wie Kaliumtetrafluoroborat. Die Temperaturbehandlung wird in Kammer-, Topf-, Banddurchlauf-, Kettendurchlauf- oder Vakuumöfen durchgeführt.The borating agent usually contains crystalline or amorphous boron, boron carbide, ferroboron, borax or mixtures of at least two of these components as a boron-releasing substance, for example carbon black as fillers. Silicon carbide, silica, aluminum or magnesium oxide and, in particular, complex fluorides such as potassium tetrafluoroborate as activators. The temperature treatment is carried out in chamber, pot, belt conveyor, chain conveyor or vacuum ovens.

Bei Pulverborierverfahren müssen die zu behandelnden Teile ein- und ausgepackt werden, was jeweils mit Staubbelastung verbunden ist. Die Aufwärm- und Abkühlperioden sind auf Grund des schlechten Wärmedurchgangs durch das Borierpulver relativ lang. Es wird meist ein Überschuß des verhältnismäßig teueren Boriermediums verwandt. Das Pastenborieren erfordert ein sehr gleichmäßig dickes Auftragen der Paste. Zeitaufwendig ist auch das Trocknen der Paste.In the case of powder borating processes, the parts to be treated have to be packed and unpacked, which is associated with dust pollution. The warm-up and cool-down periods are relatively long due to the poor heat transfer through the boron powder. An excess of the relatively expensive boron medium is usually used. Paste borating requires a very evenly thick application of the paste. Drying the paste is also time-consuming.

Aufgrund des bekannten guten Wärmeaustausches wäre daher die Anwendung der Wirbelschichttechnik vorteilhaft. Die Durchführung von Beschichtungsverfahren im Wirbelbett ist ebenfalls bereits bekannt. So wird beispielsweise in der US-A 3 405 000 ein Verfahren zum Beschichten von Metallgegenständen aus Nichteisenmetallen unter Verwendung eines Wirbelbettes beschrieben. Dabei werden die Metallgegenstände in dem Wirbelbett, dessen Teilchen aus Metallen bestehen, wobei unter anderem auch Bor genannt wird, auf 750 °C bis 1 250 °C erhitzt. Das Wirbelbett wird durch einen inerten Gasstrom erzeugt, dem bis zu 50 Vol.- % Joddampf als Reaktionsteilnehmer beigemischt sind. Außerdem muß in dem Reaktor mit Unterdruck gearbeitet werden, damit auf den zu beschichtenden Metallgegenständen ein einheitlicher glatter Überzug erzeugt werden kann. Bei Durchführung dieses Verfahrens finden sogenannte « Jod-Transportreaktionen statt, .das heißt, einige der Teilchen verbinden sich mit dem Jod unter Bildung flüchtiger Jodide, die dann in Kontakt mit den zu beschichtenden Metal-Ioberflächen zersetzt werden und auf diesen einen Metallüberzug erzeugen. Neben den Beschichtungsteilchen aus Metallen oder Metallverbindungen können zusätzlich noch inerte Teilchen auf Oxidbasis vorhanden sein.Because of the known good heat exchange, the use of fluidized bed technology would therefore be advantageous. The implementation of coating processes in a fluidized bed is also already known. For example, US Pat. No. 3,405,000 describes a method for coating non-ferrous metal objects using a fluidized bed. The metal objects in the fluidized bed, the particles of which consist of metals, among which boron is also mentioned, are heated to 750 ° C. to 1,250 ° C. The fluidized bed is generated by an inert gas stream to which up to 50 vol.% Iodine vapor is added as a reactant. In addition, vacuum must be used in the reactor so that a uniform, smooth coating can be produced on the metal objects to be coated. In carrying out this process are called "iodine Transp o rt r eaktio nen place .the is, some of the particles combine with the iodine to form volatile iodides, which are then decomposed into contact with the to be coated metal Ioberflächen and on this create a metal coating. In addition to the coating particles made of metals or metal compounds, inert particles based on oxide can also be present.

Diese Patentschrift vermittelt daher die Lehre für ein Metallbeschichtungsverfahren im Wirbelbett, bei dem feste und gasförmige Reaktionsteilnehmer unter Bildung flüchtiger Verbindungen reagieren, die sich dann im angegebenen Temperaturbereich bei Berührung mit den zu beschichtenden Metalloberflächen unter Bildung eines Metallüberzugs auf denselben zersetzen, wobei diese thermische Zersetzungreaktion durch Anwendung von Unterdruck begünstigt wird. Anregungen für ein Borierungsverfahren im Wirbelbett, bei dem durch ausschließlich feste Reaktionsteilnehmer in einer thermochemischen Reaktion auf den zu borierenden Metalloberflächen aus Eisen und Nichteisenmetallen eine Borid-Diffusionsschicht erzeugt werden soll, waren diesem Stand der Technik jedoch nicht zu entnehmen. Die für die Auslösung dieser thermochemischen Reaktion im für Borierungsverfahren üblichen Temperaturbereich erforderlichen Aktivatoren können nämlich nicht als gasförmige Reaktionsteilnehmer in den Reaktionsraum eingebracht werden, sondern müssen als Feststoffe in engem Kontakt mit den borabgebenden Feststoffen zur Verfügung stehen.This patent therefore teaches the teaching of a metal coating process in a fluidized bed, in which solid and gaseous reactants react to form volatile compounds, which then decompose in the specified temperature range when they come into contact with the metal surfaces to be coated, forming a metal coating thereon, this thermal decomposition reaction being caused by Application of negative pressure is favored. Suggestions for a boronization process in a fluidized bed, in which a boride diffusion layer is to be generated by exclusively solid reaction participants in a thermochemical reaction on the metal surfaces to be borated from iron and non-ferrous metals, could not be derived from this prior art. The activators required to trigger this thermochemical reaction in the temperature range customary for boronization processes cannot be introduced into the reaction space as gaseous reactants, but must be available as solids in close contact with the boron-releasing solids.

