EP0169630B1 - Herstellung von Nachrichtenkabelseeleeinheiten - Google Patents

Herstellung von Nachrichtenkabelseeleeinheiten Download PDF

Info

Publication number
EP0169630B1
EP0169630B1 EP19850303195 EP85303195A EP0169630B1 EP 0169630 B1 EP0169630 B1 EP 0169630B1 EP 19850303195 EP19850303195 EP 19850303195 EP 85303195 A EP85303195 A EP 85303195A EP 0169630 B1 EP0169630 B1 EP 0169630B1
Authority
EP
European Patent Office
Prior art keywords
guides
feedpath
housing
guide
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850303195
Other languages
English (en)
French (fr)
Other versions
EP0169630A2 (de
EP0169630A3 (en
Inventor
John Nicholas Garner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Publication of EP0169630A2 publication Critical patent/EP0169630A2/de
Publication of EP0169630A3 publication Critical patent/EP0169630A3/en
Application granted granted Critical
Publication of EP0169630B1 publication Critical patent/EP0169630B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/04Mutually positioning pairs or quads to reduce cross-talk

Definitions

  • This invention relates to the manufacture of telecommunications cable core units.
  • a telecommunications cable is constructed with a core comprising one or more core units, each having a multiplicity of units of twisted conductors, each conductor unit conventionally being a twisted pair of conductors.
  • a core may be formed as a single core unit of twisted pairs, e.g. 50 or 100 pairs, or larger cores, i.e. up to 3,600 twisted pairs, comprises a plurality of core units.
  • the twisted pairs are stranded together to form a core unit with the conductors of each pair twisted together with a predetermined lead to the twist, i.e. the distance taken along the pair for each conductor to complete a single revolution along its path. This distance will be referred to in this specification as the "twist lay" of a pair.
  • twist lays provided for the twisted pairs in a core unit with a pair having a particular twist lay being adjacent to other pairs of different twist lays. Care is taken, so far as is practicable, to ensure that pairs of equal or similar twist lays are separated from each other. The reason for this arrangement is to attempt to maximize the communications performance of the cable, e.g. to lessen pair-to-pair capacitance unblance, to reduce crosstalk between pairs and to lower the coefficient of deviation of mutual capacitance of pairs in the cable.
  • the twisted conductor pairs retain their positions relative to other parts, within certain limits.
  • the pair-to-pair capacitance unbalance and crosstalk between pairs is dependent to a large degree upon the distance of the two pairs from one another.
  • suggestions have been made to move the conductor pairs relative to one another as they progress towards a stranding machine for stranding them into a core unit so that in the finished core unit, the conductor pairs change in relative positions and distances apart.
  • the conductor pairs enter a guide arrangement which comprises a system of horizontal guides movable horizontally and located in vertically tiered fashion.
  • the pairs are distributed throughout the tiers and relative horizontal movement of the guides changes the relative positions of the pairs as they move downstream.
  • This method was suggested by NASAd Norblad of Englandaktiebolaget LM Ericsson, in a paper entitled “Capacitance Unbalance Telecommunications Networks" read before the International Wire and Cable Symposium in 1971.
  • the method involves the use of sideways physical forces upon conductor pairs and this could render it unsuitable for use on conductors insulated with pulp which is sensitive to the degree of surface pressures which are inherent with such forces.
  • the present invention concerns a method and apparatus for making core units involving changing the relative positions of conductor units before they are brought together to form a core unit and in which the high degree of surface pressures of previous apparatus is avoided.
  • the present invention provides an apparatus for forming a core unit from telecommunications conductor units, each formed of twisted together insulated conductors and in which the relative positions of the conductor units are changed along the core unit and a core unit forming and take-up means to draw the conductor units together to form the core unit, characterized according to the second part of Claim 1.
  • the fluid force producing means may comprise a gas passage means which is disposed at a gas flow station along the feedpath.
  • the gas passage means is for the purpose of directing a flow of gas upwardly towards and across the feedpath and a means is provided to produce the gas flow across the passage means.
  • each guide is buoyant so as to be buoyed up by the gas flow whereby the independent guide movement is provided.
  • the gas passage means may be assisted in causing movement of the guides by an electromagnetic means which is energizable to create a magnetic field extending across the feedpath and to change a characteristic of the field.
  • at least some of the guides include a magnetically permeable material to influence in conjunction with the magnetic field created by the electromagnetic means, the positions of the guides transversely of the feedpath.
  • the magnetic force producing means comprises electromagnetic means which acts to cause movement of the guides.
  • each guide comprises a permanent magnet having one pole extending along the outer peripheral surface of the magnet and surrounding the other pole.
  • These magnets are preferably hollow cylinder magnets with radially spaced poles and with the bore along each magnet forming a guide passage for a conductor unit.
  • the electromagnetic means may comprise a plurality of electromagnets which are in spaced apart positions around the feedpath and each electromagnet is connected to a source of electric power to be energizable independently of other electromagnets to change a characteristic of the field across the feedpath.
  • the electromagnets may be movable relative to the feedpath and to effect this movement they are preferably mounted upon an annular carrier which is rotatable for at least a part of a revolution around the feedpath.
  • a housing is preferably provided which extends along and surrounds the feedpath.
  • the housing is preferably in the form of a hollow . cylinder having radially spaced poles.
  • the relationship of the poles of the guides and housing may be such that the housing either attracts or repels the guides from its inner surface.
  • the energized electromagnets should repel guides form the housing surface so as to force them to a new position upon the housing whereby the relative positions of the guides are changed.
  • an energized electromagnet should attract the guides so as to partly overcome the repelling force of the housing and thereby cause the relative movement and repositioning of the guides.
  • the invention also includes a method of forming a core unit from telecommunications conductor units, each comprising twisted together insulated conductors and in which the relative positions of the conductor units are changed along the core unit, characterised according to the second part of Claim 24.
  • apparatus for forming a core unit 10 from conductor pairs 12 of twisted together conductors generally comprises twenty-five twisting machines 14 which are disposed in a single straight bank 16 of machines.
  • Each twisting machine 14 is of conventional construction (not shown) and comprises, in conventional manner, a reel cradle for holding in rotatable fashion two reels of individually insulated conductors to enable the conductors to be drawn from the reels under the drawing influence of a stranding machine 18.
  • Each machine 14 comprises either a single flyer in conventional manner, or it may comprise two flyers and associated pulleys to provide a balanced rotational structure such as is described in a copending patent application entitled "Twisting Machine", filed December 27, 1983 in the names of J. Bouffard, A.
  • the stranding machine 18 forms part of a core unit forming and take-up means 20 which also comprises a flying strander 22 and includes a helper capstan 24.
  • the helper capstan is to assist in the drawing of the core unit 10 into the machine 18, the main force for which is taken by a motor 26 which drives a core unit take-up reel 29.
  • Upstream of the flying strander 22 is a drawing means in the form of a closing die 28 for drawing the conductor pairs together, and a binding head 30. As the structure is conventional, no further description is required.
  • the tension reducing means 32 comprises two drivably rotatable cylinders 34 and 36 around each of which the conductor pairs pass after leaving the bank 16 of twisting machines and moving towards the stranding machine.
  • the two cylinders are of substantially equal diameter and have a common drive in the form of a drive motor 38', which is connected to the cylinder 34 by drive belt 40', as shown in Figure 2.
  • Another drive belt (not shown) also drivably connects the two cylinders together.
  • the drive motor 38 is electrically influenced by the line speed to provide a peripheral speed to each of the cylinders 34 and 36 which is slightly in excess of the drawing speed of the conductor pairs into the stranding machine.
  • the degree of excess in speed is subject to choice, dependent upon design, but in this particular machine lies between one and five per cent and is preferably in the region of three per cent. It is of importance to realize that the two cylinders 34 and 36 are not a capstan drive and do not operate in the accepted
  • the downstream tension from the cylinders decreases and the frictional grip of the pair around the cylinders is lessened.
  • the cylinders slip to a greater extent upon the conductor pair and there is a decrease in the tendency for further increase in speed of the pair, as caused by the drive of the cylinders.
  • the downstream tension from the cylinders drops towards zero in any conductor pair, the cylinders could not drive that conductor pair around the cylinders at a speed equal to the draw speed of the twisting machine because increase in slippage would prevent this.
  • the apparatus for forming a core unit includes a guide means to ensure that conductor units are not stranded together as they approach the position changing means 38.
  • the guide means may be any suitable device for holding conductor pairs separate from one another as they are fed side-by-side through the apparatus.
  • the guide means comprises a freely rotatable guide roller 40 which is carried upon a stand 42 of the machine which also carries the cylinders 34 and 36.
  • the guide roller 40 is formed with annular peripheral grooves 44 which space the conductor pairs apart and arrange them in a planar array for them to continue through the position changing means 38.
  • Apparatus according to a first embodiment for forming a core unit comprises a position changing means of the construction shown in Figures 3, 4 and 5.
  • the position changing means comprises a gas passage means disposed at a gas flow station along the feedpath for the conductor pairs.
  • this gas passage means comprises a plurality of housings 46 positioned in series along the feedpath.
  • Figure 3 merely shows two of these housings, but in this embodiment four are actually provided to assist in providing independent movement of conductor pairs, as will be described.
  • the four housings 46 are identical in construction.
  • Each housing extends across the feedpath for the conductor pairs and defines a gas duct 48 below the feedpath and a gas duct 50 above the feedpath, both gas ducts being of rectangular configuration, as shown by Figure 3, and in vertical alignment so that gas issuing upwardly from the lower duct passes across the feedpath into the duct 50.
  • Gas pressurizing means (not shown) is provided for forcing the flow of gas, i.e. air, upwardly through the duct 48 and an exhaust 51 is associated with the duct 50 for withdrawing the air.
  • the gas passage means and associated equipment for causing the airflow form part of a fluid force producing means to apply the fluid force across the feedpath.
  • an electromagnetic means which is energizable to create a magnetic field extending across the feedpath at the gas flow station and also to change a characteristic of the field for reasons to be discussed.
  • the electromagnetic means comprises an electrical coil 52 disposed at each side of the housing and in a position between the ducts 48 and 50.
  • each of the coils 52 is attached to a side member 54 of the housing, the side member extending between the ducts 48 and 50 so as to define with the ducts a rectangular passageway 56 which defines the feedpath for the conductor pairs.
  • Each of the coils 52 is connected to a source of electrical energy for intermittent and independent operation for the purpose of changing not only the flux intensity of the magnetic field produced either by each coil singly or the two coils together, but also to change directions of the flux lines dependent upon the strength of the current passing through the coils at any particular time.
  • the position changing means also includes a plurality of independent guides, one for each conductor pair. Six guides are associated with each of the first three housings 46 (two only being shown) and the remaining seven guides with the downstream housing (not shown).
  • each of the guides 58 is substantially spherical.
  • each guide 58 is formed with a closed cell foam plastics body 60 having a central diametrical passage 62 for carrying a conductor pair.
  • Each guide 58 also includes a magnetically permeable member which is a conventional permanent bar magnet 64 having its poles at the ends.
  • the pairs 12 of conductors are fed from their respective twisting machines 14 and through the tension reducing means 32 towards the in-series housings 46.
  • each conductor pair passes around the two cylinders 34 and 36, as shown, and then around the guide roller 40 with a conductor pair in each of the grooves 44 so that the pairs are maintained separately from one another.
  • the pull of the stranding machine 20 increases the frictional contact of the pairs against the surface of the cylinders.
  • the cylinders are rotating at a peripheral speed which is greater than the throughput speed of the conductor pairs into the stranding machine, their degree of grip upon the pairs is insufficient to draw the pairs from the twisting machine at the peripheral speeds of the cylinders. This is as explained above and in greater detail in the aforementioned US-A-4,590,754. Rather, the degree of drive by the cylinders is dependent upon the frictional grip upon them by the conductor pairs which increases and decreases in proportion to the downstream tension created by the draw of the stranding machine. Hence, the pull by the cylinders upon each pair increases its speed until it approaches that of the draw speed of that pair into the stranding machine sufficiently to reduce the frictional grip of the conductor pair upon the cylinders to remove the driving force.
  • the twenty-five conductor pairs 12 pass in the planar array (left hand side of Figure 3) towards the first housing 46.
  • the conductors pass through the passageways 56 of all the housings and each conductor pair passes also through one of the guide holes 62 of a guide 58 so that each guide is associated with a particular conductor pair.
  • the guides are associated with particular housings as discussed above. Each guide is located upon its conductor pair and disposed within the particular passageway 56 formed by its associated housing.
  • each passageway 56 lifts the guides 58 in that space because of the buoyancy of the guides themselves, thereby causing them to move vertically and slightly horizontally relative to the other guides in that passageway and also relative to the conductors passing through that passageway but devoid of guides at that position.
  • the vertical movement of the guides 58 at any particular housing effects some independent movement of the guides and thus of the conductor pairs at that position.
  • the movement of the conductor pairs along the feedpath imposes a drag upon the guides which tends to move them in the downstream direction.
  • the upward passage of the airstream prevents each guide from completely leaving its particular passageway 56 by virtue of the Bernoulli effect. This action is shown by Figure 5.
  • the two ducts 48 and 50 are formed with downstream planar ends which have the effect of forming a curtain of air through the passageway 56.
  • This air curtain tends to drag air upwardly along the downstream edge of the duct 48 and upwardly into the duct 50. This is shown by the arrow 66 in Figure 5.
  • the guide With no conductor pair passing through each guide 58, then the guide would tend to lie towards the centre, i.e. between upstream and downstream ends, of the associated passageway 56. However, the drag of the conductor pair upon the guide urges the guide towards the downstream end of its passageway.
  • each guide 58 assumes a position at the downstream end of the passageway 56, as shown by Figure 5, in which the drag load upon the guide caused by the conductor pair balances the inward force created by the Bernoulli effect attempting to draw the guide upstream.
  • each of the guides 58 assumes a position of balance, as shown by Figure 5, in which it is buoyed upwardly by the airflow.
  • the coils 52 at each side of each passageway 56 are energized intermittently and independently of one another to create the magnetic field across the passageway 56.
  • This field is constantly changing in flux strength and in direction of the lines of force and thus changes its influence upon the magnets 64 in each of the guides 58.
  • the guides 58 are caused to move laterally to different ways at different times.
  • the guides are moved independently of each other, both laterally and vertically, thereby changing the relative positions of the conductor pairs passing through them and also relative to other conductors passing through that particular passageway 56 and without guides in that passageway.
  • the conductor pairs After passing through the position changing means 38, the conductor pairs then proceed through the closing die 28 and into the stranding machine.
  • the relative positions of the pairs at any instant, as they pass through the closing die, are influenced by the relative positions of the pairs as they move from the position changing means 38. This affects the relative positions and change in positions of the pairs in the core unit 10. Hence, in the completed stranded core unit, the pairs change their relative positions to each other in a completely randomized fashion.
  • the reduction in tension in the conductor pairs as described with the use of the tension reducing means 32 does, of course, reduce any resistance to sideways movement of the conductor pairs and assists in minimizing any damage which may be caused to the insulation.
  • the reduction in tension in the conductor pairs is unnecessary.
  • apparatus according to the invention does not, of course, need to be for use in the tandemi- zation of twisting conductor pairs and of forming a core unit as described with reference to Figure 1.
  • apparatus according to the invention and including a position changing means may be of more conventional construction in that the core unit 10 formed by the core unit forming and take-up means 20 may have the structure shown in Figure 6.
  • the position changing means 38 and part of the apparatus downstream therefrom are as described above.
  • the conductor pairs 12 have been previously twisted in conventional manner and are carried upon reels 70, from which they are fed, towards the position changing means 38.
  • the guide roller 40 as described in a first embodiment, is again employed as the guide means.
  • the apparatus is basically as described above with regard to Figure 1 or Figure 6, but the position changing means, indicated generally as item 38, is changed in each case from that described in the first embodiment.
  • the position changing means has magnetic force producing means which comprises electromagnetic means which are not assisted by gas flow means.
  • the apparatus comprises a cylindrical housing in two coaxial housing portions 80 and 82 and which extend along and surround the feedpath for the conductor pairs. These housings are cylindrical magnets having radially spaced poles.
  • the electromagnetic means further comprises a plurality of electromagnets 84 which are radially disposed relative to the cylindrical housing in spaced apart positions around the feedpath, as shown in Figure 7.
  • Each electromagnet is energizable independently of the other electromagnets to change a characteristic of a magnetic field which is to be produced, as will be described, and the electromagnets are mounted upon an annular carrier 86 which is disposed between the housing portions 80 and 82.
  • the carrier 86 is rotatable for at least part of a revolution around the feedpath.
  • the carrier 86 is rotatable for only part of a revolution to enable the wire connections to be made.
  • the carrier is reciprocally rotatable around an angle possibly between 60 and 90 degrees around the feedpath.
  • the carrier may be rotated, for instance, by a stepping motor 90 and a drive shaft and gear 92 which is in mesh with an annular gear 94, located at one axial end of the carrier 86.
  • Each of these guides is formed from a magnetically permeable material and, in fact, comprises a tubular permanent magnet 96 of substantial length so as to extend for substantially the whole axial length of the housing portions or cylindrical magnets 80 and 82.
  • the permanent magnets 96 have their poles displaced radially of one another, each magnet having its outer pole with the same polarity as the pole at the inner surface of the cylindrical magnet portions 80 and 82.
  • the conductor pairs are fed through the apparatus towards the position changing means. After the conductor pairs have passed around the guide roller 40, as shown in Figures 1 or 6, the pairs then pass axially through the cylindrical magnets 80 and 82 while also passing each through one of the tubular magnets 96. The conductor pairs then proceed towards the closing die and the stranding machine. As may be expected, the tubular magnets 96 are attracted to the inner surface of the cylindrical magnets 80 and 82, in which position they will remain unless acted upon by some external force. To cause the tubular magnets to move independently of one another and within the cylindrical magnet, the electromagnets 84 are energized intermittently and independently of each other while being rotated reciprocally around the feedpath in the manner described.
  • the conductor pairs in the use of the second embodiment are constantly changed in position as they are fed towards the stranding machine so that the effect achieved in the first embodiment agains results. It follows from this that the relative positions of the conductor units in the finished core unit at any position along the length of the core unit are influenced by the relative positions of the conductor units as they are drawn into the forming and take-up means. The relative positions of the conductor pairs in the finished core unit therefore change in a random fashion.
  • the apparatus is visually exactly as described above.
  • the polarity around the outer surface of the tubular magnets and around the inner surface of the cylindrical magnets 80 and 82 is the same, so that the cylindrical magnets repels the tubular magnets from it.
  • the electromagnets 84 when energized serve to attract the tubular magnets towards them.
  • the cylindrical magnet tends to move the tubular magnets towards the axis of the feedpath and the tubular magnets move around each other because of their mutual repelling forces.
  • Energization of any electromagnet 84 attracts the closest tubular magnets toward the inner surface of the cylindrical magnet, thereby causing relative movement of the tubular magnets.
  • any electromagnet 84 is de-energized, then the tubular magnets which have been attracted towards it immediately move back towards the axis of the feedpath and assume new positions within the tubular magnet group.
  • the modification of the first embodiment differs from the first embodiment in that it is provided with a limiting means for the tubular magnets to prevent the tubular magnets moving downstream, both under the pull of the conductor pairs and under the repelling force of the cylindrical magnets 80 and 82.
  • This limiting means is shown in Figure 9.
  • the limiting means is in the form of a housing 98 which surrounds the feedpath, as shown.
  • the housing may be of any suitable shape, but in this case is cylindrical.
  • the housing is substantially coaxial with the cylindrical magnet and is placed sufficiently close to the ends of the tubular magnets to provide positive limiting action to their downstream movement.
  • the housing 98 is itself a magnet having axially displaced poles with its upstream end having the same polarity in the outer surfaces of each of the tubular magnets. Thus, if there is any tendency for the tubular magnets to move downstream, then this is prevented by the repelling magnetic force created between the like poles of the tubular magnets and the housing 98.
  • a third embodiment is illustrated in Figures 10 and 11.
  • the repelling action of a housing is used to levitate the guides for the conductor pairs and is similar in its action in some ways to the modification of the second embodiment.
  • the position changing means comprises a plurality of tubular magnets 100 to act as guides, one for each of the conductor pairs.
  • the polarity of the guides is as described in the second embodiment.
  • the feedpath for the conductor pairs is bordered beneath it and at its two sides by a three-sided housing 102, which is itself a magnet.
  • the polarity of the magnet 102 is such that its poles are displaced through its thickness with the polarity at its inner surface the same as the polarity at the outer surface of the tubular guides 100.
  • the repelling force of the housing 102 holds the guides 100 levitated away from its base and away from the sides.
  • a limiting means is provided which is a surrounding housing 104 spaced slightly away from the housing 102 in the downstream direction.
  • the housing 104 is itself a magnet having axially displaced poles and the upstream polarity repels that at the outside surface of the tubular magnets 100.
  • the tubular magnets are retained in position along the feedpath by the repelling force of the housing 104 against any tendency for the tubular magnets to be forced away from the housing 102 by the magnetic field at that position, and also by the drag imposed by the conductor pairs.
  • the housing 102 is a fluid force producing means which also includes an electromagnetic means comprising a plurality of electromagnets 106 positioned at and carried by the sides and base of the housing, as shown in Figures 10 and 11.
  • the conductor pairs are fed to unstranded fashion, as described above, through the tubular magnets 100, one through each magnet.
  • the pairs then proceed towards the closing die and the stranding machine to form the core unit.
  • the tubular magnets are held in levitated position within the housing 102 by the mutual repelling force of housing and magnet and the conductor pairs themselves prevent the tubular magnets from being repelled upwardly and completely from within the housing.
  • the electromagnets 106 are energized intermittently so as to change the flux pattern and strength of the magnetic field within the housing in a randomized fashion.
  • guides 108 for the conductor pairs are again tubular magnets of the same structure as described in the second embodiment.
  • a magnetic force producing means in this construction comprises an inner bar magnet 110 which, as can be seen, is disposed centrally of the feedpath which is defiend outwardly by a cylindrical housing 112. As shown by Figure 12, the bar magnet 110 extends substantially the whole length of the tubular magnets 108, whereas the cylindrical housing is axially shorter and is of sufficient axial length for the purpose of supporting electromagnetic means in the form of a plurality of electromagnets 114 in spaced apart positions around the feedpath.
  • the cylindrical housing is carried by a base plate 116 and the bar magnet 110 is itself carried upon a support by a non-permeable plate 118.
  • the bar magnet has radially displaced poles, with the outer pole being of the same polarity as the outer pole of each of the tubular magnets 108.
  • the tubular magnets and their conductor pairs are supported in normal supported positions in their passage through cylinder 112 by guide rollers (not shown) upstream and downstream of the cylinder.
  • the magnets are repelled from the bar magnet so that they move outwardly within the space defined by the cylindrical housing 112 and from their normal supported positions.
  • this energization changes the pattern of the magnetic field within the housing, thereby displacing a tubular magnet or magnets relative to others and this displacement is enhanced by the fact that the tubular magnet needs to avoid the bar magnet 110.
  • a randomized movement of the tubular magnets result.
  • the electromagnets 114 are rotatable around the feedpath. This may be effected by rotatably mounting the cylindrical housing 112, possibly in the manner described with regard to the carrier 86 described in the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Processing (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Claims (33)

1. Vorrichtung zum Bilden einer Seeleneinheit aus Fernverbindungs-Leitereinheiten (10), die jeweils aus miteinander verdrillten isolierten Leitern gebildet sind, und bei denen sich die Relativlagen der Leitereinheiten längs der Seeleneinheit ändern mit einem Form- und Aufnahmemittel (20) für die Seeleneinheit, um die Leitereinheiten zur Bildung der Seeleneinheit zusammenzuziehen, dadurch gekennzeichnet, daß die Vorrichtung in der Reihenfolge der Laufrichtung längs eines Zuführpfades für die Einheiten enthält:
Führungsmittel (40), um sicherzustellen, daß die Leitereinheiten nicht miteinander verseilt sind;
Lageänderungsmittel (38) für Leitereinheiten (10), einschließlich einer Vielzahl unabhängiger Führungen (58; 96; 100; 108) für die Leitereinheiten, wobei die Führungen unter dem Einfluß einer Fluid- und/oder einer Magnetkraft unabhängig voneinander in jeder Richtung innerhalb der Begrenzung eines gewissen Raumes (56) bewegbar sind, der sich seitlich zu dem Zuführpfad erstreckt, und Fluidkraft- und/oder Magnetkraft-Erzeugungsmittel (46; 52; 84; 106; 114) zum Aufbringen einer Fluid- und/oder Magnetkraft über dem Zuführpfad, um die unabhängige Bewegung der Führungen zu verursachen; und
die Seeleneinheit-Bilde- und -Aufnahmemittel (20).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Fluidkraft-Erzeugungsmittel Gasdurchlaßmittel (46) an einer Gasströmungsstation längs des Zuführpfades umfassen, wobei die Gasdurchlaßmittel zum Richten einer kontinuierlichen Gasströmung nach oben zu dem Zuführnfad und quer zu ihm und zum Abziehen der Strömung davon sowie Mittel zur Erzeugung von Gasströmung durch das Gasdurchlaßmittel enthalten, und jede Führung (58) so schwimmfähig ist, daß es durch das Gas gestützt wird, wenn dieses den Zuführpfad überquert.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Magnetkraft-Erzeugungsmittel Elektromagnetmittel (52) enthält, die zur Erzeugung von sich quer zu dem Zuführpfad an der Gasströmungsstation erstreckendem Magnetfeld beaufschlagbar sind und zur Änderung einer Charakteristik des Feldes, und daß mindestens einige Führungen (58) magnetisch permeable Elemente (64) enthalten, um zusammen mit dem durch die Elektromagnetmittel zu schaffenden Magnetfeld die Lagen der Führungen mit den parmeablen Elementen quer zu dem Zuführpfad und innerhalb der Gasströmungsstation zu beeinflussen.
4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß jede Führung (58) im wesentlichen Kugelförmig und mit einem sich hindurcherstreckenden Führungsdurchlaß (62) für eine Leitereinheit ausgebildet ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß jede Führung (58) einen Schaumkunststoff-Körper umfaßt, wobei mindestens einige Führungen die magnetisch permeablen Elemente (64) tragen.
6. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß jedes magnetisch permeable Element einen Permanentmagneten (64) umfaßt.
7. Vorrichutng nach Anspruch 2, dadurch gekennzeichnet, daß das Gasdurchlaßmittel eine Gasleitung (48) unter dem Zuführpfad und eine Gasleitung (50) über dem Zuführpfad umfaßt, wobei die beiden Gasleitungen ausgerichtet und durch den Zuführpfad beabstandet sind und abstromseitige planare Enden besitzen, die sich über den Zuführpfad im wesentlichen senkrecht zu ihm erstrecken, und worin Seitenelemente (54) sich an jeder Seite des Zuführpfades nach oben erstrecken, um die Führungen (58) in Lagen zwischen den Gasleitungen (48, 50) zu halten.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß Elektromagnetmittel (52) durch mindestens ein Seitenelement getragen ist, wobei das Elektromagnetmittel zur Schaffung eines sich über den Zuführpfad erstreckenden Magnetfeldes an der Gasströmungsstation und zur Änderung einer Charakteristik des Feldes beaufschlagbar ist, und mindestens einige der Führungen (58) magnetisch permeable Elemente (64) enthalten, um zusammen mit dem durch das Elektromagnetmittel zu schaffenden Magnetfeld die Lagen der Führungen (58) mit den permeablen Elementen in Querrichtung des Zuführpfades und innerhalb der Gasströmungsstation zu beeinflussen.
9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß jede Führung (96; 100; 108) ein magnetisch permeables Material (64) umfaßt und das Magnetkraft-Erzeugungsmittel zur Schaffung eines sich quer über den Zuführpfad erstrekkenden Magnetfeldes und zur Änderung einer Charakteristik des Feldes beaufschlagbares Elektromagnetmittel (84; 106; 114) umfaßt, um die Relativlagen der Führungen quer zu dem Zuführpfad zu beeinflussen.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß jede Führung (96; 100; 108) einen Permantmagneten umfaßt, dessen Pole gegeneinander versetzt sind, wobei ein Pol sich um die Außenumfangsfläche erstreckt und den anderen Pol umgibt.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das Elektromagnetmittel eine Vielzahl von Elektromagneten (84; 106; 114) umfaßt, die sich in voneinander mit Abstand versehenen Lagen um den Zuführpfad befinden, und daß jeder Elektromagnet mit einer elektrischen Stromquelle verbunden ist, um unabhängig von anderen Elektromagneten zum Ändern einer Charakteristik des Feldes quer zum Zuführpfad beaufschlagbar zu sein.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß jeder Elektromagnet relativ zu dem Zuführpfad bewegbar ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Elektromagneten auf einem Ringträger (86) angebracht sind, der mindestens um eine Teildrehung um den Zuführpfad drehbar ist; und daß Mittel (90, 92, 94) vorgesehen sind, um dessen Drehung zu bewirken.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Ringträger (86) über den Teil einer Umdrehung um den Zuführpfad hin-und herdrehbar ist.
15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß sie ein Gehäuse (80, 82) enthält, welches sich längs des Zuführpfades erstreckt und diesen umgibt, um die Führungen (96) in ihrer Bewegung einzuschränken, und daß der Träger (86) relativ zum Gehäuse drehbar angebracht ist.
16. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß sie das Gehäuse (80, 82; 112) enthält, welches sich längs des Zuführpfades erstreckt und diesen umgibt, um die Führungen in ihrer Bewegung einzugrenzen.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Polbeziehung der Führungen und des Gehäuses so ist, daß das Gehäuse die Führungen zu seiner Innenfläche hin anzieht, und daß jeder Elektromagnet (84) intermittierend beaufschlagbar ist, um eine benachbarte Führung abzustoßen, um sie von ihrer Lage an dem Gehäuse abzudrängen, wobei das Gehäuse dann befähigt ist, die abgestoßene Führung zu einer anderen Lage an seiner Innenfläche anzuziehen.
18. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Polbeziehung der Führungen und des Gehäuses so ist, daß das Gehäuse die Führungen von seiner Innenfläche abstößt, und daß jeder Elektromagnet intermittierend beaufschlagbar ist, um eine benachbarte Führung anzuziehen, um so teilweise die Abstoßkraft des Gehäuses zu überwinden durch Verursachen einer Bewegung einer Führung oder von Führungen zu dem Elektromagneten hin und dadurch einer Bewegung der Führung oder von Führungen relativ zu anderen Führungen, wobei die Vorrichtung auch ein abführseitiges Bewegungs-Begrenzungsmittel (98) für die Führungen besitzt, welches Begrenzungsmittel ein Magnetfeld-Erzeugungsmittel abführseitig von dem Elektromagnetmittel umfaßt, um jede Führung mit einer Tendenz zur abführseitigen Bewegung abzustoßen.
19. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß ein innerer Magnet (110) mit Abstand von dem Gehäuse (112) in diesem untergebracht ist, und daß der Zuführpfad sich um den inneren Magneten und innerhalb des Gehäuses erstreckt, wobei die Führungen (108) und der innere Magnet eine solche radial verteilte Polarität besitzen, daß die Führungen durch den inneren Magneten abgestoßen werden.
20. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß jede Führung (96, 100, 108) ein Hohlzylinder ist, dessen Bohrung ein Führungsdurchlaß für eine Seeleneinheit ist.
21. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß sie ein Gehäuse (102) enthält, welches sich längs des Zuführpfades erstreckt und ihn zumindest teilweise umgibt, um partiell die Bewegung der Führungen (100) zu begrenzen, und daß das Gehäuse einen Begrenzungsmagneten umfaßt, der seine Pole an dem Zuführpfad zugewandeten bzw. von ihm abgewendeten Flächen hat, um so die Führungen von seiner Innenfläche abzustoßen, und daß jeder Elektromagnet (106) intermittierend beaufschlagbar ist, um Führungen anzuziehen und so teilweise die Abstoßung des Begrenzungsmagneten zu überwinden durch Erzeugen einer Bewegung einer Führung oder von Führungen zu dem Elektromagneten hin und dadurch einer Beewgung der Führung oder Führungen relativ zu anderen Führungen, wobei die Vorrichtung auch abführseitige Bewegungsbegrenzungsmittel (104) besitzt, welche Begrenzungsmittel ein Magnetfeld-Erzeugungsmittel abführseitig zu den Elektromagnetmitteln umfaßt, um eine Tendenz der Führungen zu verhindern, sich in Abführrichtung zu bewegen.
22. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß sie ein Gehäuse (102) umfaßt, welches sich längs des Zuführpfades erstreckt und diesen mindestens teilweise umgibt, um mindestens partiell die Bewegung der Führungen (100) zu begrenzen, und daß das Gehäuse einen Begrenzungsmagneten umfaßt mit Polen an dem Zuführpfad zugewendeten und abgelegenen Flächen, um so die Führungen gegen seine Innenfläche anzuziehen, und daß jeder Elektromagnet intermittierend beaufschlagbar ist, um eine benachbarte Führung abzustoßen, um sie so von ihrer Lage an dem Gehäuse abzudrängen, wobei der Zylinder dann befähigt ist, die abgestoßene Führung zu einer anderen Lage an seiner Innenfläche anzuziehen.
23. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß jede Führung ein Hohlzylinder ist, dessen Durchlaß ein Führungsdurchlaß für eine Leitereinheit ist.
24. Verfahren zur Bildung einer Seeleneinheit aus Fernverbindungs-Leitereinheiten, die jeweils miteinander verdrillte isolierte Leiter umfassen, und wobei die Relativlagen der Leitereinheiten in Längsrichtung der Seeleneinheit geändert werden, dadurch gekennzeichnet, daß bei dem Verfahren:
Leitereinheiten getrennt und nebeneinander längs eines Zuführpfades und durch eine Veilzahl von Führungen hindurchgeleitet werden, die in Seitenrichtung unabhängig voneinander Innerhalb gewisser Begrenzungen in jeder Richtung und in Querrichtung des Zuführpfades unter Beeinflussung durch eine Fluid- und/oder eine Magnet-Kraft bewegbar sind;
eine Fluid- und/oder eine Magnet-Kraft über den Zuführpfad angelegt wird, um eine konstante unabhängige Bewegung der Führungen und so relative Seitenbewegung der Leitereinheiten und konstante Änderung ihrer Lagen in einer Ebene senkrecht zu dem Zuführpfad zu verursachen; und
die Leitereinheiten in ihren sich konstant ändernden Lagen in ein Seeleneinheit-Bilde- und -Aufnahme-Mittel geleitet werden, um die Leitereinheiten in die Seeleneinheit zusammenzuziehen, wobei die Relativlagen der Leitereinheiten in der Seeleneinheit in jeder Lage in ihrer Länge durch die Relativlagen der Leitereinheiten beeinflußt werden, während sie in das Bilde- und Aufnahmemittel eingezogen werden.
25. Verfahren nach Anspruch 24, bei dem die Führungen schwimmfähig sind, dadurch gekennzeichnet, daß bei dem Verfahren eine Fluidkraft in Form einer Gasströmung nach oben zu dem Nachführpfad hin, über ihn hinweg und von ihm abziehend aufgebracht wird, um so die Führungen unabhängig voneinander schwimmend zu bewegen.
26. Verfahren nach Anspruch 25, bei dem zumindestens einige Führungen ein magnetisch permeables Material enthalten, dadurch gekennzeichnet, daß bei dem Verfahren zusammen mit der Gasströmung die relativ Lage der Führungen mit dem magnetisch permeablen Material dadurch beeinflußt wird, daß diese dem Einfluß eines Magnetfeldes über dem Zuführpfad unterworfen werden und eine Charakteristik des Feldes geändert wird.
27. Verfahren nach Anspruch 24, bei dem die Führungen magnetisch permeables Material enthalten, dadurch gekennzeichnet, daß die Führungen dem Einfluß einer Magnetkraft in Form eines Magnetfeldes quer über den Zuführpfad unterworfen werden und eine Charakteristik des Feldes geändert wird, um die unabhängige Bewegung der Führung zu verursachen.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß es das Ändern der Charakteristik des Feldes durch unabhängiges und intermittierendes Beaufschlagen von Elektromagneten umfaßt, die um den Zuführpfad mit Abstand voneinander angeordnet sind.
29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß es das Bewegen der Elektromagneten relativ zum Zuführpfad umfaßt, um die Änderung der Charakteristik des Feldes zu unterstützen.
30. Verfahren nach Anspruch 27, bei dem jede Führung einen Magneten mit einem durch einen Außenpol umgebenen Innenpol umfaßt, und ein magnetisches Gehäuse die Führungen umgibt, das Gehäuse Pole an seinen dem Zuführpfad zugewendeten und von ihm abgewendeten Flächen besitzt, dadurch gekennzeichnet, daß bei dem Verfahren die Pol-Beziehung von Führungen und Gehäuse angeordnet werden, um die Führungen an dessen Innenflächen anzuziehen und daß mit Abstand um den Führungspfad angeordnete Elektromagneten unabhängig und intermittierend beaufschlagt werden, um eine benachbarte Führung abzustoßen, sie von ihrer Lage an dem Gehäuse abzudrängen, wobei das Gehäuse dann die abgestoßene Führung an eine andere Stelle an seine Fläche anzieht.
31. Verfahren nach Anspruch 27, bei dem jede Führung einen Magneten mit einem durch einen Außenpol umgebenen Innenpol umfaßt und ein Magnetgehäuse die Führungen umgibt, das Gehäusepole an den dem Führungspfad zugewendeten und von ihm abgelegenen Flächen besitzt, dadurch gekennzeichnet, daß bei dem Verfahren die Polbeziehung von Führungen und Gehäuse so angeordnet wird, daß die Führungen von der Innenfläche des Gehäuses abgestoßen werden und daß unabhängig und intermittierend um den Führungspfad mit Abstand angeordnete Elektromagneten beaufschlagt werden, eine Führung oder Führungen zu den beaufschlagten Elektromagneten hin anzuziehen und dadurch Bewegungen der Führungen relativ zu anderen Führungen zu verursachen, und eine abstromseitige Bewegung der Führungen begrenzt wird, um sie innerhalb des Gehäuses zurückzuhalten.
32. Verfahren nach Anspruch 27, bei dem jede Führung einen Magneten mit einem durch einen Außenpol umgebenen Innenpol umfaßt und ein Innenmagnet innerhalb eines die Führungen umgebenden Gehäuses und mit Abstand von diesem angeordnet ist, wobei der Magnet auch einen durch einen Außenpol umgebenen Innenpol besitzt, dadurch gekennzeichnet, daß bei dem Verfahren die Polbeziehung von Führungen und Innenmagnet zum Abstoßen der Führungen angeordnet wird und daß unabhängig und intermittierend um den Führungspfad mit Abstand angeordnete Elektromagneten beaufschlagt werden, um im Zusammenhang mit dem Innenmagneten die Lage einer Führung oder von Führungen zu beeinflüssen und dadurch Relativbewegungen der Führungen zu verursachen.
33. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß die Leitereinheiten durch Führungen in Form von Hohlzylindermagneten hindurchgeleitet werden, wobei die Pole der Magneten radial zueinander angeordnet sind.
EP19850303195 1984-07-27 1985-05-03 Herstellung von Nachrichtenkabelseeleeinheiten Expired EP0169630B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA459920 1984-07-27
CA000459920A CA1239277A (en) 1984-07-27 1984-07-27 Manufacture of telecommunications cable core units

Publications (3)

Publication Number Publication Date
EP0169630A2 EP0169630A2 (de) 1986-01-29
EP0169630A3 EP0169630A3 (en) 1987-06-24
EP0169630B1 true EP0169630B1 (de) 1989-11-08

Family

ID=4128410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850303195 Expired EP0169630B1 (de) 1984-07-27 1985-05-03 Herstellung von Nachrichtenkabelseeleeinheiten

Country Status (5)

Country Link
EP (1) EP0169630B1 (de)
JP (1) JPS6139416A (de)
CA (1) CA1239277A (de)
DE (1) DE3574199D1 (de)
FI (1) FI75943C (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734965A (en) * 1986-12-19 1988-04-05 International Business Machines Corporation Automatic wiring network fabricator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001353A (en) * 1959-03-02 1961-09-26 Okonite Co Method of and apparatus for manufacturing dynamically balanced, stranded electrical conductors
US3775955A (en) * 1971-07-30 1973-12-04 Bigelow Sanford Inc Composite false-twist yarns, methods and apparatus
US3978275A (en) * 1974-02-08 1976-08-31 Nippon Telegraph And Telephone Public Corporation Telecommunication cable and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JPS6139416A (ja) 1986-02-25
FI75943B (fi) 1988-04-29
CA1239277A (en) 1988-07-19
EP0169630A2 (de) 1986-01-29
FI75943C (fi) 1988-08-08
FI852911L (fi) 1986-01-28
DE3574199D1 (en) 1989-12-14
FI852911A0 (fi) 1985-07-26
EP0169630A3 (en) 1987-06-24

Similar Documents

Publication Publication Date Title
US7980051B2 (en) Apparatus and method for producing composite cable
US4566264A (en) Manufacture of telecommunications cable core units
EP0169630B1 (de) Herstellung von Nachrichtenkabelseeleeinheiten
CN108711473B (zh) 一种超导电缆的制作方法及装置
CN117334407A (zh) 一种光伏用柔性铝合金光伏电缆加工装置及加工工艺
CA2176773C (en) Apparatus for storing a variable quantity of moving strand material
CN218768895U (zh) 一种电缆加工用绞制装置
US4590754A (en) Forming cable core units
CN114628087B (zh) 一种复绞合束绞线的卷绕卷机
US6167687B1 (en) Group twinner for single and double conductor bobbins and method of making communication cables
EP2073218A2 (de) Vorrichtung und Verfahren zur Herstellung eines Verbundkabels
US4604862A (en) Manufacture of telecommunications cable cores
US4559771A (en) Manufacture of telecommunications cable core units
EP0147070B1 (de) Fertigung von Kabelseeleneinheiten
CA1241530A (en) Manufacture of telecommunications cable core units
US5647195A (en) Method for twisting a pair of moving strands
EP0170352B1 (de) Herstellung von Nachrichtenkabelseeleeinheiten
US4554782A (en) Manufacture of telecommunications cable core units
CN211846717U (zh) 一种电缆绕线装置
CN212809909U (zh) 用于高速绞线机的放线机构
CN219163085U (zh) 一种生产电线电缆的绞线设备
CN221276161U (en) Rope twisting machine
CN113674924B (zh) 一种线缆用的智能化弓绞装置
CA1239276A (en) Manufacture of telecommunications cable core units
WO2022145876A1 (ko) 관통구가 형성된 코일 및 이를 포함하는 전동 및 발전장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19870908

17Q First examination report despatched

Effective date: 19890102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3574199

Country of ref document: DE

Date of ref document: 19891214

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85303195.3

Effective date: 19910115