EP0167689B1 - Four à atmosphère contrôlée - Google Patents
Four à atmosphère contrôlée Download PDFInfo
- Publication number
- EP0167689B1 EP0167689B1 EP19840304752 EP84304752A EP0167689B1 EP 0167689 B1 EP0167689 B1 EP 0167689B1 EP 19840304752 EP19840304752 EP 19840304752 EP 84304752 A EP84304752 A EP 84304752A EP 0167689 B1 EP0167689 B1 EP 0167689B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- atmosphere gas
- forced
- gas
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/3005—Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
Definitions
- This invention is to provide a heating furnace having such means which can adjustably control a flow of gas atmosphere within the furnace. More specifically, this invention is to provide, to a continuous gas atmosphere heating furnace consisting of a preheating chamber, a chamber for heat treatment such as brazing, and a cooling chamber, with means for adjustably controlling a flow direction and amount of an atmosphere gas which has been supplied into the furnace and is circulated within one or both of the preheating and cooling chambers by fan means in a direction transverse to and substantially at a right angle with the longitudinal axis of the furnace so as to be repeadly in contact with heating or cooling means in the chambers, heated or cooled thereby, and in contact efficiently with articles under the heat treatment.
- a continuous gas atmosphere heating furnace of the kind mentioned above and as illustrated in Figure 1 which shows as an example of this invention a heating furnace for brazing aluminum articles employs a gas atmosphere of N 2 gas and so on of a high purity for the prevention of oxidation of aluminum articles and brazing materials applied thereto.
- the furnace employs a metallic muffle case, or inner walls of the furnace which are made from refractory materials, are lined with metals.
- the heating of a gas atmosphere and consequently of articles passing through said gas atmosphere is made indirectly by heating means which are located outside the muffle (the heating means could be bare in this instance).
- heating means such as a pipe heater which is not bare, has to be used.
- the heating of articles to be treated depends primarily on radiation transmission of heat. Under such heating, however, it takes much time until the articles such as aluminum products having bright surfaces are heated to a desired temperature, because their surfaces have extremely low emissitivity.
- outer surfaces of aluminum articles and brazing alloys applied thereupon tend to be oxidized even by a very trace amount of O2 and H 2 0 contained in the furnace gas atmosphere such as N 2 gas. Oxidation of the articles at their surfaces most adversely affects brazing thereof.
- the gas atmosphere thus circulated along the above-mentioned vertical planes in the chamber does work, on one hand, as if it were pneumatic curtains extending transversely to the furnace.
- such vertically extending curtains of circulation gas bar the free flow of furnace gas atmosphere which slowly streams from a gas inlet to an intake opening of the furnace via heat-treatment and preheating chambers, and from the gas inlet to an outtake opening for articles via a cooling chamber. Since the gas atmosphere which has been introduced first to the heat-treatment chamber, heated and expanded therein, tends to be a kind of resistance against the above-mentioned free flow of furnace gas atmosphere, the vertical curtain-like circulation of gas further retards said free flow. This has to be avoided really.
- German patent specification OS 2 712 842 describes a furnace arrangement in which glass pieces are fed through a chamber on a conveyor.
- the glass pieces are subjected to a stream of atmosphere gas which flows in a downward direction.
- This downward direction is transverse with respect to a longitudinal path defined by the passage of the glass pieces carried by the conveyor.
- the atmosphere gas is forced to flow in the downward direction by means of a fan.
- the chamber is divided into a number of compartments each of which contains an adjustable plate which is rotatable about an axis which extends in the longitudinal direction. Orientating the plates in a horizontal position serves to control the downward flow rate of the atmosphere gas.
- this invention aims to provide the furnaces with novel means which adjustably control the flow direction and amount of gas atmosphere.
- a continuous heating furnace comprising a plurality of chambers in communication with each other; means for conveying articles in a predetermined path successively through the plurality of chambers, within at least one of the chambers, the articles pass through a baffle casing which is mounted in said one chamber in spaced relation to walls defining the one chamber; means for forcing atmosphere gas to be circulated as a heating or cooling gas convectionally along a flow path extending substantially transversely of the longitudinal axis of the one chamber; and plate means, positioned in the one chamber outside the predetermined path of the articles and within the flow path of the forced atmosphere gas; characterised by means for inducing the atmosphere gas to pass longitudinally through the one chamber; the plate means being arranged for deflecting some of the forced atmosphere gas circulating along said flow path to flow longitudinally, thereby to assist the longitudinal passage of atmosphere gas through the one chamber; wherein the one chamber is a preheating chamber for communicating with an adjacent heat-treatment chamber of the furnace; and the plate means is mounted in a
- a preheating chamber A, brazing chamber B, cooling chamber C, and forced cooling chamber D, housing walls 1 of which are respectively made from refractory or heat-insulating materials, are communicated each other.
- walls 1 of the preheating chamber A and the forced cooling chamber D are lined on their inside with metals.
- Numeral 2 indicates metallic baffle cases which are provided the chamber A and D so as to extend coaxially with said chambers, each one end of which is communicated with muffle cases 7, and sections of which are rectangular, same as the sections of the muffle cases and as best shown in Figure 3. While the muffle cases 7 are completely sealed at their outer peripheries, the baffle cases 2 have at top and bottom walls thereof openings for having gas atmosphere circulated therethrough.
- Heating means which could be bare as aforementioned and which are provided in a space between the wall 1 of the brazing chamber B and the muffle case 7 for heating the gas atmosphere indirectly over the muffle case, are eliminated in the drawing for the simplicity thereof. And, in the preheating chamberA, there is provided heating means 6 which shall not be bare and be such as pipe heaters.
- Numeral 3 indicates circulation fans which are provided in the preheating and forced cooling chambers A, D and above the top walls of baffle cases 2.
- Numeral 5 is an inlet which opens to the furnace, adjacently to the brazing chamber B for supplying an atmosphere gas into the furnace via the brazing chamber B.
- the furnace walls of the cooling chamber C and the forced cooling chamber D are cooled by the circulation of cooling water which comes into the walls from inlets 8 and comes out from the walls at outlets 9.
- numeral 11 indicates conveyor means which cir- culatingly pass through the baffle and muffle cases of the chambers A, B, C and D for the transportation of articles into and out of the furnace.
- the articles which is first brought in the preheating chamber A is rapidly preheated therein, further heated in the brazing chamber B to a predetermined brazing temperature and brazed, cooled in the chamber C, thereafter completely cooled in the forced cooling chamber D, and then discharged from the furnace.
- These heating and cooling of articles are made by gas atmosphere, flow directions of which are preferably to be as represented by arrows 10 in the drawing. However, the gas atmosphere is hard to flow in the directions 10.
- the atmosphere gas which has been first introduced into the muffle 7 of the brazing chamber B and into the muffle case 7 of the cooling chamber C, is heated and expanded in the brazing chamber, while it is cooled in the cooling chamber C, whereby the expanded gas in the brazing chamber B works as a resistance against the flows 10, and whereby the atmosphere gas tends to flow much toward an outtake opening 13 of the furnace through the cooled chambers C and D.
- the flow of gas thus inclined to flow much in one direction invites the suction of air at the other direction, resulting in making the air impure.
- the flow of gas 10 toward an intake opening 12 of the furnace is further retarded in the preheating chamberA. That is, the flow of gas 10 is generally changed in the preheating chamber A to a circulation flow which is represented by numeral 10' for producing forced heat convections.
- This forced heat convections 10' constitute streams which are in transverse to the longitudinal axis of baffle case 2 substantially with a right angle thereto.
- the circulating streams 10' work as if they were vertical curtains standing in the way of the preferred flow of gas 10.
- guide plates 4 which are for producing branch flows within the circulation flows 10'.
- the guide plates 4 for producing the branch flows extend along a plane transverse to the longitudinal coaxial lines of the preheating and forced cooling chambers A and D, and can be inclined about shafts 4' thereof to a desired angle between a vertically erected position where the plane of plate 4 extends transversely to the above-mentioned longitudinal coaxial lines with a right angle thereto and a position where the plane of plate 4 lies down in parallel with said longitudinal coaxial lines.
- the guide plates 4 at the vertically erected position give substantially no effects on the flow 10', because the planes of plates are in parallel with said flow. However, when the plates 4 are kept slanted, a part of the flow 10' changes into branch streams running toward the intake opening 12 and in transverse to the said flow 10'. Consequently, the gas atmosphere in the furnace is led as a whole in arrow directions represented by numerals 10.
- N 2 gas having a dew point of -68°C was supplied into the furnace from the gas inlet 5 at a velocity of 50 m 3 /hour, while the preheating chamber A was kept at 520°C and the brazing chamber B at 610°C.
- the branch flow-forming guide plates 4 were kept, of effective planes thereof, in the directions which are in transverse with the longitudinal axis of the furnace (that is, in the direction in parallel with the planes of streams 10', wherein the plates 4 are ineffective to said streams).
- the dew point of gas atmosphere in the brazing chamber B was measured as -38 to -42°C, which showed that the flow 10 had directed much toward the outtake opening 13.
- the plates 4 in the preheating chamber A were kept slanted toward the intake opening 12 so that a ratio between an outlet flow of gas from the intake opening 12 and that from the outtake opening 13 was about 2:1.
- the dew point of atmosphere gas 10 in the brazing chamber B became lowest in this instance, that is, -55°C to -62°C.
- the flow of gas was recognized as a whole as represented by the arrows 10.
- the plates 4 were kept slanted as in Example 2.
- the dew point of gas in the brazing chamber B was sustained below -50°C, even when the supplying velocity of. N 2 gas was reduced to 35 m 3 /hour. This means that N 2 gas at a low velocity could make smooth flows 10 on account of provisions of plates 4.
- the furnace was kept under the same conditions as in Example 3. Ten pieces of aluminum articles each having a weight of 3 Kg. were brazed. Excellent brazing was attained.
- the dew point of atmosphere gas N 2 in the brazing chamber B was -48 to -54°C.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Furnace Details (AREA)
- Tunnel Furnaces (AREA)
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19840304752 EP0167689B1 (fr) | 1984-07-11 | 1984-07-11 | Four à atmosphère contrôlée |
DE8484304752T DE3474717D1 (en) | 1984-07-11 | 1984-07-11 | Gas atmosphere heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19840304752 EP0167689B1 (fr) | 1984-07-11 | 1984-07-11 | Four à atmosphère contrôlée |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0167689A1 EP0167689A1 (fr) | 1986-01-15 |
EP0167689B1 true EP0167689B1 (fr) | 1988-10-19 |
Family
ID=8192692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840304752 Expired EP0167689B1 (fr) | 1984-07-11 | 1984-07-11 | Four à atmosphère contrôlée |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0167689B1 (fr) |
DE (1) | DE3474717D1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005016957A1 (de) * | 2005-04-12 | 2006-10-19 | Behr Gmbh & Co. Kg | Anlage zum Herstellen von gelöteten Bauteilen |
CN104400172B (zh) * | 2014-12-04 | 2016-04-27 | 山西利普利拓煤机部件制造有限公司 | 硬质合金截齿的无氧化钎焊及热处理装置 |
IT201700045246A1 (it) * | 2017-04-26 | 2018-10-26 | Sacmi | Forno e metodo per la cottura di articoli ceramici di base |
CN112815720B (zh) * | 2020-12-21 | 2024-04-12 | 联创(新乡)精密电子科技有限公司 | 一种加热炉设备和使用方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2712842A1 (de) * | 1977-03-23 | 1978-09-28 | Ki Vni I Pk I Avtomatizacii Pr | Thermischer ofen mit zwangsumlauf von gas |
US4294395A (en) * | 1979-03-23 | 1981-10-13 | Airco, Inc. | Brazing process |
FR2512715A1 (fr) * | 1981-09-17 | 1983-03-18 | Chausson Usines Sa | Procede pour le brasage d'echangeurs de chaleur par soufflage de gaz chauds et four pour sa mise en oeuvre |
-
1984
- 1984-07-11 DE DE8484304752T patent/DE3474717D1/de not_active Expired
- 1984-07-11 EP EP19840304752 patent/EP0167689B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0167689A1 (fr) | 1986-01-15 |
DE3474717D1 (en) | 1988-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6134921A (en) | Directly cooled, side fired forehearth | |
EP0370313B1 (fr) | Echange de chaleur dans un four de courbage pour plaques de verre, et four de courbage | |
US4534780A (en) | Apparatus for heat treatment of objects by convection | |
EP0167689B1 (fr) | Four à atmosphère contrôlée | |
US5266027A (en) | Roller-hearth continuous furnace | |
EP1029625B1 (fr) | Méthode et appareil pour brazer et recuire dans un moufle à convection | |
US5289968A (en) | Aluminum brazing method and furnace therefor | |
JPH0438694B2 (fr) | ||
US4496316A (en) | Target wall air jet for controlling combustion air | |
US4586899A (en) | Gas atmosphere heating furnace | |
CN110857841A (zh) | 连续式加热炉及其运转方法 | |
US2658743A (en) | Melting furnace | |
US4652293A (en) | Method of cooling molten glass | |
US3261596A (en) | Annealing and decorating lehrs | |
US5328084A (en) | Aluminum heat exchanger braze furnace | |
CA1090122A (fr) | Methode et appareil permettant le transfert uniforme de la chaleur dans un four industriel | |
US4069008A (en) | Method and apparatus for heating a workpiece | |
US5383949A (en) | Glass forehearth | |
US4015932A (en) | Combustion air preheater | |
US3169015A (en) | Process and apparatus for the recovery of heat from furnaces for working glass and similar products | |
JPH06135727A (ja) | フィーダー前炉 | |
US4964799A (en) | Heating furnaces | |
US6715662B2 (en) | Waste energy recovery system for a controlled atmosphere system | |
US4340209A (en) | Adjustable tuyere | |
US3930831A (en) | Furnace for heat treating glass sheet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19860212 |
|
17Q | First examination report despatched |
Effective date: 19870116 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3474717 Country of ref document: DE Date of ref document: 19881124 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 727 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 727A |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: MAHLER DIENSTLEISTUNGS-GMBH, LOETEN-HAERTEN-ANLAGE Effective date: 19890714 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 727B |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: SP |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19910803 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010702 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010711 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010712 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |