EP0169472A2 - Microwave waveguide section - Google Patents

Microwave waveguide section Download PDF

Info

Publication number
EP0169472A2
EP0169472A2 EP85108839A EP85108839A EP0169472A2 EP 0169472 A2 EP0169472 A2 EP 0169472A2 EP 85108839 A EP85108839 A EP 85108839A EP 85108839 A EP85108839 A EP 85108839A EP 0169472 A2 EP0169472 A2 EP 0169472A2
Authority
EP
European Patent Office
Prior art keywords
wall
waveguide
sintered material
gas
waveguide element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP85108839A
Other languages
German (de)
French (fr)
Other versions
EP0169472A3 (en
Inventor
Wilhelm Spensberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP0169472A2 publication Critical patent/EP0169472A2/en
Publication of EP0169472A3 publication Critical patent/EP0169472A3/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices

Definitions

  • the present invention relates to a waveguide element according to the preamble of claim 1.
  • the invention relates to a waveguide element for a gas-filled microwave waveguide arrangement of a predetermined nominal wavelength, which enables gas exchange between the interior of the waveguide arrangement and the external environment.
  • Waveguide arrangements for large microwave powers of, for example, several 100 kW per waveguide at frequencies significantly above 300 MHz are required, for example, in plasma physics, in fusion reactors, accelerators and the like.
  • the hollow conductors already have relatively small diameters, so that very high electrical field strengths occur inside the hollow conductor at high microwave powers.
  • To control the high electrical field strengths it is known to use microwave waveguides with a well-insulating gas which may be under pressure to fill. Nevertheless, the high field strengths occasionally lead to internal flashovers. Such a flashover creates gaseous compounds which impair the dielectric strength of the gas inside the waveguide. In order to avoid this undesirable consequence of an internal flashover, it is necessary to continuously replace the insulating gas inside the hollow conductor.
  • a cavity resonator is known from AT-PS 228 843, the jacket of which consists of at least one ferrite ring, the inner surface of which is coated with a thin silver layer.
  • ferrites are generally made by a sintering process, they are not porous.
  • the present invention is accordingly based on the object of specifying a waveguide element which both enables an exchange of the gas located in its interior, yet does not allow microwave energy to escape into the environment and does not significantly dampen the microwave energy which is propagating in its interior.
  • the invention solves this problem in that at least part of the wall consists of a sintered material that contains pores go through from the inside to the outside of the wall of the cavity and their maximum dimensions on the inside of the wall are small compared to the nominal wavelength of the microwave waveguide arrangement.
  • the present waveguide piece or element the wall of which consists entirely or partially of gas-permeable sintered material, at least on the inside electrically conductive, in particular sintered metal, enables rapid gas exchange without significantly dampening the microwave energy. At the same time, the cooling of the wall is improved.
  • the waveguide element can be a waveguide piece with e.g. be rectangular, round or elliptical in cross-section and have openings and connections at its ends which correspond to those of the rest of the waveguide arrangement.
  • the waveguide element can therefore have circular openings of the same diameter as the waveguides of the other hollow conductor arrangement and, in the case of rectangular waveguides, rectangular openings of the same dimensions.
  • the sintered material can consist of a pure MetaLL or a MetaL alloy.
  • the wall of the waveguide element can, however, also consist of sintered ceramic which is metallized on the inside. Even when using sintered metal, the inner surface of the waveguide element can be largely dampened by coating it with a highly conductive metal (metal spraying, vapor deposition or galvanizing) for the transmission of microwaves of the desired vibration pattern. The conductive coating must of course not close the openings in the pores.
  • a waveguide element in the form of a waveguide section 10 which contains a waveguide section 12 with a circular wall in cross section, which includes an elongated cavity 16 open at both ends and is provided with connecting flanges 14 at the ends.
  • the outside of the waveguide piece is surrounded at a distance by a gas-tight and pressure-resistant jacket 11, which is connected to the flanges 14 in a gas-tight manner.
  • the jacket 11 is connected via a gas connection piece to a gas supply or gas discharge system 13, which can contain a compressed gas source or a pump and an adjustable or optionally openable or closable valve for maintaining pressure and for regulating the gas exchange from the inside of the waveguide piece to the outside.
  • the wall 18 forming the waveguide section 12 consists of a sintered material 20, for. B. SintermetaLL, which has open pores 22 which go through from the inside to the outside 26 of the wall 18 as shown in Fig. 2.
  • the inside of the wall can carry a layer 28 of an electrically highly conductive metal, for example silver, which leaves the openings of the pores essentially free, in comparison with the thickness of the wall, as shown in FIG. 2.
  • the maximum dimensions d of the pores 22 are at least at the Inner side 24 of the wall is substantially smaller than the nominal wavelength of the microwave guide arrangement, preferably smaller than 1/100 of the nominal wavelength.
  • the main part of the wall 18 can also consist of sintered ceramic, in which case the conductive layer 28 on the inside is necessary. It can also consist only of a part of the wall 18 made of porous sintered material. With a rectangular waveguide z. B. the narrow sides are made of porous sintered material.
  • a practical embodiment of the waveguide element acc. Fig. 1 has the following parameters:
  • the sintered part is made of stainless steel with the designation X5CrNiMo1810 ("Siperm R" (Wz), from Deutsche Titanwerke).
  • the particle size range of this material is approx. 0.2 to 1.3 mm and the maximum pore size is 65 ⁇ m.
  • the flanges 14 are made of copper and are used for connection to a copper waveguide system.
  • the sintered material part 12 had no additional inner coating.
  • the invention can also be applied to waveguide elements other than the straight waveguide piece described, e.g. Directional coupling learning, branches, cavity resonators and the like. With inhomogeneous current loading of the inner wall of the waveguide element, the use of sintered material described can be restricted to the less highly stressed wall parts.
  • the system 13 can also be connected to another point in the waveguide system.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)
  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

Es wird ein Hohlleiterelement für Mikrowellenhohlleiteranordnungen beschrieben, dessen Wand mindestens zum Teil aus einem Sinterwerkstoff besteht, um einen Gasaustauch zwischen dem Inneren und der äußeren Umgebung des Hohlleiterelements zu ermöglichen. Bei hochbelasteten, gasgefüllten Hohlleitern lassen sich dadurch Entladungsprodukte leicht abführen, die durch einen Überschlag im Inneren des Hohlleiters entstanden sind.A waveguide element for microwave waveguide arrangements is described, the wall of which consists at least in part of a sintered material in order to enable gas to be exchanged between the inside and the outside of the waveguide element. In the case of highly loaded, gas-filled waveguides, discharge products which have arisen as a result of a flashover inside the waveguide can be easily removed.

Description

Die vorliegende Erfindung betrifft ein Hohlleiterelement gemäß dem Oberbegriff des Anspruchs 1. Insbesondere betrifft die Erfindung ein Hohlleiterelement für eine gasgefüllte Mikrowellen-Hohlleiteranordnung vorgegebener NennweLLenLänge, das einen Gasaustausch zwischen dem Inneren der Hohlleiteranordnung und der äußeren Umgebung ermöglicht.The present invention relates to a waveguide element according to the preamble of claim 1. In particular, the invention relates to a waveguide element for a gas-filled microwave waveguide arrangement of a predetermined nominal wavelength, which enables gas exchange between the interior of the waveguide arrangement and the external environment.

Hohlleiteranordnungen für große Mikrowellenleistungen von beispielsweise mehreren 100 kW pro Hohlleiter bei Frequenzen bis wesentlich über 300 MHz werden z.B. in der PLasmaphysik, bei Fusionsreaktoren, BeschLeunigern und dergl. benötigt. Bei Frequenzen von etwa 100 GHz haben die HohLLeiter bereits relativ kleine Durchmesser, so daß bei hohen Mikrowellenleistungen im Inneren der Hohlleiter sehr hohe elektrische Feldstärken auftreten. Zur Beherrschung der hohen elektrischen FeLdstärken ist es bekannt, Mikrowellen-Hohlleiter mit einem gut isolierenden, gegebenenfalls unter überdruck stehenden Gas zu füllen. Trotzdem führen die hohen FeLdstärken gelegentlich zu inneren überschlägen. Bei einem solchen überschlag entstehen gasförmige Verbindungen, die die Durchschlagsfestigkeit des Gases im Inneren des Hohlleiters beeinträchtigen. Um diese unerwünschte FoLge eines inneren überschlages zu vermeiden, ist es erforderlich, das sich im Inneren des HohLLeiter befindende isolierende Gas Laufend auszutauschen.Waveguide arrangements for large microwave powers of, for example, several 100 kW per waveguide at frequencies significantly above 300 MHz are required, for example, in plasma physics, in fusion reactors, accelerators and the like. At frequencies of around 100 GHz, the hollow conductors already have relatively small diameters, so that very high electrical field strengths occur inside the hollow conductor at high microwave powers. To control the high electrical field strengths, it is known to use microwave waveguides with a well-insulating gas which may be under pressure to fill. Nevertheless, the high field strengths occasionally lead to internal flashovers. Such a flashover creates gaseous compounds which impair the dielectric strength of the gas inside the waveguide. In order to avoid this undesirable consequence of an internal flashover, it is necessary to continuously replace the insulating gas inside the hollow conductor.

Es ist zwar aus der AT-PS 228 843 ein Hohlraumresonator bekannt, dessen Mantel aus mindestens einem Ferritring besteht, dessen innere Fläche mit einer dünnen SiLberschicht überzogen ist. Ferrite werden zwar im allgemeinen durch ein Sinterverfahren hergesteLLt, sie sind jedoch nicht porös.A cavity resonator is known from AT-PS 228 843, the jacket of which consists of at least one ferrite ring, the inner surface of which is coated with a thin silver layer. Although ferrites are generally made by a sintering process, they are not porous.

Aus der DE-PS 892 150 ist eine Hohlleiteranordnung (Hohlraumresonator, HohLLeiter) bekannt, dessen Gehäuse innen mit einer Art von geflochtener Hochfrequenzlitze ausgekleidet ist. SeLbst wenn diese AuskLeidung gasdurchlässig wäre, würde ein Gasaustausch zwischen dem Inneren und dem Äußeren des HohLraums durch das undurchlässige Gehäuse verhindert.From DE-PS 892 150 a waveguide arrangement (cavity resonator, hollow conductor) is known, the housing of which is lined on the inside with a type of braided high-frequency stranded wire. Even if this cladding were gas permeable, gas exchange between the inside and the outside of the cavity would be prevented by the impermeable housing.

Bisher gibt es jedenfalls noch keine Hohlleiterelemente, die einen Gasaustausch ermöglichen, ohne gleichzeitig die FortLeitung der Mikrowel lenenergie zu dämpfen oder Mikrowellenenergie nach außen durchzulassen.So far, there are no waveguide elements that allow gas exchange without simultaneously attenuating the transmission of microwave energy or transmitting microwave energy to the outside.

Der vorliegenden Erfindung Liegt dementsprechend die Aufgabe zugrunde, ein Hohlleiterelement anzugeben, das sowohl einen Austausch des in seinem Inneren befindlichen Gases ermöglicht, trotzdem keine MikroweLLenenergie in die Umgebung austreten Läßt und die sich in seinem Inneren ausbreitende Mikrowellenenergie nicht wesentlich dämpft.The present invention is accordingly based on the object of specifying a waveguide element which both enables an exchange of the gas located in its interior, yet does not allow microwave energy to escape into the environment and does not significantly dampen the microwave energy which is propagating in its interior.

Die Erfindung Löst diese Aufgabe dadurch daß mindestens ein Teil der Wand aus einem Sinterwerkstoff besteht, der Poren enthält, die von der Innenseite zur Außenseite der Wand des HohLraumes durchgehen und deren maximale Abmessungen an der Innenseite der Wand klein gegen die Nenn-Wellenlänge der Mikrowellen-Hohlleiteranordnung ist.The invention solves this problem in that at least part of the wall consists of a sintered material that contains pores go through from the inside to the outside of the wall of the cavity and their maximum dimensions on the inside of the wall are small compared to the nominal wavelength of the microwave waveguide arrangement.

Das vorliegende Hohlleiterstück oder -element, dessen Wand ganz oder teilweise aus gasdurchlässigem, zumindest an der Innenseite elektrisch Leitfähigem Sinterwerkstoff, insbesondere SintermetaLL, besteht, ermöglicht einen schnellen Gasaustauch, ohne die Mikrowellenenergie nennenswert zu dämpfen. Gleichzeitig wird auch die KühLung der Wand verbessert.The present waveguide piece or element, the wall of which consists entirely or partially of gas-permeable sintered material, at least on the inside electrically conductive, in particular sintered metal, enables rapid gas exchange without significantly dampening the microwave energy. At the same time, the cooling of the wall is improved.

Das Hohlleiterelement kann ein Hohlleiterstück mit z.B. rechteckigem, rundem oder elliptischem Querschnitt sein und an seinen Enden öffnungen und AnschLüsse aufweisen, die denen der übrigen Hohlleiteranordnung entsprechen. Das Hohlleiterelement kann also bei einer Hohlleiteranordnung mit rundem Querschnitt kreisrunde öffnungen gleichen Durchmessers wie die Hohlleiter der übrigen HohLLeiteranordnung aufweisen und bei Rechteckhohlleitern rechteckige öffnungen gleicher Abmessungen.The waveguide element can be a waveguide piece with e.g. be rectangular, round or elliptical in cross-section and have openings and connections at its ends which correspond to those of the rest of the waveguide arrangement. In the case of a waveguide arrangement with a round cross section, the waveguide element can therefore have circular openings of the same diameter as the waveguides of the other hollow conductor arrangement and, in the case of rectangular waveguides, rectangular openings of the same dimensions.

Der Sinterwerkstoff kann aus einem reinen MetaLL oder einer MetaLLegierung bestehen. Die Wand des Hohlleiterelements kann aber auch aus innen porös metallisierter Sinterkeramik bestehen. Auch bei Verwendung von SintermetaLL kann die innere Oberfläche des Hohlleiterelements durch Beschichten mit einem gut Leitendem MetaLL (Metallspritzen, Bedampfen oder galvanisches Metallisieren) für die FortLeitung von MikroweLLen gewünschter Schwingungsmuster weitgehend entdämpft werden. Die Leitfähige Beschichtung darf selbstverständlich die öffnungen der Poren nicht verschließen.The sintered material can consist of a pure MetaLL or a MetaL alloy. The wall of the waveguide element can, however, also consist of sintered ceramic which is metallized on the inside. Even when using sintered metal, the inner surface of the waveguide element can be largely dampened by coating it with a highly conductive metal (metal spraying, vapor deposition or galvanizing) for the transmission of microwaves of the desired vibration pattern. The conductive coating must of course not close the openings in the pores.

Im folgenden wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die Zeichnung näher erläutert.In the following an embodiment of the invention is explained in more detail with reference to the drawing.

Es zeigen:

  • Fig. 1 einen Axialschnitt eines Mikrowellen-Hohlleiterelements mit rundem Querschnitt gemäß einer bevorzugten Ausführungsform der Erfindung, und
  • Fig. 2 eine stark vergrößerte Querschnittsansicht eines TeiLes der Wand des in Fig. 1 dargestellten Hohlleiterelements in einer Ebene II-II mit einer zusätzlichen Innenbeschichtung.
Show it:
  • 1 shows an axial section of a microwave waveguide element with a round cross section according to a preferred embodiment of the invention, and
  • Fig. 2 is a greatly enlarged cross-sectional view of a part of the wall of the waveguide element shown in Fig. 1 in a plane II-II with an additional inner coating.

In Fig. 1 ist ein Hohlleiterelement in Form eines Hohlleiterabschnittes 10 dargestellt, der ein Hohlleiterstück 12 mit im Querschnitt kreisförmiger Wand enthält, die einen an beiden Enden offenen langgestreckten HohLraum 16 einschließt und an den Enden mit Anschlußflanschen 14 versehen ist.In Fig. 1, a waveguide element in the form of a waveguide section 10 is shown, which contains a waveguide section 12 with a circular wall in cross section, which includes an elongated cavity 16 open at both ends and is provided with connecting flanges 14 at the ends.

Das Hohlleiterstück ist außen mit Abstand von einem gasdichten und druckfesten Mantel 11 umgeben, der mit den FLanschen 14 gasdicht verbunden ist. Der Mantel 11 ist über einen Gasanschlußstutzen mit einem Gaszuführungs- oder GasabLeitungssystem 13 verbunden, das eine Druckgasquelle oder eine Pumpe sowie ein einstellbares oder beliebig zu öffnenden oder zu schließenden Ventil zur Druckhaltung und zur Regulierung des Gasaustausches vom Inneren des Hohlleiterstückes nach außen enthalten kann.The outside of the waveguide piece is surrounded at a distance by a gas-tight and pressure-resistant jacket 11, which is connected to the flanges 14 in a gas-tight manner. The jacket 11 is connected via a gas connection piece to a gas supply or gas discharge system 13, which can contain a compressed gas source or a pump and an adjustable or optionally openable or closable valve for maintaining pressure and for regulating the gas exchange from the inside of the waveguide piece to the outside.

Die das Hohlleiterstück 12 bildende Wand 18 besteht aus einem Sinterwerkstoff 20, z. B. SintermetaLL, der offene Poren 22 aufweist, die von der Innenseite zur Außenseite 26 der Wand 18 durchgehen wie in Fig. 2 dargestellt ist. Die Innenseite der Wand kann eine die öffnungen der Poren im wesentlichen frei Lassende, im Vergleich zur Dicke der Wand dünne Schicht 28 aus einem elektrisch gut leitenden MetaLL, z.B. Silber tragen, wie in Fig. 2 dargestellt ist. Die maximalen Abmessungen d der Poren 22 sind zumindest an der Innenseite 24 der Wand wesentlich kleiner als die Nennwellenlänge der Mikrowellenleiteranordnung, vorzugsweise kleiner als 1/100 der NennweLLenLänge.The wall 18 forming the waveguide section 12 consists of a sintered material 20, for. B. SintermetaLL, which has open pores 22 which go through from the inside to the outside 26 of the wall 18 as shown in Fig. 2. The inside of the wall can carry a layer 28 of an electrically highly conductive metal, for example silver, which leaves the openings of the pores essentially free, in comparison with the thickness of the wall, as shown in FIG. 2. The maximum dimensions d of the pores 22 are at least at the Inner side 24 of the wall is substantially smaller than the nominal wavelength of the microwave guide arrangement, preferably smaller than 1/100 of the nominal wavelength.

Der HauptteiL der Wand 18 kann auch aus Sinterkeramik bestehen, in diesem Falle ist dann die Leitfähige Schicht 28 auf der Innenseite notwendig. Es kann auch nur ein TeiL der Wand 18 aus porösem Sinterwerkstoff bestehen. Bei einem Rechteckhohlleiter können z. B. die SchmaLseiten aus porösem Sinterwerkstoff hergestellt werden.The main part of the wall 18 can also consist of sintered ceramic, in which case the conductive layer 28 on the inside is necessary. It can also consist only of a part of the wall 18 made of porous sintered material. With a rectangular waveguide z. B. the narrow sides are made of porous sintered material.

Eine praktische Ausführungsform des Hohlleiterelements gem. Fig. 1 hat folgende Parameter:

Figure imgb0001
A practical embodiment of the waveguide element acc. Fig. 1 has the following parameters:
Figure imgb0001

Das Sinterteil ist aus Edelstahl mit der Bezeichnung X5CrNiMo1810 ("Siperm R" (Wz), Fa. Deutsche Edelstahlwerke). Der Teilchengrößebereich dieses Materials ist ca. 0,2 bis 1,3 mm und die maximale Porengröße ist 65µm. Die FLansche 14 bestehen aus Kupfer und dienen zum Anschluß an ein aus Kupfer bestehendes Hohlleitersystem. Der Sintermaterialteil 12 hatte keine zusätzliche Innenbeschichtung.The sintered part is made of stainless steel with the designation X5CrNiMo1810 ("Siperm R" (Wz), from Deutsche Edelstahlwerke). The particle size range of this material is approx. 0.2 to 1.3 mm and the maximum pore size is 65 µm. The flanges 14 are made of copper and are used for connection to a copper waveguide system. The sintered material part 12 had no additional inner coating.

Die Erfindung läßt sich auch bei anderen Hohlleiterelementen als dem beschriebenen geraden Hohlleiterstück anwenden, z.B. Richtungskopp-Lern, Verzweigungen, Hohlraumresonatoren und dergl. Bei inhomogener StrombeLastung der Innenwand des Hohlleiterelements kann man die beschriebene Verwendung von Sinterwerkstoff auf die weniger hoch belasteten WandteiLe beschränken. Das System 13 kann auch an eine andere Stelle des Hohlleitersystems angeschlossen werden.The invention can also be applied to waveguide elements other than the straight waveguide piece described, e.g. Directional coupling learning, branches, cavity resonators and the like. With inhomogeneous current loading of the inner wall of the waveguide element, the use of sintered material described can be restricted to the less highly stressed wall parts. The system 13 can also be connected to another point in the waveguide system.

Claims (6)

1. Hohlleiterelement für eine gasgefüllte Hohlleiteranordnung für MikroweLLen vorgegebener Nennwellenlänge, welches eine einen Hohlraum (16) begrenzende Wand (18) aufweist, welche mindestens teilweise aus Sinterwerkstoff und mindestens an ihrer inneren, an den HohLraum angrenzenden Seite aus einem elektrisch Leitfähigen Material besteht, dadurch gekennzeichnet, daß der Sinterwerkstoff (20) Poren (22) enthält, die von der Innenseite zur Außenseite der Wand des HohLraums (16) durchgehen und deren maximale Abmessungen (d) an der Innenseite der Wand klein gegen die Nennwellenlänge der Mikrowellen-Hohlleiteranordnung ist.1. waveguide element for a gas-filled waveguide arrangement for microwaves of a predetermined nominal wavelength, which has a wall (18) delimiting a cavity (16), which wall consists at least partially of sintered material and at least on its inner side adjacent to the cavity from an electrically conductive material characterized in that the sintered material (20) contains pores (22) which pass from the inside to the outside of the wall of the cavity (16) and whose maximum dimensions (d) on the inside of the wall is small compared to the nominal wavelength of the microwave waveguide arrangement. 2. Hohlleiterelement nach Anspruch 1, gekennzeichnet durch eine Einrichtung zum Erzeugen einer Druckdifferenz zwischen der Innenseite und der Außenseite der Wand.2. Waveguide element according to claim 1, characterized by a device for generating a pressure difference between the inside and the outside of the wall. 3. Hohlleiterelement nach Anspruch 2, dadurch gekennzeichnet, daß die den HohLraum (16) begrenzende Wand (18) mit Abstand von einem druckfesten und gasdichten ManteL (11) umgeben ist, der einen GasanschLuß aufweist.3. Waveguide element according to claim 2, characterized in that the cavity (16) delimiting wall (18) is surrounded at a distance by a pressure-resistant and gas-tight jacket (11) which has a gas connection. 4. Hohlleiterelement nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die innere OberfLäche des aus Sinterwerkstoff bestehenden TeiLes der Wand mit einem elektrisch gut Leitenden MetaLL beschichtet ist.4. waveguide element according to claim 1, 2 or 3, characterized in that the inner surface of the part made of sintered material of the wall is coated with an electrically highly conductive metal. 5. Hohlleiterelement nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, daß der Sinterwerkstoff aus einem MetaLL oder einer MetaLLegierung besteht.5. waveguide element according to claim 1, 2, 3 or 4, characterized in that the sintered material consists of a MetaLL or a MetaL alloy. 6. HohLLeitereLement nach Anspruch 4, dadurch gekennzeichnet, daß der Sinterwerkstoff aus Sinterkeramik besteht.6. hollow conductor element according to claim 4, characterized in that the sintered material consists of sintered ceramic.
EP85108839A 1984-07-24 1985-07-15 Microwave waveguide section Ceased EP0169472A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843427283 DE3427283A1 (en) 1984-07-24 1984-07-24 SEMICONDUCTOR ELEMENT FOR MICROWAVES
DE3427283 1984-07-24

Publications (2)

Publication Number Publication Date
EP0169472A2 true EP0169472A2 (en) 1986-01-29
EP0169472A3 EP0169472A3 (en) 1988-04-13

Family

ID=6241449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108839A Ceased EP0169472A3 (en) 1984-07-24 1985-07-15 Microwave waveguide section

Country Status (4)

Country Link
US (1) US4646040A (en)
EP (1) EP0169472A3 (en)
JP (1) JPS6141201A (en)
DE (1) DE3427283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2214720A (en) * 1988-02-01 1989-09-06 Gore & Ass Waveguide window

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723462A1 (en) * 1997-06-05 1998-12-10 Thomas Dr Bluemchen Application of gas microwave spectroscopy to measurement, control and threshold indication
US7606592B2 (en) 2005-09-19 2009-10-20 Becker Charles D Waveguide-based wireless distribution system and method of operation
JP2008066159A (en) * 2006-09-08 2008-03-21 Noritsu Koki Co Ltd Plasma generator and workpiece treatment device using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783440A (en) * 1955-01-26 1957-02-26 Lockheed Aircraft Corp Light weight wave guide construction
GB1259098A (en) * 1968-05-13 1972-01-05
US3906412A (en) * 1971-07-08 1975-09-16 Union Carbide Corp AC Superconducting articles and a method for their manufacture
US4323867A (en) * 1980-08-27 1982-04-06 The United States Of America As Represented By The Secretary Of The Navy Fragment-tolerant transmission line

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557261A (en) * 1943-09-14 1951-06-19 Emi Ltd High-frequency electric transmission lines or wave guides
DE892150C (en) * 1943-10-20 1953-10-05 Siemens Ag Cavity resonator or waveguide for ultrashort waves
US2577146A (en) * 1948-05-28 1951-12-04 Rca Corp Method of and system for modulating microwave energy
AT228843B (en) * 1960-09-07 1963-08-12 Tavkoezlesi Ki Cylindrical cavity resonator for the TEoln oscillation mode
DE2907808A1 (en) * 1979-02-28 1980-09-04 Siemens Ag VACUUM DENSITY, HIGH-FREQUENCY TRANSFERABLE WINDOW ARRANGEMENT IN A COAXIAL PIPE, ESPECIALLY FOR WALKER PIPES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783440A (en) * 1955-01-26 1957-02-26 Lockheed Aircraft Corp Light weight wave guide construction
GB1259098A (en) * 1968-05-13 1972-01-05
US3906412A (en) * 1971-07-08 1975-09-16 Union Carbide Corp AC Superconducting articles and a method for their manufacture
US4323867A (en) * 1980-08-27 1982-04-06 The United States Of America As Represented By The Secretary Of The Navy Fragment-tolerant transmission line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2214720A (en) * 1988-02-01 1989-09-06 Gore & Ass Waveguide window
GB2214720B (en) * 1988-02-01 1992-04-08 Gore & Ass Waveguides

Also Published As

Publication number Publication date
US4646040A (en) 1987-02-24
JPS6141201A (en) 1986-02-27
DE3427283A1 (en) 1986-01-30
JPH022323B2 (en) 1990-01-17
EP0169472A3 (en) 1988-04-13

Similar Documents

Publication Publication Date Title
DE4241927C2 (en) Self-supporting, insulated electrode arrangement suitable for arrangement in a vacuum vessel, in particular antenna coil for a high-frequency plasma generator
DE3915477C2 (en) Device for generating a plasma with microwaves
DE19628954B4 (en) Device for generating plasma
EP2080215A1 (en) Device and method for locally producing microwave plasma
DE3544801C2 (en) Electrical cable or conductor with mineral powder insulation
DE3928015A1 (en) DIELECTRIC FILTER
DE19722272A1 (en) Device for generating plasma
EP1183709A1 (en) Linearly extended device for large-surface microwave treatment and for large surface plasma production
DE1030904B (en) Microwave transmission line in the manner of a printed circuit with a first strip-shaped conductor, which is arranged at a very small distance with respect to the wavelength and parallel to a second strip-shaped conductor separated by a dielectric layer and of equal or greater width
EP0169472A2 (en) Microwave waveguide section
AT126295B (en) Method and device for amplifying or generating electrical waves.
DE19652454A1 (en) Process and device for the external coating of lamps
DE19911744C2 (en) Assembly for the pressure-tight separation of a first waveguide from a second waveguide and method for producing such an assembly
DE2417577C2 (en) High-frequency heating device for heating a dielectric material of elongated shape and small cross-section
DE2526127C3 (en) Device for damping very short interference waves
DE2214522A1 (en) Microwave window
DE2708271C2 (en) Polarization switch
DE10257370B3 (en) Reflection-optimized antenna cladding for radio antenna operated in microwave frequency range using multi-layer dielectric cross-sectional structure
DE19928876A1 (en) Device for locally generating a plasma in a treatment chamber by means of microwave excitation
DE4333441C2 (en) Discharge tube
DE2431278C2 (en) Quadrupole filter
DE3038976C2 (en) Method and device for improving the properties of a copper film applied to a ceramic body
DE102008009624A1 (en) Method and device for cleaning the exhaust gases of a process plant
DE69719593T2 (en) filter
DE60005094T2 (en) Bandpass filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19880613

17Q First examination report despatched

Effective date: 19900723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19911115

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPENSBERGER, WILHELM