Die Erzeugung von Borid-Diffusionsschichten aus festen Borspendern und festen Aktivatoren ist an sich aus den oben erwähnten Pulverpackmethoden bekannt, ebenso die Tatsache, daß für die Steuerung oder Kontrolle der Borierwirkung inerte Füllstoffe notwendig sind, die insbesondere bei Eisenmetallen die Bildung von einphasigen Fe2B-Diffusionsschichten ermöglichen.The production of boride diffusion layers from solid boron dispensers and solid activators is known per se from the powder packing methods mentioned above, as is the fact that inert fillers are necessary for the control or control of the boriding action, which in particular in the case of ferrous metals form the formation of single-phase Fe 2 B - Allow diffusion layers.

Der Einsatz der festen Borspender, Aktivatoren und Füllstoffe in Form eines einfachen Pulvergemisches, wie bei den Pulverpackmethoden ist jedoch unter den bekannten erosiven Bedingungen eines Wirbelbetts unmöglich.However, the use of solid boron dispensers, activators and fillers in the form of a simple powder mixture, as in the powder packing methods, is impossible under the known erosive conditions of a fluidized bed.

Aufgabe der Erfindung ist es daher, ein Verfahren zur Herstellung eines festen Boriermittels in Granulatform zu entwickeln, das ein einfaches' und rasches Borieren eines Metalles in einem Wirbelbett mit an der chemischen Reaktion unbeteiligtem Wirbelgas ermöglicht. Form und Größe der Teilchen allein sind dabei nicht entscheidend, sondern die Kombination der zum Borieren erforderlichen Bestandteile (Borspender, Aktivatoren, Füllstoffe) in jeweils ein und demselben Teilchen. Damit soll sichergestellt werden, daß die wesentlichen Bestandteile jeweils zeitgleich auf die zu borierende Oberfläche auftreffen, aber auch ein vorzeitiger Zerfall der Granulatkörner unter den harten Wirbelbettbedingungen vermieden wird.The object of the invention is therefore to provide a method for producing a solid borating agent To develop a granular form which enables a metal to be easily and quickly borated in a fluidized bed with fluidizing gas which is not involved in the chemical reaction. The shape and size of the particles alone are not decisive, but rather the combination of the components required for boronizing (boron donors, activators, fillers) in one and the same particle. This is to ensure that the essential components hit the surface to be borated at the same time, but also that premature disintegration of the granules under the hard fluidized bed conditions is avoided.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Herstellung von Boriergranulat gelöst, das aus nahezu kugelförmigen Teilchen mit einer Korngröße von 0,025 mm bis 5,0 mm auf Grundlage von borabgebenden Substanzen, Aktivatoren, Füllstoffen und Bindemitteln besteht, wobei das Boriergranulat durch Sprühtrocknen einer wäßrigen Suspension aus den genannten Bestandteilen unter Verwendung von Emulgatoren, Hilfsstoffen und Bindemitteln, ausgewählt aus Mono-, Di- und/oder Polysacchariden, bei Temperaturen zwischen 120°C bis 750 °C hergestellt wird. Das nach diesem Verfahren hergestellte Boriergranulat wird vorzugsweise zum Borieren von Metallen und Metall-Legierungen im Wirbelbett bei einer Temperatur von 580 °C bis 1 300 °C verwendet, wobei das Wirbelbett mit an der chemischen Reaktion unbeteiligtem Wirbelgas erzeugt wird.This object is achieved according to the invention by a process for the production of boron granules, which consists of almost spherical particles with a particle size of 0.025 mm to 5.0 mm based on boron-releasing substances, activators, fillers and binders, the boron granules by spray drying an aqueous suspension from the constituents mentioned using emulsifiers, auxiliaries and binders, selected from mono-, di- and / or polysaccharides, at temperatures between 120 ° C to 750 ° C. The boron granules produced by this process are preferably used for boronizing metals and metal alloys in a fluidized bed at a temperature of 580 ° C. to 1300 ° C., the fluidized bed being generated with fluidizing gas which is not involved in the chemical reaction.

Ein Borierungsmittel in granulierter Form ist aus DE-A-2 127 096 (H. Krzyminski, Deutsche Gold- und Silber-Scheideanstalt, offengelegt am 14. Dezember 1972) bekannt. Auf Grund seines zylinderförmigen Korns ist es jedoch für ein Wirbelschichtverfahren ungeeignet. Die bekannten Borierpulver können wegen ihrer Korngröße und Kornverteilung nicht in diesem Verfahren eingesetzt werden. Zum Borieren im Wirbelbett können prinzipiell alle erfindungsgemäß hergestellten festen Formulierungen von Boriermitteln verwandt werden, deren nahezu kugelförmiges Korn bei der Reaktionstemperatur im strömenden gasförmigen Medium in einem fluidisierten Zustand gehalten werden kann. Bevorzugt werden nahezu kugelförmige Teilchen mit einer Korngröße von 0,05 bis 2,0 mm.A borating agent in granular form is known from DE-A-2 127 096 (H. Krzyminski, Deutsche Gold- und Silber-Scheideanstalt, published December 14, 1972). However, due to its cylindrical grain, it is unsuitable for a fluidized bed process. The known boron powders cannot be used in this process because of their grain size and grain distribution. In principle, all solid formulations of borating agents produced according to the invention can be used for boronizing in the fluidized bed, the almost spherical grain of which can be kept in a fluidized state at the reaction temperature in the flowing gaseous medium. Almost spherical particles with a grain size of 0.05 to 2.0 mm are preferred.

Das erfindungsgemäße hergestellte Boriergranulat kann beispielsweise aus allen Pulvern formuliert werden, die bisher mit Erfolg beim Borieren von Metallen eingesetzt wurden. Als borabgebende Substanzen können sie amorphes oder kristallines Bor, Borcarbid, Borax oder Metallboride enthalten, oder Mischungen aus mindestens zwei dieser Stoffe. Besonders bevorzugt ist Borcarbid. Als Füllstoffe, die gleichzeitig Streckmittel sind, können Ruß, Siliciumcarbid, Aluminium-, Magnesium- und Siliciumoxide, Silikate, nicht borierbare Metalle, deren Mischungen bzw. ähnliche Substanzen dienen. Als Aktivatoren können die Boriermittel alle Stoffe einzeln oder im Gemisch enthalten, die bisher als Aktivatoren beim Borieren von Metallen und deren Legierungen eingesetzt wurden. Bevorzugt sind komplexe Fluoride, insbesonders Kaliumtetrafluoroborat.The boron granules produced according to the invention can be formulated, for example, from all powders which have hitherto been successfully used for boronizing metals. As boron-releasing substances, they can contain amorphous or crystalline boron, boron carbide, borax or metal borides, or mixtures of at least two of these substances. Boron carbide is particularly preferred. Soot, silicon carbide, aluminum, magnesium and silicon oxides, silicates, non-boronable metals, their mixtures or similar substances can serve as fillers which are also extenders. As activators, the borating agents can contain all substances, individually or in a mixture, which were previously used as activators in the boriding of metals and their alloys. Complex fluorides, in particular potassium tetrafluoroborate, are preferred.

Zum Granulieren des Boriermittels wird erfindungsgemäß eine für diesen Zweck untypische Methode verwendet : das Sprühtrocknen. Dieses Verfahren wird im Allgemeinen zur Herstellung von hochdispersen und redispergierbaren Teilchen, d. h. Partikel von geringer mechanischer Stabilität eingesetzt. Durch das Sprühtrocknen der Boriermischung werden jedoch Teilchen gebildet, die mechanisch stabil sind und auf Grund ihrer fast kugelförmigen Geometrie, ihrer Korngröße, ihrer engen Korngrößenverteilung und ihrer Dimensionsstabilität unter Reaktionsbedingungen für die Anwendung in einem Wirbelbett-verfahren besonders geeignet sind. Vor dem Sprühtrocknen werden dem zu granulierenden Pulver Bindemittel, ein Dispersionsmittel, das sich den Pulverbestandteilen gegenüber inert verhält und Emulgatoren, zugegeben. Als Bindemittel werden Saccharide, Disaccharide, Polysaccharide und Gemische von mindestens zwei dieser Stoffe bevorzugt. Als Dispersionsmittel, das sich den Pulverbestandteilen gegenüber inert verhält ist aus Umwelt- und Kostengründen Wasser bevorzugt. Bezogen auf Gewicht von zu granulierendem Boriermittel und Stabilisator werden 10 bis 100 Gewichtsprozent, vorzugsweise 20 bis 70 Gewichtsprozent Dispersionsmittel, zugegeben. Das Einsetzen von mehr Dispersionsmittel ist möglich, er fordert aber höheren Energieverbrauch bzw. geringeren Durchsatz beim Sprühtrocknen. Dem zu granulierenden Gemisch können Emulgatoren zugegeben werden. Obwohl nicht unbedingt erforderlich, können Hilfsstoffe wie Schutzkolloide, Antischaummittel und Verdüsungshilfen zugesetzt werden. Bindemittel wird vorzugsweise in Mengen von 2 bis 30 Gewichtsprozent, bezogen auf die Summe des Gewichts trockenen Granulats, d. h. borabgebende Substanz, Füllstoffe und Aktivatoren, Emulgatoren, Hilfsstoffe und Bindemittel eingesetzt; besonders bevorzugt sind Mengen zwischen 5 und 20 Gewichtsprozent. Die Mengen an borgebender Substanz können je nach den Affinitäten der zu borierenden Oberflächen zwischen 2 und 90 Gewichtsprozent bezogen auf das trockene Granulat, betragen. Der Aktivator wird in Mengen von 1 bis 15, vorzugsweise 3 bis 8 Gewichtsprozent eingesetzt. Größere Mengen an Aktivator bringen keine Vorteile.According to the invention, a method that is not typical for this purpose is used to granulate the borating agent: spray drying. This process is generally used to make highly disperse and redispersible particles, i.e. H. Particles of low mechanical stability are used. The spray drying of the boron mixture, however, forms particles which are mechanically stable and, owing to their almost spherical geometry, their particle size, their narrow particle size distribution and their dimensional stability, are particularly suitable for use in a fluidized bed process under reaction conditions. Before the spray drying, binders, a dispersing agent which is inert towards the powder constituents and emulsifiers, are added to the powder to be granulated. Saccharides, disaccharides, polysaccharides and mixtures of at least two of these substances are preferred as binders. Water is preferred as the dispersing agent which is inert towards the powder components for environmental and cost reasons. Based on the weight of the boriding agent and stabilizer to be granulated, 10 to 100 percent by weight, preferably 20 to 70 percent by weight, of dispersing agent are added. It is possible to use more dispersants, but it requires higher energy consumption or lower throughput when spray drying. Emulsifiers can be added to the mixture to be granulated. Although not absolutely necessary, auxiliary substances such as protective colloids, anti-foaming agents and spraying aids can be added. Binder is preferably used in amounts of 2 to 30 percent by weight, based on the sum of the weight of dry granules, i.e. H. boron-releasing substance, fillers and activators, emulsifiers, auxiliaries and binders used; Amounts between 5 and 20 percent by weight are particularly preferred. The amounts of boron-imparting substance can be between 2 and 90 percent by weight, based on the dry granulate, depending on the affinities of the surfaces to be borated. The activator is used in amounts of 1 to 15, preferably 3 to 8 percent by weight. Larger amounts of activator have no advantages.

Im Borierverfahren in der Wirbelschicht kann das Boriergranulat als einziges Schüttgut, es kann aber auch in Mischung mit einem gegen die borabgebende Substanz inertem Granulat eingesetzt werden. Solch inertes Granulat kann beispielsweise aus oben genannten Füllstoffen bestehen.In the boriding process in the fluidized bed, the boriding granulate can be used as the only bulk material, but it can also be used in a mixture with a granulate which is inert to the boron-releasing substance. Such inert granules can consist, for example, of the fillers mentioned above.

Das Borierverfahren im Wirbelbett wird in einer Retorte aus einem gasdichten, und bei der Reaktionstemperatur stabilem Werkstoff durchgeführt, vorzugsweise in Keramik- oder mit Keramik innbenbeschichteten Retorten.The fluidized bed boriding process is carried out in a retort made of a gas-tight material which is stable at the reaction temperature, preferably in ceramic or ceramic-coated retorts.

Als Wirbelgase werden vorzugsweise inerte Gase und Gasgemische, oder reduzierende Gase und Gasgemische eingesetzt. Beispiele für inerte Gase bzw. Gasgemische sind Stickstoff, Argon und deren Gemische. Beispiele für reduzierende Gase bzw. Gasgemische sind Wasserstoff, Ammoniakspaltgas, Formiergas (5-30 % Wasserstoff, 70-95 % Stickstoff), Kohlenwasserstoffe, Gemische von mindestens zwei dieser reduzierenden Gase und Gemische von mindestens einem reduzierendem Gas mit mindestens einem Inertgas.Inert gases and gas mixtures or reducing gases are preferably used as fluidizing gases and gas mixtures used. Examples of inert gases or gas mixtures are nitrogen, argon and their mixtures. Examples of reducing gases or gas mixtures are hydrogen, ammonia cracking gas, forming gas (5-30% hydrogen, 70-95% nitrogen), hydrocarbons, mixtures of at least two of these reducing gases and mixtures of at least one reducing gas with at least one inert gas.

Das Borierverfahren wird bei Temperaturen von 580 °C bis 1 300 °C, vorzugsweise bei 580 °C bis 1 100 °C, insbesondere bei 800 °C bis 1 100 °C durchgeführt. Der Wirbelbettborierprozeß erlaubt eine kontinuierliche bzw. halbkontinuierliche Fahrweise zum Borieren von Einzel- und Serienteilen, auch in Verbindung mit Folgebehandlungen. Im Allgemeinen ist es ratsam, die zu borierenden Werkstücke vor dem eigentlichen Borierungsschritt vorzuwärmen. Während des Prozesses kann weitgehend verbrauchtes Boriergranulat aus der Wirbelschicht entfernt werden, beispielsweise durch Absaugen oder pneumatische Förderung ; unverbrauchtes Boriermittel kann dem Reaktor jederzeit zugegeben werden. Vollkontinuierliche Fahrweise kann beispielsweise durch Führung des Boriermittelstoffstroms im Wanderbett erreicht werden. Dem Borierverfahren können sich weitere in der Metallbehandlung bewährte Verfahrensschritte anschließen. Dem Borieren von Stählen kann beispielsweise das Diffusionsglühen, Austenitisieren, Abschrecken und/oder Anlassen folgen.The boriding process is carried out at temperatures from 580 ° C. to 1300 ° C., preferably at 580 ° C. to 1100 ° C., in particular at 800 ° C. to 1100 ° C. The fluidized bed boring process allows a continuous or semi-continuous procedure for boring individual and serial parts, also in connection with subsequent treatments. In general, it is advisable to preheat the workpieces to be borated before the actual boriding step. Borier granules that have largely been used up can be removed from the fluidized bed during the process, for example by suction or pneumatic conveying; Unused borating agent can be added to the reactor at any time. Fully continuous operation can be achieved, for example, by guiding the boric agent stream in the moving bed. The boriding process can be followed by other process steps that have proven themselves in metal treatment. Boronizing steels can be followed, for example, by diffusion annealing, austenitizing, quenching and / or tempering.

Im Vergleich mit den Pulverborierverfahren, bei denen meist ein großer Überschuß an Boriermittel eingesetzt wird, erlaubt das Wirbelbett-Verfahren eine wirtschaftlichere Ausnutzung des relativ teuren Boriermediums. Das Wirbelbett borieren erzeugt eine geschlossene Boridschicht von gleichmäßiger Dicke. Durch das Wirbelbett-Verfahren können alle Metalle und Metallegierungen boriert werden, die auch in den bisher bekannten Verfahren boriert werden konnten. Beispiele für diese Metalle bzw. Metallegierungen sind Eisen, Kobalt, Nickel, Titan, Stähle, Hartmetall und Legierungen, die Eisen, Kobalt, Nickel und/oder Titan enthalten. An der Oberfläche von eisenhaltigen Legierungen bzw. von Eisen wird eine einphasige Eisenboridschicht erzielt, d. h. das gebildete Eisenborid besteht im wesentlichen aus Fe2B. Durch die meisten anderen Verfahren werden zweiphasige Schichten erzeugt, deren eine Phase Fe2B und deren andere FeB enthält. In solchen zweiphasigen, Eisenborid enthaltenden Schichten können Spannungen auftreten, die letztlich zu Rissen führen.In comparison with the powder boriding process, in which mostly a large excess of borating agent is used, the fluidized bed process allows a more economical use of the relatively expensive boriding medium. The fluidized bed boron creates a closed boride layer of uniform thickness. The fluidized bed process can borate all metals and metal alloys that could also be borated in the previously known processes. Examples of these metals or metal alloys are iron, cobalt, nickel, titanium, steels, hard metal and alloys which contain iron, cobalt, nickel and / or titanium. A single-phase iron boride layer is achieved on the surface of iron-containing alloys or iron, ie the iron boride formed consists essentially of Fe 2 B. Most other processes produce two-phase layers, one phase of which contains Fe 2 B and the other of which FeB. Tensions can occur in such two-phase layers containing iron boride, which ultimately lead to cracks.

BeispieleExamples A. Herstellung des BoriergranulatsA. Preparation of the Borier Granules

Eine Suspension von

  • 20 950 g Siliziumcarbid
  • 810 g Borcarbid (unter der geschützten Bezeichnung « Tetrabor der Firma Elektroschmelzwerk Kempten GmbH, München, BRD, handelsüblich)
  • 1 160 g Kaliumtetrafluoroborat
  • 2 000 g einer 50 Gew. %-igen wäßrigen Saccharose-Lösung
  • 13 000 g Wasser und
  • 0,2 g Emulgator (unter der geschützten Bezeichnung « Targo 1128 X der Firma Benckiser und Knapsack, Ladenburg, BRD, handelsüblich) wird bei 30 °C aufgerührt und dem Sprühturm, der auf ca. 350 °C vorgeheizt ist, von oben langsam zugeführt. Ein trockenes Granulat fällt mit ca. 60 °C an. Es besteht aus nahezu kugelförmigen Partikeln einer Korngröße zwischen 0,080 mm und 0,220 mm.
A suspension of
  • 20 950 g silicon carbide
  • 810 g boron carbide (commercially available under the protected name “Tetrabor of Elektroschmelzwerk Kempten GmbH, Munich, FRG)
  • 1 160 g of potassium tetrafluoroborate
  • 2,000 g of a 50% by weight aqueous sucrose solution
  • 13,000 g of water and
  • 0.2 g of emulsifier (under the protected name “Targo 1128 X from Benckiser and Knapsack, Ladenburg, Germany, commercially available) is stirred at 30 ° C. and slowly added to the spray tower, which is preheated to approx. 350 ° C., from above . A dry granulate is obtained at approx. 60 ° C. It consists of almost spherical particles with a grain size between 0.080 mm and 0.220 mm.

B. WirbelbettborierenB. fluidized bed boriding

Zum Borieren wurden die Werkstücke auf die gewünschte Reaktionstemperatur erhitzt. Die Reaktion wird in einem von außen beheizten Wirbelbett durchgeführt, dessen innere Wandung aus Keramik besteht. Eine bevorzugte Ausführungsform einer verwendbaren Apparatur ist in Fig. 1 dargestellt. Hierin bedeuten

  • 1 den Absaugstutzen,
  • 2 ein feines Maschensieb,
  • 3 ein Thermoelement,
  • 4 und 5 Tragstangen bzw. Aufhängung für das Werkstück,
  • 6 die Ausmauerung,
  • 7 Heizelemente,
  • 8 die Behälterwand,
  • 9 das Wirbelbett,
  • 10 das zu borierende Werkstück,
  • 11 ein Thermoelement,
  • 12 grobkörniges SiC/A1203 (zur besseren Verteilung des Wirbelgases)
  • 13 eine Lochplatte,
  • 14 die Gas-Ausgleichs- und Mischkammer und
  • 15 die Gaszuführung.
The workpieces were heated to the desired reaction temperature for boronizing. The reaction is carried out in an externally heated fluidized bed, the inner wall of which is made of ceramic. A preferred embodiment of a usable apparatus is shown in Fig. 1. Mean here
  • 1 the suction nozzle,
  • 2 a fine mesh screen,
  • 3 a thermocouple,
  • 4 and 5 support rods or suspension for the workpiece,
  • 6 the lining,
  • 7 heating elements,
  • 8 the container wall,
  • 9 the fluidized bed,
  • 10 the workpiece to be borated,
  • 11 a thermocouple,
  • 12 coarse-grained SiC / A1 2 0 3 (for better distribution of the fluidizing gas)
  • 13 a perforated plate,
  • 14 the gas compensation and mixing chamber and
  • 15 the gas supply.

Beispiel 1 :Example 1 :

Eine Platte aus dem Stahl Ck 45 wurde in einem gemäß A hergestellten Boriermittel im Wirbelbett bei 920 °C eingehängt und in diesem 2 Stunden lang auf Temperatur gehalten. Nach dieser Zeit . kühlte die Probe im hochgezogenen Schacht des Wirbelbettofens in der Gasatmosphäre ab. Als Wirbelgas wurde Formiergas (95% Stickstoff, 5 % Wasserstoff) verwendet. Die Probe war oberflächlich frei von Boriermittel. Unter diesen Borierbedingungen entstand eine einphasige Boridschicht einer Dicke von ca. 100 µm.A plate made of Ck 45 steel was suspended in a boriding agent prepared according to A in a fluidized bed at 920 ° C. and kept at this temperature for 2 hours. After this time . cooled the sample in the raised shaft of the fluidized bed furnace in the gas atmosphere. Forming gas (95% nitrogen, 5% hydrogen) was used as the fluidizing gas. The surface of the sample was free of borating agent. Under these boriding conditions, a single-phase boride layer with a thickness of approx. 100 µm was created.

Beispiel 2 :Example 2:

Klinken und Schaltnocken aus Stahl St 37 K wurden gemäß Beispiel 1, jedoch 3 Stunden, bei 920 °C im Wirbelbett boriert. Als Wirbelgas wurde Formiergas (90% Stickstoff, 10% Wasserstoff) verwendet.Pawls and switch cams made of St 37 K steel were borated according to Example 1, but for 3 hours, at 920 ° C. in a fluidized bed. Forming gas (90% nitrogen, 10% hydrogen) was used as the fluidizing gas.

Die Schliffuntersuchung ergab eine einphasige Boridschichtdicke von ca. 140 ILm.The cut examination showed a single-phase boride layer thickness of approx. 140 IL m.

Beispiel 3 :Example 3:

Zahnräder aus 42 CrMo 4- Stahl wurden 45 min. lang bei 860 °C mit gemäß A hergestelltem Boriermittel unter Verwendung von Formiergas (90 % Stickstoff, 10 % Wasserstoff) als Wirbelgas boriert.42 CrMo 4 steel gears were 45 min. long at 860 ° C with borating agent prepared according to A using forming gas (90% nitrogen, 10% hydrogen) as fluidizing gas.

Dann wurden die Zahnräder dem Wirbelbett entnommen und anschließend im Ölbad abgeschreckt. Die Zahnräder wiesen eine einphasige Boridschicht von 30 wm Dicke auf. Die Dauer der Behandlung vom Vorbereiten bis zum Ende der Härtung betrug ca. 2 Stunden. Nach den bisher bekannten Verfahren waren zum Erzielen eines äquivalenten Ergebnisses ein Behandlungszyklus von mindestens zwei Tagen Dauer notwendig.Then the gears were removed from the fluidized bed and then quenched in an oil bath. The gears had a single-phase boride layer 30 wm thick. The duration of the treatment from preparation to the end of curing was approximately 2 hours. According to the previously known methods, a treatment cycle of at least two days was necessary to achieve an equivalent result.

Claims (3)

1. Process for preparing borating granules which are composed of virtually spherical particles having a particle size of 0.025 mm to 5.0 mm based on boronreleasing substances, activators, fillers and binders, by spray drying an aqueous suspension of the constituents mentioned using emulsifiers, auxiliary substances and binders selected from mono-, di- and/or polysaccharides, at temperatures between 120°C and 750 °C.
2. Process according to claim 1, in which borating granules are prepared which are composed of virtually spherical particles having a particle size of 0.05 mm to 2.0 mm.
3. Use of borating granules prepared according to claim 1 or 2 for borating metals and metal alloys in a fluidized bed at a temperature of 580 °C to 1 300 °C, the fluidized bed being produced with fluidizing gas which does not participate in the chemical reaction.
EP85110451A 1984-08-23 1985-08-20 Process for boriding metal and metal alloys by means of solid boriding agents Expired EP0175157B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85110451T ATE42577T1 (en) 1984-08-23 1985-08-20 PROCESS FOR BORING METALS AND METAL ALLOYS USING SOLID BORING AGENTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843431044 DE3431044A1 (en) 1984-08-23 1984-08-23 METHOD FOR BORING METAL AND METAL ALLOYS USING SOLID BORING AGENTS
DE3431044 1984-08-23

Publications (3)

Publication Number Publication Date
EP0175157A2 EP0175157A2 (en) 1986-03-26
EP0175157A3 EP0175157A3 (en) 1986-04-02
EP0175157B1 true EP0175157B1 (en) 1989-04-26

Family

ID=6243724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85110451A Expired EP0175157B1 (en) 1984-08-23 1985-08-20 Process for boriding metal and metal alloys by means of solid boriding agents

Country Status (6)

Country Link
US (1) US4637837A (en)
EP (1) EP0175157B1 (en)
JP (1) JPS6160876A (en)
AT (1) ATE42577T1 (en)
CA (1) CA1230804A (en)
DE (2) DE3431044A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622668C1 (en) * 1986-07-05 1988-02-11 Ewald Schwing Fluidised bed kiln for the heat treatment of metallic objects
JPH0819514B2 (en) * 1986-07-07 1996-02-28 株式会社豊田中央研究所 Surface treatment method and device
DE3630487A1 (en) * 1986-09-08 1988-03-10 Kempten Elektroschmelz Gmbh PROCESS FOR THE SURFACE HARDENING OF WORKPIECES AND DEVICE FOR IMPLEMENTING THE PROCESS
US5242741A (en) * 1989-09-08 1993-09-07 Taiho Kogyo Co., Ltd. Boronized sliding material and method for producing the same
US5303904A (en) * 1990-01-18 1994-04-19 Fike Corporation Method and apparatus for controlling heat transfer between a container and workpieces
US5324009A (en) * 1990-01-18 1994-06-28 Willard E. Kemp Apparatus for surface hardening of refractory metal workpieces
US5407498A (en) * 1990-01-18 1995-04-18 Kemp Development Corporation Mechanically fluidized retort and method for treating particles therein
US5316594A (en) * 1990-01-18 1994-05-31 Fike Corporation Process for surface hardening of refractory metal workpieces
US5595601A (en) * 1990-09-14 1997-01-21 Valmet Corporation Coating bar for a bar coater
US5264247A (en) * 1990-09-14 1993-11-23 Valmet Paper Machinery Inc. Process for the manufacture of a coating bar for a bar coater
JP3189507B2 (en) * 1992-06-30 2001-07-16 株式会社豊田中央研究所 Surface treatment equipment
DE19830654C2 (en) * 1998-07-09 2002-06-27 Durferrit Gmbh Borating agent, its use and method for producing single-phase, Fe¶2¶B-containing boride layers
US6478887B1 (en) * 1998-12-16 2002-11-12 Smith International, Inc. Boronized wear-resistant materials and methods thereof
KR100326093B1 (en) * 1999-07-02 2002-03-07 김점동 Boronizing composition and boronizing method using the same
US6601315B2 (en) 2000-12-14 2003-08-05 Bausch & Lomb Incorporated Combined fluidized bed dryer and absorption bed
AU2003295609A1 (en) * 2002-11-15 2004-06-15 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
US20060074491A1 (en) * 2004-09-30 2006-04-06 Depuy Products, Inc. Boronized medical implants and process for producing the same
US7325973B2 (en) * 2005-04-13 2008-02-05 Smith Thomas J Systems and methods for reducing slide bearing tolerances
US7459105B2 (en) * 2005-05-10 2008-12-02 University Of Utah Research Foundation Nanostructured titanium monoboride monolithic material and associated methods
US7767274B2 (en) * 2005-09-22 2010-08-03 Skaff Corporation of America Plasma boriding method
US20070078521A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Aluminum oxide coated implants and components
CA2649525A1 (en) * 2006-04-20 2007-11-01 Habib Skaff Mechanical parts having increased wear resistance
US8012274B2 (en) * 2007-03-22 2011-09-06 Skaff Corporation Of America, Inc. Mechanical parts having increased wear-resistance
US8419934B1 (en) 2008-10-30 2013-04-16 Sundance Spas, Inc. Filter
US20100176339A1 (en) * 2009-01-12 2010-07-15 Chandran K S Ravi Jewelry having titanium boride compounds and methods of making the same
US9068260B2 (en) 2012-03-14 2015-06-30 Andritz Iggesund Tools Inc. Knife for wood processing and methods for plating and surface treating a knife for wood processing
US20170320171A1 (en) * 2016-05-06 2017-11-09 Siemens Energy, Inc. Palliative superalloy welding process
JP6322300B1 (en) * 2017-01-06 2018-05-09 株式会社エーアイ Process for manufacturing platinum processed products
US10870912B2 (en) 2017-03-14 2020-12-22 Bwt Llc Method for using boronizing reaction gases as a protective atmosphere during boronizing, and reaction gas neutralizing treatment
WO2018169827A1 (en) 2017-03-14 2018-09-20 Bwt Llc Boronizing powder compositions for improved boride layer quality in oil country tubular goods and other metal articles
US11066308B2 (en) * 2019-02-05 2021-07-20 United Technologies Corporation Preparation of metal diboride and boron-doped powders

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053704A (en) * 1953-11-27 1962-09-11 Exxon Research Engineering Co Heat treating metals
US3252823A (en) * 1961-10-17 1966-05-24 Du Pont Process for aluminum reduction of metal halides in preparing alloys and coatings
BE624740A (en) * 1961-11-15
US3405000A (en) * 1965-10-07 1968-10-08 Du Pont Process for coating metal articles employing fluidized bed
US3744979A (en) * 1971-04-14 1973-07-10 Adamas Carbide Corp Method of forming a hard surface on cemented carbides and resulting article
DE2127096C3 (en) * 1971-06-01 1980-11-06 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for boronizing metals, in particular steel and iron
JPS5073841A (en) * 1973-11-01 1975-06-18

Also Published As

Publication number Publication date
US4637837A (en) 1987-01-20
EP0175157A3 (en) 1986-04-02
EP0175157A2 (en) 1986-03-26
DE3431044A1 (en) 1986-03-06
ATE42577T1 (en) 1989-05-15
JPS6160876A (en) 1986-03-28
DE3569754D1 (en) 1989-06-01
CA1230804A (en) 1987-12-29
JPH041064B2 (en) 1992-01-09

Similar Documents

Publication Publication Date Title
EP0175157B1 (en) Process for boriding metal and metal alloys by means of solid boriding agents
EP2271784B1 (en) Sherardizing method
DE2801016C2 (en) Article made from a superalloy body with a coating of a powder applied by flame spraying and a process for its production
DE68927860T2 (en) BORCARBIDE PRODUCTION
DE2633137A1 (en) BORING AGENT FOR BORING MASS PARTS OF IRON AND NON-FERROUS METALS
DE2152717C3 (en) Rotary kiln for the production of carbides
EP0971047B1 (en) Boriding agent
DE69213978T2 (en) Manufacture of titanium diboride and boron nitride powders
CH627722A5 (en) POLYCRYSTALLINE, OVERHARD MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
DE2127096C3 (en) Process for boronizing metals, in particular steel and iron
DE3716367C2 (en)
EP0132602B1 (en) Salt bath for the currentless production of wear-resistant boride layers
DE69111485T2 (en) Process for coating powder and process for producing metal bodies with this powder.
RU2748572C1 (en) Method for hardening parts made of tool and structural steels in borated medium
DE1120435B (en) Process for crystallizing amorphous boron phosphide
CH649100A5 (en) PROCESS FOR PRODUCTION OF INTERIOR COATINGS OF PIPES.
DE2353850A1 (en) ELECTROLYTIC PROCESS AND DEVICE FOR CURING A LIMITED AREA ON THE SURFACE OF AN OBJECT MADE OF A METAL OR A METAL ALLOY
DE1817339C3 (en) Process for producing a carbonitride coating
DE930547C (en) Method and device for the heat treatment of solid bodies
Borys et al. UDK 621.793. 6 OBTAINING MOLYBDENUM DIFFUSION COATINGS ON STRUCTURAL MATERIALS USING COMPOSITE SATURATING
DE1085393B (en) Process for depositing metal layers in pipes made of ceramic material
EP0076488B1 (en) Process for forming fe2b layers on articles of ferrous alloys
AT225099B (en) Process for the production of refractory building materials for special purposes
DE1646629C (en) Highly refractory item
AT233613B (en) Process for inerting a molten salt bath

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19850820

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19871028

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 42577

Country of ref document: AT

Date of ref document: 19890515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3569754

Country of ref document: DE

Date of ref document: 19890601

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940712

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940715

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940718

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940728

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940830

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940831

Year of fee payment: 10

Ref country code: NL

Payment date: 19940831

Year of fee payment: 10

EAL Se: european patent in force in sweden

Ref document number: 85110451.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950820

Ref country code: AT

Effective date: 19950820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

Ref country code: BE

Effective date: 19950831

BERE Be: lapsed

Owner name: ELEKTROSCHMELZWERK KEMPTEN G.M.B.H.

Effective date: 19950831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 85110451.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST