EP0165154A1 - Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales - Google Patents

Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales Download PDF

Info

Publication number
EP0165154A1
EP0165154A1 EP85401016A EP85401016A EP0165154A1 EP 0165154 A1 EP0165154 A1 EP 0165154A1 EP 85401016 A EP85401016 A EP 85401016A EP 85401016 A EP85401016 A EP 85401016A EP 0165154 A1 EP0165154 A1 EP 0165154A1
Authority
EP
European Patent Office
Prior art keywords
tool
drill string
connector
rotation
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85401016A
Other languages
German (de)
English (en)
Other versions
EP0165154B1 (fr
Inventor
Christian Wittrisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0165154A1 publication Critical patent/EP0165154A1/fr
Application granted granted Critical
Publication of EP0165154B1 publication Critical patent/EP0165154B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/004Indexing systems for guiding relative movement between telescoping parts of downhole tools
    • E21B23/006"J-slot" systems, i.e. lug and slot indexing mechanisms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/08Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for displacing a cable or a cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole

Definitions

  • the present invention relates to improvements to the method and to the devices described in French patent application FR-A-2,501,777 and to its first addition FR-A-2,522,059 for carrying out operations such as measurements or interventions, using the using specialized tools or instruments in a specific portion of a well.
  • This portion can be deviated, strongly tilted vertically or be horizontal or vertical.
  • the application of the invention is particularly advantageous when said portion is located beyond an area where penetration of the tool or instrument is difficult, this area being for example deviated, strongly inclined or horizontal , or blocked by cuttings.
  • US Patent 4,039,237 describes a drilling device in which one descends into the drill string, by gravity, a cable having at its lower part a connector which is connected to a downhole electric motor.
  • the patent FR-A-2.501.777 proposes a method and an apparatus which does not have the drawbacks of the prior art and which makes it possible to carry out operations using specialized tools, in portions of wells strongly inclined relative to vertically and can even be horizontal.
  • said tool or instrument is rotated without rotating the entire drill string.
  • the tool can be rotated before or during the logging or intervention operation.
  • the initial portion can be vertical or of any inclination.
  • a pressure pulse is triggered in said first rod when said second connector arrives in the immediate vicinity of said first connector, in order to generate a closing force sufficient to connect these two connectors.
  • the patent FR-A-2.501.777 also provides a device for perform logging operations or interventions using a specialized tool, in a predetermined area of a drilled well, comprising in combination, a rigid hollow rod at the end of which is fixed the tool, a first electrical connection connector connected to the tool, a drill string connecting to the upper part of said rigid rod, and an electrical cable provided at its end with a second electrical connector complementary to the first connector.
  • This device is characterized in that said drill string has at its upper part a sealing member through which the cable can slide and in that said second connector is ballasted and provided with members ensuring its movement under the effect of the pressure of a fluid inside the drill string.
  • the device comprises means allowing the rotation of the tool or instrument without driving the entire drill string in rotation.
  • These rotary drive means may be disposed between the drill string and said tool or instrument.
  • This device preferably comprises means for relative positioning of said first and said second connectors, comprising in combination a conical bearing surface of the second connector cooperating with a corresponding shoulder formed on the internal wall of said rigid rod and a system for hooking the two connectors forming high stop above said conical bearing surface and its shoulder.
  • said members ensuring the movement of the second connector comprise annular cups on which the fluid pressure acts, these cups having a diameter less than the internal diameter of the drill string, and a tubular jacket locally reducing this internal diameter, so to create an engagement pulse, is disposed in said rigid rod at a level slightly higher than that occupied by said cups in the connection position of the two connectors.
  • the tool shown diagrammatically at 1 in FIG. 1 is mechanically protected by a casing 2.
  • the assembly thus formed is fixed to the end of a rigid tubular rod 3 composed of elements screwed end to end.
  • One of the elements 4 of a waterproof plug-in electrical connector is connected to tool 1.
  • tool is used here to designate any device or organ which it is necessary to introduce into a drilled well to carry out operations such as the determination of at least one characteristic of terrains, for example resistivity, acoustic impedance, measurement of the speed of propagation of sound in formations, natural emission of c radiation, absorption rate of certain radiations, etc., controls for the cementation of casing in the well, controls for the location of the joints between the elements constituting the casing, precise orientation checks of the well, or operations such as the perforation of a casing, the taking of solid samples on the wall of the well, the taking of liquid samples in the well or even pendulum measurements, this list of operations is in no way limiting.
  • operations such as the determination of at least one characteristic of terrains, for example resistivity, acoustic impedance, measurement of the speed of propagation of sound in formations, natural emission of c radiation, absorption rate of certain radiations, etc.
  • controls for the cementation of casing in the well controls for the location of the joints between the
  • the shape of the casing 2 is determined by the technician depending on the tool used and can also provide thermal protection for the tool by circulating a fluid such as drilling mud generally filling the drilled well. .
  • this fluid flows through orifices 3c formed in the connector 3b beyond the electrical plug 4.
  • These orifices can be located on the lateral surface just above the tool or at the end of the protective casing 2 (Fig. 1).
  • the method according to the invention consists in fixing the assembly of the tool 1 and of its protective casing 2 to the end of a column or of a hollow rigid rod 3, without however connecting the tool to a cable of transmission of energy and / or information.
  • the tool is in an inert state where it does not risk being triggered inadvertently, by false operations or by parasitic signals. This constitutes safety, in particular for tools with loads explosives which should only come into action when the tool is at a specific location in the well.
  • the absence of a transmission cable facilitates the handling of the elements connected end to end which form column 3.
  • the tool 1 protected by its casing 2 is introduced and moved into the well (Fig. 2) to the desired position which is substantially the exact position where the tool must operate, in the case of a tool carrying out only a punctual operation or which is the end furthest from the surface of a portion of length A along which the tool must work (Fig. 6).
  • the length of the portion A is preferably, but not limited to, at most equal to the length of the portion L of the well which is generally vertical and extends from the surface.
  • an electrical plug-in connector is used in a fluid medium.
  • This connection can be of any known type and for example as described in United States patent 4,039,242.
  • This connection essentially consists of a socket and plug, complementary to each other and which fit together.
  • One of them for example plug 4, is connected to the tool.
  • the other part (socket 5) is fixed to the end of a transmission cable 6.
  • the socket 5 and the cable 6 are introduced into the hollow rod 3 (Fig. 3).
  • a heavy element or load bar 7 overcomes the socket 5 and facilitates its progression in column 3 under the action of gravity. Then, by pumping the fluid in column 3, the outlet 5 is moved until its connection with the plug 4 is effective.
  • This connection can be easily controlled for example by means of contacts which close an electrical circuit when the plug 4 is in the correct position in socket 5.
  • a locking device of any known type keeps the socket and the plug in their assembly position.
  • the introduction of the outlet 5 and the cable 6 into the column 3 and the pumping operation can be carried out by using a well sealing block (BOP) well known in the field of drilling and shown diagrammatically at 8 in FIG. 4.
  • BOP well sealing block
  • This BOP comprises jaws 9 and 10 which can be moved radially and which maintain the seal around the cable 6.
  • the circulation of the fluid is ensured by a pump 11 communicating through a valve 12 with the interior of the rigid column 3.
  • the cable 6 is preferably introduced into the column 3 through the opening of a special connector 13 with side window generally called “side entry sub ".
  • This connection is fixed to the top of column 3 as shown in Figure 5 when the probe enters the area to be explored (Fig. 2). It is preferably provided with cable tightening means making it possible to immobilize the latter at the connection after connecting the plug 4 and the socket 5.
  • rubber centering devices 3a fixed to the rigid column guide the cable 6 over a certain distance along the drilling column 3 above the fitting with side window 13.
  • centralizers can be of any known type and in particular of the type of those sold by the company WEATHERFORD-STABILIA under the name of "Control line".
  • the tool 1 is operated by remote control through the transmission cable 6, this operation being obtained on the portion A of the well by gradually raising the operating column 3.
  • This raising operation of the column 3 is facilitated by the fact that the cable is, on the surface, outside the column 3, which makes it easier to unscrew the tubular elements of the column.
  • the connector 13 can be of any known type and in particular of the type described in US Pat. No. 4,062,551.
  • centralizers are, for example of the type with blades well known in soil drilling techniques. Other types of centralizers can also be used, for example rubber centralizers with mud passage.
  • the tool 1 and its casing are connected to the end of the rigid column 3 by a portion of deformable tube 15 constituted for example by tubular rings hinged to each other.
  • deformable tube 15 constituted for example by tubular rings hinged to each other.
  • Such portions of deformable rod are well known in the art and marketed for example by the company ARCO DRILLING under the name of "KNUCKLE JOINT".
  • the tool can be released from its casing by any known device such as for example a piston integral with the tool and sliding in the casing.
  • a hydraulic fluid such as mud
  • the piston is moved to disengage the active part of the tool from the casing or reintegrate the tool in its protective casing.
  • FIGS. 10A and 108 schematically illustrate such an embodiment and the principle of its operation.
  • the reference 16 designates the active part of the tool electrically connected to the male connector 4 by an extendable electrical cable 17 and secured to a piston 18 slidably mounted inside the casing 2.
  • the sliding of the assembly 16-18 can take place between the retracted position of the member 16 shown in FIG. 10A and its position illustrated in FIG. IOB in which the active part 16 of the tool is released from the casing 2 by the end of the latter, under the effect of an overpressure of the fluid injected into the drill string, by compressing a return spring 19.
  • the piston 18 is provided with a member 20 ensuring its locking in one or the other of its two limit positions by cooperating with grooves 21 and 22 formed in the wall of the casing 2. In the piston 18 are formed channels allowing the flow of drilling fluid.
  • the member 20 may, for example, be of the mechanical or electromechanical type.
  • this ring 23 When passing to the position illustrated in FIG. IOB, this ring 23 is pushed to the right by the piston 18, revealing the orifices 25 through which the fluid can also escape (this results in a pressure drop in this fluid allowing to detect on the surface that the active member 16 has reached its working position).
  • Certain tools such as tools with pads of the density, microresistivity, micro-acoustic type and certain perforators with explosive charges, need to be oriented in the well before they are put into operation in order to improve their performance.
  • the orientation of the tool constitutes a data added to that of the measurement. The combination of these two pieces of information in highly deviated and horizontal wells improves the interpretation of the results. This may be the case for the detection of formation fractures and the determination of casing cementation.
  • the casing 2 may contain an orientation detection member, such as at least an accelerometer or a gyrocompass.
  • the use of a single accelerometer, the axis of rotation of which coincides with that of the tool, makes it possible to place a generator previously identified by the tool in a vertical plane passing through the axis of the tool.
  • the rotation of the rod 3 can be obtained from the surface in according to the indications provided by these bodies, and allows the tool to be positioned correctly in the well.
  • the reference 36 designates means for driving the tool in rotation, arranged beyond a deformable tubular part 38.
  • the rotation drive means are located above the deformable tube 15. It would be possible to change the positions of the rotation drive means between FIGS. 7 and 8.
  • a tool whose generator is identified and comprising two accelerometers whose axes of rotation are perpendicular to each other and perpendicular to the axis of the tool, if determines from the indications of the accelerometers, the angle formed between the vertical plane passing through the axis of the tool and the plane containing the axis of the tool and the identified generator of the tool and in that causes the tool to rotate without rotating the entire drill string until the determined angle reaches a value chosen in advance.
  • the casing can be integrated into the tool itself, or be removed.
  • the tool 1 will be directly fixed to the end of the column 3 by means of an intermediate connector 3b preferably provided with orifices 3c for the passage of the fluid.
  • the tool used in the device according to the invention could obviously include a member for measuring the force or stress exerted on this tool, which is particularly useful when the tool is not housed in a protective casing.
  • This member can be actuated when the electrical connection is made.
  • FIGS. 11A and 11B respectively represent the upper part and the lower part of the assembly constituted by the load bar 7 and the female connector 5, in the position of connection of this assembly to the male connector 4 housed at the base of the train rods 3, above the tool 1.
  • the arrows show the flow of the injected fluid from the surface which escapes through the orifices 3c above the casing 2 (Fig. 11B) or from the tool 1 ( Fig. 9).
  • a connector-26 ensures the electrical connection of the conductors 27 of the cable 6 with the female connector 5.
  • annular cups 29 for example made of elastomer
  • the locking washer 33 being engaged under the retaining faces 32a of the fingers 32 by a latching pulse produced by the pressure of the fluid (the manner in which this pulse is produced will be specified below), the socket 5 is strictly positioned between a low stop 31 (the level of which corresponds to a perfect electrical connection between the elements 4 and 5) and the high stop formed by the retaining faces 32a of the fingers 32.
  • the socket 5 can be disconnected from the plug 4 by a higher tensile force causing the shearing of the washer 33 at the level of the knives 32.
  • This tensile force must have a value greater than the shearing force increased by the friction forces of the cable 6 all along the drill string 3.
  • the washer 33 can however be easily changed on the surface after raising the socket 5 and one can have sets of washers of different shear strengths, depending on the tensile strength of the cable 6.
  • the fluid pressure pulse causing the engagement of the washer 33 with the retaining blades 32 and, consequently, of the socket 4 on the plug 5, is produced by placing in the drill string, at a slightly higher level. to that occupied by the cups 29 in the connection position of the elements 4 and 5, a tubular jacket 34 of reduced internal diameter, little greater than the external diameter of the cups 29, so as to produce a sudden increase in the axial thrust directed downwards acting on the cups, when the latter pass through the tubular jacket 34, shortly before the connection.
  • This impulse is sufficient to produce the engagement of the washer 33 with the blades 32.
  • the cups 29 At the outlet of the tubular jacket 34, the cups 29 enter a chamber of larger diameter, allowing an easy flow of the fluid around the cups.
  • the respective diameters of the cups 29 and of the tubular jacket 34 can be modified at will.
  • the devices according to the invention described above make it possible to carry out, if desired, a continuous or periodic circulation of fluid around the tool during operation.
  • This circulation is particularly advantageous for the safety of the well, for cleaning it, to facilitate the movement of the drill string in this well and / or to cool the tool if it is used in a geological temperature formation. high and / or to cool the formation itself.
  • the technique according to the invention is therefore particularly advantageous for implementing a television camera intended for the observation of the wall of a well, for example through a porthole arranged in the wall of the casing 2.
  • a television camera intended for the observation of the wall of a well, for example through a porthole arranged in the wall of the casing 2.
  • the means for driving the tool in rotation may be of the type described in patent US Pat. No. 4,321,951 or US Pat. No. 4,286,676 but being limited to the production of an angle of 180 ° between the two tubular elements illustrated in this patent. According to the present invention, one of these tubular elements will then be made integral in rotation with the drill string and the other integral in rotation with the tool or instrument.
  • FIG. 13 shows another embodiment in which a first part 39 is secured to the drill string, at least in rotation and a second piece 40 is secured to the tool 41 by a link 42.
  • the first element 43 is integral with the part 39 via the link 45 and carries a rotating connector 46 making the electrical connection between the tool and the first end of an electric cable 47. The other end of this cable is connected to the end of the transmission cable 6 via the socket 5. Thus, the plug 4 is located away from the tool.
  • the econd tubular element 44 which surrounds the first comprises at one of its ends a groove 48 cooperating with at least one finger 49 secured to the part 40.
  • This groove can be of the type described in US Patent 4,286,676. At least part of this groove can be inclined relative to the axis of said second part 44. Preferably, the groove is arranged so that the tool 41 turns when the second cubical element 44 is lowered, for example by increasing the pressure of aucide from the surface.
  • This fluid exerts a force on a piston 50 integral with the second tubular element 44 at the second end thereof.
  • Said second element 44 may comprise a second piston 52 and an orifice 51 allowing the circulation of said fluid through a second orifice 65 arranged in said first element 43.
  • the pistons 50 and 52 cooperate successively with a bore 53 formed inside the Exhibit 39.
  • the piston 52 At rest, the piston 52 is located inside said bore.
  • the fluid flow is less than a certain value determined by the stiffness and the initial compression of a spring 54 which cooperates with a stop 55 and tends to return the second element 44, there is no displacement.
  • the first element 43 has an orifice allowing the circulation of the fluid through the orifice 51.
  • the second element comprises a groove 56 which cooperates with a guide finger 57, these two parts mentioned lastly preventing the rotation of the second element relative to the part 39.
  • Figures 14 and 14A illustrate another embodiment.
  • a part 58 is integral in rotation and in translation with the drill string 3.
  • This part 58 has grooves 59 such as those described above, but which are arranged in opposite directions, that is to say that is to say in order to drive the tool in rotation when it is removed. These grooves cooperate with at least one finger secured to a second part 61 which can rotate around the first part 58 and can also move in translation relative to the first part.
  • the tool 62 is integral at least in rotation with said second part.
  • the first part 58 is integral in rotation, but not in translation with a first element 63 of a rotary electrical connector. This can be obtained by means of a finger 66 integral with said first element of the rotary connector, this finger cooperating with an axial groove 67 formed in the first part 58.
  • the first element 63 of the rotary connector cooperates with a second element 64 of said connector, located on the tool 62.
  • An extendable electrical cable 65 electrically connects the first element 63 of the rotary connector to an electrical outlet, this outlet cooperating with the socket 5.
  • the drill string is raised from the surface and the parts 58 and 61 are moved from their position in FIG. 14 to the position illustrated in FIG. 14A, this which causes the rotation of the part 61.
  • the drill string can then be lowered. It is obvious that the embodiments according to FIGS. 10A and 10B can be combined with those of FIGS. 13, 14 and 14A.
  • a translational movement into rotation for example a part driven by an alternative translational movement, this part comprising at least one helical groove cooperating with the fingers of an intermediate part which only moves in rotation.
  • the intermediate piece has an alternating rotational movement.
  • This part can be fitted with pawls cooperating with a drive mechanism.
  • the reciprocating translational movement of said piece having at least one helical groove is converted into reciprocating rotational movement of the intermediate piece, which in turn causes a succession of rotational movements of the ratchet drive mechanism, which is integral of the tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Debugging And Monitoring (AREA)

Abstract

Dispositif pour effectuer des opérations de diagraphie ou des interventions a l'aide d'un outil spécialisé, dans une zone prédéterminée d'un puits foré. Le dispositif selon l'invention comporte en combinaison une tige rigide creuse à laquelle est fixé l'outil, un premier connecteur électrique de raccordement relié a l'outil, un train de tiges se raccordant a la partie supérieure de ladite tige rigide, et un câble éléctrique pourvu à son extrémité d'un second connecteur électrique complémentdire du premier connecteur, un organe d'etanchéité a entrée latérale (13) à travers lequel le câble (6) peut coulisser, cet organe (13) étant surmonté d'éléments de train de tiges d'une longueur (2) correspondant au déplacement (A) souhaité de l'outil dans ladite zone prédéterminée du puits. Ce dispositif se caractérise en ce qu'il comporte en outre des moyens pour entraîner l'outil en rotation, sans entraîner en rotation l'ensemble du train de tiges. La présente invention permet d'effectuer des opérations telles que des mesures électriques, magnétiques, acoustiques, neutroniques ou prélèvements d'échantillons, perforations de la paroi du puits, etc . . . dans un puits fortement incliné.

Description

  • La présente invention concerne des perfectionnements à la méthode et aux dispositifs décrits dans la demande de brevet français FR-A-2.501.777 et sa première addition FR-A-2.522.059 pour effectuer des opérations telles que des mesures ou interventions, à l'aide d'outils ou instruments spécialisés dans une portion déterminée d'un puits. Cette portion peut être déviée, fortement inclinée sur la verticale ou être horizontale ou bien verticale. Dans ce dernier cas, l'application de l'invention est particulièrement avantageuse lorsque ladite portion est située au-delà d'une zone où la pénétration de l'outil ou instrument est difficile, cette zone étant par exemple déviée, fortement inclinée ou horizontale, ou encore obstruée par des déblais.
  • Selon l'art antérieur, les outils ou instruments spécialisés pour effectuer des opérations telles que, par exemple, des mesures, sont fixés à l'extrémité d'un câble porteur et se déplacent sous l'action de la gravité, sans grande difficulté, tant que l'inclinaison du puits foré par rapport à la verticale ne dépasse pas 45° environ. Au-delà de cette limite, le déplacement des outils n'est possible que si on connaît le profil et les variations de diamètre du puits foré et si on utilise des outils de dimensions réduites.
  • Pour des puits fortement inclinés, on a proposé dans le brevet US 4.168.747 de mettre en place dans le puits une canalisation flexible munie à son extrémité d'une tête produisant des jets de fluide qui favorisent l'avancement de la conduite flexible dans le puits. L'outil est introduit dans la conduite flexible et son déplacement assuré par pompage du fluide remplissant le puits et la conduite flexible. L'outil qui est maintenu en permanence à l'intérieur de la conduite flexible est, par suite, nécessairement d'un type dont le fonctionnement n'est pas affecté par la présence de la conduite flexible, comme par exemple une sonde neutronique ou à rayons de mesure des caractéristiques des terrains.
  • Une telle solution présente de nombreux inconvénients. En effet, non seulement elle n'est pas utilisable pour tous les outils que l'on peut être amené à introduire dans le puits, tels que sonde à mesure électrique ou électromagnétique, mais encore elle s'avère longue à mettre en oeuvre. De plus, le frottement inévitable de la conduite flexible contre la paroi de puits, en particulier dans les portions fortement inclinées, nécessite pour sa progression des jets très puissants qui détériorent localement la paroi du puits. Un tel dispositif n'est donc pas utilisable lorsqu'on doit introduire des outils dans des portions fortement inclinées et de grandes longueurs et dans des portions de puits pratiquement horizontales.
  • Il est également connu de fixer un outil tel qu'une sonde de mesure à l'extrémité d'une tige creuse pratiquement rigide pour assurer son déplacement sous l'action d'une poussée exercée sur la tige.
  • Les inconvénients de cette solution résident dans le fait que les outils placés à l'extrémité de la tige frottent contre la paroi du puits et peuvent être détriorés. D'autre part, ces outils sont reliés à la surface par un câble de transmission de signaux de commande et de mesure qui est logé dans l'alésage de la tige creuse, ce qui complique notablement les opérations d'assemblage des éléments vissés bout à bout qui constituent la tige.
  • Pour limiter ce dernier inconvénient, on peut utiliser un raccord à fenêtre latérale désigné généralement par l'expression anglosaxonne de "Side Entry Sub" et décrit, par exemple, dans le brevet US 4.062.551.
  • Le vissage ou le dévissage des tronçons de tige situés au-dessus de ce raccord spécial est simplifié du fait qu'au-dessus de ce raccord, le câble est à l'extérieur de la tige creuse. Néanmoins, l'inconvénient signalé ci-dessus subsiste pour la portion de tige comprise entre ce raccord spécial et l'outil. De plus, des précautions doivent être prises pour éviter le coincement du câble du fait qu'au-dessus du raccord spécial, le câble se trouve dans l'espace annulaire délimité entre la tige creuse et la paroi du puits. L'emplacement de ce raccord spécial sur la tige creuse est, de préférence mais non limitativement choisi de manière que, lors du déplacement de la tige, ce raccord reste dans la partie verticale de la paroi du puits.
  • Le brevet US 4.039.237 décrit un appareil de forage dans lequel on descend dans le train de tiges, par gravité, un câble ayant à sa partie inférieure un connecteur qui vient se raccorder à un moteur électrique de fond.
  • On connaît également par les brevets US 3.976.347 et 4.126848 des connecteurs électriques adaptés à être descendus dans un train de tiges à l'extrémité inférieure d'un câble pour être connectés à des dispositifs situés au fond.
  • De tels dispositifs ne sont pas utilisables pour effectuer des opérations dans des puits fortement déviés.
  • Il est, par ailleurs, nécessaire dans certains cas de faire tourner l'outil autour de son axe, par exemple lorsque cet outil est un outil effectuant des diagraphies de densité nucléaire, de telles diagraphies nécessitant que l'on applique un patin contre la formation géologique, ou lorsque l'outil est un outil d'essai (ou "tester") de formation, ou un outil de perforation orienté, ou encore lorsque cet outil est un outil de calibrage à quatre bras destiné à déterminer la géométrie de la section droite du puits. Il est souvent souhaitable que l'angle de rotation soit contrôlé avec précision et que la rotation soit aisée et fiable, que ce soit celle de l'outil lui-même ou celle des autres composants de l'appareillage, par exemple le tubage, les câbles électriques...etc...
  • Le brevet FR-A-2.501.777 propose une méthode et un appareillage ne présentant pas les inconvénients de l'art antérieur et permettant d'effectuer des opérations à l'aide d'outils spécialisés, dans des portions de puits fortement inclinées par rapport à la verticale et pouvant même être horizontales.
  • Selon ce brevet FR-A-2.5g1.777, on utilise une méthode pour effectuer des opérations de diagraphie ou des interventions dans une zone prédéterminée d'un puits foré ayant à partir de la surface du sol une portion initiale sensiblement verticale ou peu inclinée, suivie d'une portion inclinée ou horizontale, ladite zone prédéterminée étant située au-delà de ladite portion initiale du puits, cette méthode comportant les étapes suivantes :
    • - on fixe un corps d'outil de diagraphie ou d'intervention à la partie inférieure d'une première tige d'un train de tiges, ledit corps d'outils étant relié électriquement à un premier connecteur électrique solidaire de ladite première tige et accessible depuis la partie supérieure de celui-ci,
    • - on assemble le train de tiges en connectant bout à bout de nouvelles tiges de forage au-dessus de ladite première tige et on fait-descendre progressivement dans le puits l'ensemble du corps d'outil et du train de tiges, au fur et à mesure de l'assemblage de ce dernier,
    • - on introduit dans le train de tiges, depuis la surface, un second connecteur électrique enfichable en milieu liquide sur ledit premier connecteur, ce second connecteur étant fixé mécaniquement à l'extrémité inférieure d'un câble de transmission électrique et relié électriquement à la surface par l'intermédiaire de ce câble. On fait descendre dans le train de tiges ledit second connecteur fixé au câble une fois que le corps d'outil atteint sensiblement ladite zone prédéterminée du puits. Ceci est réalisé en faisant coulisser le câble à travers un organe d'étanchéité que l'on fixe au train de tiges en surface, et l'on déplace ledit second connecteur à travers ladite portion inclinée ou horizontale du train de tiges par pompage d'un fluide à travers le train de tiges depuis la surface jusqu'à ce que ledit second connecteur électrique vienne se raccorder audit premier connecteur. Ledit corps d'outil est positionné dans ladite zone prédéterminée du puits, et on effectue la diagraphie ou l'intervention dans cette zone.
  • Selon la présente invention on effectue une rotation dudit outil ou instrument sans faire tourner l'ensemble du train de tiges. La rotation de l'outil peut être effectuée avant ou pendant l'opération de diagraphie ou d'intervention.
  • La portion initiale peut être verticale ou d'inclinaison quelconque.
  • Selon un mode préféré de réalisation, on déclenche dans ladite première tige une impulsion de pression lorsque ledit second connecteur parvient au voisinage immédiat dudit premier connecteur, afin d'engendrer une force de rapprochement suffisante pour raccorder ces deux connecteurs.
  • Le brevet FR-A-2.501.777 fournit également un dispositif pour effectuer des opérations de diagraphie ou des interventions à l'aide d'un outil spécialisé, dans une zone prédéterminée d'un puits foré, comportant en combinaison, une tige rigide creuse à l'extrémité de laquelle est fixé l'outil, un premier connecteur électrique de raccordement relié à l'outil, un train de tiges se raccordant à la partie supérieure de ladite tige rigide, et un câble électrique pourvu à son extrémité d'un second connecteur électrique complémentaire du premier connecteur. Ce dispositif est caractérisé en ce que ledit train de tiges comporte à sa partie supérieure un organe d'étanchéité à travers lequel le câble peut coulisser et en ce que ledit second connecteur est lesté et muni d'organes assurant son déplacement sous l'effet de la pression d'un fluide à l'intérieur du train de tiges.
  • Selon la présente invention le dispositif comporte des moyens permettant la rotation de l'outil ou instrument sans entraîner en rotation l'ensemble du train de tiges. Ces moyens d'entraînement en rotation pourront être disposés entre le train de tiges et ledit outil ou instrument.
  • Ce dispositif comporte de préférence des moyens de positionnement relatif dudit premier et dudit second connecteurs, comprenant en combinaison une portée conique du second connecteur coopérant avec un épaulement correspondant ménagé sur la paroi interne de ladite tige rigide et un système d'accrochage des deux connecteurs formant butée haute au-dessus de ladite portée conique et de son épaulement.
  • De préférence également, lesdits organes assurant le déplacement du second connecteur comprennent des coupelles annulaires sur lesquelles agit la pression du fluide, ces coupelles ayant un diamètre inférieur au diamètre interne du train de tiges, et une chemise tubulaire réduisant localement ce diamètre interne, de façon à créer une impulsion d'enclenchement, est disposée dans ladite tige rigide à un niveau légèrement supérieur à celui qu'occupent lesdites coupelles en position de raccordement des deux connecteurs.
  • L'invention pourra être bien comprise et tous ses avantages apparaitront à la lecture de la description suivante illustrée par les figures annexées dans lesquelles :
    • - la figure 1 représente un outil fixé à l'extrémité d'une colonne tubulaire rigide,
    • - les figures 2 à 6, 5A et 5B illustrent la mise en oeuvre de la méthode selon le brevet principal,
    • - les figures 7 et 8 montrent le centrage de l'outil et de son carter dans le puits foré,
    • - la figure 9 illustre l'exemple d'un outil fixé directement à l'extrémité d'une colonne tubulaire rigide.
    • - les figures 10A et 10B illustrent schématiquement un mode de réalisation de l'invention utilisant un outil pouvant être dégagé de son logement par télécommande,
    • - les figures 11A et 11B représentent respectivement la partie supérieure et la partie inférieure de l'ensemble constitué par la barre de charge et le connecteur électrique femelle, en position de raccordement au connecteur mâle,
    • - la figure 12 montre une rondelle d'accrochage après cisaillement, et
    • - les figures 13 et 14A, ainsi que la figure 14B illustrent des modes de réalisation des moyens d'entrainement en rotation de l'outil.
  • L'outil schématisé en 1 sur la figure 1 est protégé mécaniquement par un carter 2. L'ensemble ainsi formé est fixé à l'extrémité d'une tige tubulaire rigide 3 composée d'éléments vissés bout à bout. L'un des éléments 4 d'un connecteur électrique enfichable étanche est relié à 1' outil 1.
  • Le terme d'outil est utilisé ici pour désigner tout dispositif ou organe que l'on est amené à introduire dans un puits foré pour effectuer des opérations telles que la détermination d'au moins une caractéristique des terrains par exemple résistivité, impédance acoustique, mesure de la vitesse de propagation du son dans les formations, émission naturelle de rayonnement c , taux d'absorption de certaines radiations, etc..., des contrôles de cimentation d'un tubage dans le puits, des contrôles de localisation des joints entre les éléments constituant le tubage, des contrôles d'orientation précise du puits, ou des opérations telles que la perforation d'un tubage, le prélèvement d'échantillons solides sur la paroi du puits, le prélèvement d'échantillons liquides dans le puits ou encore des mesures de pendagemètrie, cette liste d'opérations n'étant nullement limitative.
  • Bien entendu, la forme du carter 2 est déterminée par le technicien en fonction de l'outil utilisé et peut de plus, assurer une protection thermique de l'outil en mettant en circulation un fluide tel que la boue de forage remplissant généralement le puits foré. Dans le mode de réalisation illustré par la figure 9, ce fluide s'écoule à travers des orifices 3c ménagés dans le raccord 3b au-delà de la fiche électrique 4. Ces orifices peuvent être situés sur la surface latérale juste au-dessus de l'outil ou à l'extrémité du carter protecteur 2 (Fig. 1).
  • La méthode selon l'invention consiste à fixer l'ensemble de l'outil 1 et de son carter protecteur 2 à l'extrémité d'une colonne ou d'une tige rigide creuse 3, sans toutefois connecter l'outil à un câble de transmission d'énergie et/ou d'informations. Ainsi, l'outil est dans un état inerte où il ne risque par d'être déclenché par inadvertance, par de fausses manoeuvres ou par des signaux parasites. Ceci constitue une sécurité, en particulier pour les outils comportant des charges explosives qui ne doivent entrer en action que lorsque l'outil se trouve à un emplacement déterminé du puits. De plus, on notera que l'absence de câble de transmission facilite la manipulation des éléments raccordés bout à bout qui forment la colonne 3.
  • Par l'intermédiaire de la colonne 3, l'outil 1 protégé par son carter 2 est introduit et déplacé dans le puits (Fig. 2) jusqu'à la position désirée qui est sensiblement la position exacte où doit opérer l'outil, dans le cas d'un outil n'effectuant qu'une opération ponctuelle ou qui est l'extrémité la plus éloignée de la surface d'une portion de longueur A le long de laquelle l'outil doit travailler (Fig. 6). La longueur de la portion A est, de préférence, mais non limitativement, au plus égale à la longueur de la portion L du puits qui est généralement verticale et s'étend depuis la surface.
  • Pour connecter l'outil à un câble de transmission d'énergie et/ou d'information, on utilise un raccord électrique enfichable dans un milieu fluide. Ce raccord peut être de tout type connu et par exemple tel que décrit dans le brevet des Etats-Unis d'Amérique 4.039.242.
  • Ce raccord est composé essentiellement d'une prise et d'une fiche, complémentaires l'une de l'autre et qui s'emboitent par rapprochement. L'une d'elles, par exemple la fiche 4, est raccordée à l'outil. L'autre partie (la prise 5) est fixée à l'extrémité d'un câble de transmission 6.
  • Lorsque l'outil a été mis en place dans le puits comme on l'a indiqué précédemment, on introduit dans la tige creuse 3 la prise 5 et le câble 6 (Fig. 3). Un élément pesant ou barre de charge 7 surmonte la prise 5 et facilite sa progression dans la colonne 3 sous l'action de la gravité. Puis, par pompage du fluide dans la colonne 3, la prise 5 est déplacée jusqu'à ce que sa connexion avec la fiche 4 soit effective. Cette connexion peut être aisément contrôlée par exemple aux moyens de contacts qui ferment un circuit électrique lorsque la fiche 4 est en position correcte dans la prise 5. Un dispositif de verrouillage de tout type connu maintient la prise et la fiche dans leur position d'assemblage.
  • Dans le cas où l'outil ne doit fonctionner qu'à un emplacement déterminé du puits, l'introduction de la prise 5 et du câble 6 dans la colonne 3 et l'opération de pompage peuvent être réalisées grâce à l'utilisation d'un bloc d'obturation du puits (B.O.P.) bien connu dans le domaine du forage et schématisé en 8 sur la figure 4. Ce B.O.P. comporte des mâchoires 9 et 10 déplaçables radialement et qui maintennent l'étanchéité autour du câble 6. La circulation du fluide est assurée par une pompe 11 communiquant à travers une vanne 12 avec l'intérieur de la colonne rigide 3.
  • Dans le cas où l'outil doit fonctionner tout au long d'une portion du puits, le câble 6 est de préférence introduit dans la colonne 3 à travers l'ouverture d'un raccord spécial 13 à fenêtre latérale dénommé généralement "side entry sub". Ce raccord est fixé au sommet de la colonne 3 comme le montre la figure 5 au moment où la sonde entre dans la zone à explorer (Fig. 2). Il est de préférence muni de moyens de serrage du câble permettant d'immobiliser celui-ci au niveau du raccord après avoir connecté la fiche 4 et 1a prise 5.
  • Une fois le raccordement électrique de l'outil effectué par les connecteurs enfichables 4 et 5, le déplacement de l'outil 1 jusqu'à l'extrémité de la zone à explorer est assuré en ajoutant des éléments rigides au-dessus du raccord 13 (Fig. 6) sur une longueur égale à la longueur A de la zone à explorer.
  • Eventuellement, comme le montre la figure 5A, des centreurs en caoutchouc 3a fixés à 1a colonne rigide assurent le guidage du câble 6 sur une certaine distance le long de la colonne de forage 3 au-dessus du raccord à fenêtre latérale 13.
  • L'utilisation de tels centreurs est particulièrement recommandée, mais non obligatoire lorsque la première portion du puits est inclinée ou horizontale (Fig. 5B).
  • Ces centreurs peuvent être de tout type connu et en particulier du type de ceux commercialisés par la Société WEATHERFORD-STABILIA sous la dénomination de "Control line".
  • L'outil 1 est mis en fonctionnement par télécommande à travers le câble de transmission 6, ce fonctionnement étant obtenu sur la portion A du puits en remontant progressivement la colonne de manoeuvre 3. Cette opération de remontée de la colonne 3 est facilitée du fait que le câble est, en surface, à l'extérieur de la colonne 3, ce qui rend plus aisé le dévissage des éléments tubulaires de la colonne.
  • Le raccord 13 peut être de tout type connu et en particulier du type de celui décrit dans le brevet US 4.062.551.
  • Lors de leur utilisation, certains outils nécessitent d'être correctement centrés dans le puits. Ceci peut être obtenu par des cenireurs 14 fixés sur le carter 2 et éventuellement sur la colonne 3 comme le montre schématiquement la figure 7. Ces centreurs sont, par exemple du type à lames bien connus dans les techniques de forage des sols. D'autres types de centreurs peuvent aussi être utilisés, par exemple des centreurs en caoutchouc avec passage de boue.
  • Selon un mode de réalisation illustré à la figure 8, l'outil 1 et son carter sont reliés à l'extrémité de la colonne rigide 3 par une portion de tube déformable 15 constituée par exemple par des bagues tubulaires articulées les unes aux autres. De telles portions de tige déformable sont bien connues dans 1a technique et commercialisées par exemple par la Société ARCO DRILLING sous la dénomination de "KNUCKLE JOINT".
  • Dans ce cas, seul le carter 2 est muni de centreurs 14 maintenant l'outil sensiblement dans l'axe du puits.
  • Pour travailler dans de bonnes conditions, certains outils nécessitent d'être dégagés de leur carter de protection 2. C'est le cas par exemple de sondes de mesures électriques du type commercialisé sous le nom de latérolog ou "dual" latérolog, des sondes de mesure acoustique, etc...
  • L'outil peut être dégagé de son carter par tout dispositif connu tel que par exemple un piston solidaire de T'outil et coulissant dans le carter. Par injection d'un fluide hydraulique tel que de la boue, on provoque le déplacement du piston pour dégager du carter la partie active de l'outil ou réintégrer l'outil dans son carter de protection.
  • Les figures 10A et 108 illustrent schématiquement un tel mode de réalisation et le principe de son fonctionnement.
  • Dans l'exemple illustré par ces figures, la référence 16 désigne la partie active de l'outil reliée électriquement au connecteur mâle 4 par un câble électrique extensible 17 et solidaire d'un piston 18 monté coulissant à l'intérieur du carter 2. Le coulissement de l'ensemble 16-18 peut s'effectuer entre la position rentrée de l'organe 16 représentée à la figure 10A et sa position illustrée à la figure IOB dans laquelle la partie active 16 de l'outil est dégagée du carter 2 par l'extrémité de celui-ci, sous l'effet d'une surpression du fluide injecté dans le train de tiges, en comprimant un ressort de rappel 19. Le piston 18 est muni d'un organe 20 assurant son verrouillage dans l'une ou l'autre de ses deux positions limites en coopérant avec des rainures 21 et 22 ménagées dans la paroi du carter 2. Dans le piston 18 sont ménagés des canaux permettant l'écoulement du fluide de forage.
  • Dans la position de la figure 10A, ce fluide s'échappe à travers des orifices 24 ménagés à l'extrémité du arter 2, tandis que des orifices latéraux 25 sont obturés par une bague 23. L'organe 20 pourra être, par exemple, de type mécanique ou électromécanique.
  • Lors du passage à la position illustrée par la figure IOB, cette bague 23 est repoussée vers la droite par le piston 18 en découvrant les orifices 25 par lesquels le fluide peut aussi s'échapper (il en résulte une chute de pression de ce fluide permettant de déceler en surface que l'organe actif 16 a atteint sa position de travail).
  • Certains outils, tels que les outils à patins type densité, microrésistivité, micro-acoustique et certains perforateurs à charges explosives, nécessitent d'être orientés dans le puits avant leur mise en fonctionnement afin d'améliorer leurs performances. De plus, l'orientation de l'outil constitue une donnée s'ajoutant à celle de la mesure. La combinaison de ces deux informations dans les puits fortement déviés et horizontaux améliore l'interprétation des résultats. Cela peut être le cas pour la détection des fractures de la formation et la détermination de la cimentation du tubage.
  • Pour cela, le carter 2 pourra contenir un organe de détection d'orientation, tel qu'au moins un accéléromètre ou un gyrocompas.
  • Par exemple, l'utilisation d'un seul accéléromètre, dont l'axe de rotation est confondu avec celui de l'outil, permet de placer une génératrice préalablement repérée de l'outil dans un plan vertical passant par l'axe de l'outil.
  • L'utilisation combinée de deux accéléromètres dont les axes de rotation sont perpendiculaires entre eux et à l'axe de l'outil, permet de mesurer l'angle formé entre la verticale et le plan contenant la génératrice préalablement repérée et l'axe de la sonde.
  • Ainsi, la rotation de la tige 3 peut être obtenue depuis la surface en fonction des indications fournies par ces organes, et permet de positionner correctement l'outil dans le puits.
  • Cette méthode présente cependant des inconvénients, parmi lesquels :
    • - la difficulté de contrôler avec précision l'angle de rotation en raison des forces de frottement s'exerçant tout au long du train de tiges, ces forces nécessitant l'application d'un couple élevé depuis la surface,
    • - la nécessité de faire plusieurs rotations complètes du train de tiges autour de son axe en surface avant de produire la rotation de l'outil,
    • - lorsque la rotation de l'outil se produit, elle est souvent brutale et ne peut être contrôlée avec précision.
  • En outre, il est difficile de faire tourner le train de tiges depuis la surface en raison de la présence du câble électrique à l'extérieur de ce train de tiges. Ceci rend inutilisable la tige carrée et la table de rotation.
  • Par ailleurs, la rotation de l'ensemble du train de tiges depuis la surface est une opération peu sûre et dangereuse lorsqu'elle doit être effectuée manuellement ce qui est généralement le cas.
  • Sur la figure 7, la référence 36 désigne des moyens d'entraînement en rotation de l'outil, disposés au-delà d'une partie tubulaire déformable 38.
  • Sur la figure 8, les moyens d'entraînement en rotation sont situés au-dessus du tube déformable 15. Il serait possible d'échanger les positions des moyens d'entraînement en rotation entre les figures 7 et 8.
  • On ne sortira pas du cadre de la présente invention en mettant en oeuvre un outil dont une génératrice est repérée et qui comporte un accéléromètre dont l'axe de rotation est confondu avec celui de l'outil, si avant ou pendant la mise en fonctionnement de l'outil on provoque la rotation de l'outil sans faire tourner l'ensemble du train de tiges jusqu'à ce que le signal fourni par l'accéléromètre indique que la génératrice repérée de l'outil se trouve dans le plan vertical passant par l'axe de la colonne de forage.
  • De même, on ne sortira pas du cadre de la présente invention en mettant en oeuvre un outil dont une génératrice est repérée et comportant deux accéléromètres dont les axes de rotation sont perpendiculaires entre eux et perpendiculaires à l'axe de l'outil, si on détermine à partir des indications des accéléromètres, l'angle formé entre le plan vertical passant par l'axe de l'outil et le plan contenant l'axe de l'outil et la génératrice repérée de l'outil et en ce qu'on provoque la rotation de l'outil sans faire tourner l'ensemble du train de tiges jusqu'à ce que l'angle déterminé atteigne une valeur choisie à l'avance.
  • Des modifications pourront être apportées sans sortir du cadre de la présente invention, en particulier comme le montre la figure 9.
  • Par exemple, pour certains outils tels qu'un outil pour prélever des échantillons de liquide dans le puits ou un outil de perforation d'un tubage fixé à la paroi du puits, cet outil étant d'un type que les techniciens désignent par les termes de "canon" ou "scallop", le carter pourra être intégré à l'outil lui-même, ou être supprimé. Dans ce cas, l'outil 1 sera directement fixé à l'extrémité de la colonne 3 au moyen d'un raccord intermédiaire 3b muni de préférence d'orifices 3c pour le passage du fluide.
  • L'outil utilisé dans le dispositif selon l'invention pourra évidemment comporter un organe pour mesurer la force ou contrainte s'exerçant sur cet outil, ce qui est particulièrement utile lorsque l'outil n'est pas logé dans un carter protecteur.
  • Cet organe peut être actionné lorsque la connexion électrique est réalisée.
  • Les figures 11A et 11B représentent respectivement la partie supérieure et la partie inférieure de l'ensemble constitué par la barre de charge 7 et le connecteur femelle 5, dans la position de raccordement de cet ensemble au connecteur mâle 4 logé à la base du train de tiges 3, au-dessus de l'outil 1. Les flèches montrent l'écoulement du fluide injecté de la surface qui s'échappe par les orifices 3c au-dessus du carter 2 (Fig. 11B) ou de l'outil 1 (Fig. 9).
  • Un raccord-26 assure la connexion électrique des conducteurs 27 du câble 6 avec le connecteur femelle 5.
  • L'ensemble 5-7, lié mécaniquement au raccord 26 comporte deux organes de centrage 7a et 7b et un manchon 28 portant des coupelles annulaires 29 (par exemple en élastomère), de diamètre inférieur au diamètre interne du train de tiges 3, qui constituent un ensemble de pistons permettant la propulsion de l'ensemble 5-7 par le fluide sous pression dans les portions inclinées du puits.
  • Un positionnement rigoureux et fiable du connecteur femelle 5 sur la fiche mâle est assuré en combinant :
    • 1) une portée conique 30 du connecteur femelle coopérant avec une butée correspondante 31 ménagée sur la paroi interne de l'élément du train de tiges dans lequel vient se loger la prise 5.
    • 2) un système d'accrochage situé au-dessus de l'ensemble 30-31, ce système comportant de préférence au moins une rondelle d'accrochage cisaillable 33 rendue solidaire de la prise femelle 5 et une pluralité de doigts ou lames élastiques d'accrochage et de retenue 32, agencés à l'intérieur de l'élément de tain de tiges et solidaires de cet élément (dans l'exemple représenté, les lames sont au nombre de trois et séparées par 120°).
  • La rondelle d'accrochage 33 étant engagée sous les faces de retenue 32a des doigts 32 par une impulsion d'enclenchement produite par la pression du fluide (la manière dont cette impulsion est produite sera précisée ci-après), la prise 5 se trouve rigoureusement positionnée entre une butée basse 31 (dont le niveau correspond à une connexion électrique parfaite entre les éléments 4 et 5) et la butée haute formée par les faces de retenue 32a des doigts 32.
  • En exerçant sur le câble 6 depuis la surface une traction modérée (de valeur inférieure à celle provoquant le cisaillement de la rondelle 33), on peut vérifier que l'accrochage est bien réalisé (dans ce cas, en effet, la traction sur le câble se traduit par une augmentation de sa tension).
  • La prise 5 pourra être déconnectée de la fiche 4 par un effort de traction plus élevé provoquant le cisaillement de la rondelle 33 au niveau des couteaux 32. Cet effort de traction devra avoir une valeur supérieure à la force de cisaillement augmentée des forces de frottement du câble 6 tout au long du train de tiges 3. L'expérience a montré qu'avec un tel dispositif on pouvait effectuer plusieurs connexions et déconnexions successives sans qu'il soit nécessaire de remonter à chaque fois la rondelle 33 en surface pour la changer, les encoches 33a créées par cisaillement lors d'une déconnexion ne se retrouvant pas en regard des couteaux 32 lors d'une nouvelle connexion.
  • La rondelle 33 pourra cependant être changée facilement en surface après remontée de la prise 5 et l'on pourra disposer de jeux de rondelles de résistances au cisaillement différentes, en fonction de la résistance à la traction du câble 6.
  • L'impulsion de pression du fluide provoquant l'enclenchement de la rondelle 33 avec les lames de retenue 32 et, par suite, de la prise 4 sur la fiche 5, est produite en plaçant dans le train de tiges, à un niveau légèrement supérieur à celui occupé par les coupelles 29 en position de connexion des éléments 4 et 5, une chemise tubulaire 34 de diamètre interne réduit, peu supérieur au diamètre externe des coupelles 29, de manière à produire un accroissement soudain de la poussée axiale dirigée vers le bas agissant sur les coupelles, au moment où celle-ci traversent la chemise tubulaire 34, peu avant la connexion.
  • Cette impulsion suffit à produire l'enclenchement de la rondelle 33 avec les lames 32.
  • A la sortie de la chemise tubulaire 34, les coupelles 29 penêtrent dans une chambre de diamètre plus large, permettant un écoulement aisé du fluide autour des coupelles.
  • Les diamètres respectifs des coupelles 29 et de la chemise tubulaire 34 pourront être modifiés à volonté.
  • Il est évident que d'autres moyens peuvent être utilisés pour verrouiller la fiche 4 à la prise 5 par exemple, des moyens électriques,' mécaniques ou électrohydrauliques pouvant être télécommandés de la surface.
  • Les dispositifs selon l'invention décrits ci-dessus permettent d'effectuer si on le désire une circulation continue ou périodique de fluide autour de l'outil en cours d'opération.
  • Cette circulation est particulièrement avantageuse pour la sécurité du puits, pour le nettoyage de celui-ci, pour faciliter le déplacement du train de tiges dans ce puits et/ou pour refroidir l'outil si celui-ci est utilisé dans une formation géologique de température élevée et/ou pour refroidir la formation elle-même.
  • La technique selon l'invention est par suite particulièrement intéressante pour mettre en oeuvre une caméra de télévision destinée à l'observation de la paroi d'un puits, par exemple à travers un hublot agencé dans la paroi du carter 2. Dans ce cas, en effet, on peut facilement faire circuler à travers le train de tiges de l'eau claire qui dégage le champ de l'objectif de la caméra et assure le refroidissement de celle-ci en cours de fonctionnement.
  • Les moyens d'entrainement en rotation de l'outil pourront être du type de ceux décrits dans le brevet US-4 321.951 ou US-4.286.676 mais en étant limités à la production d'un angle de 180° entre les deux éléments tubulaires illustrés dans ce brevet. Selon la présente invention, l'un de ces éléments tubulaires sera alors rendus solidaire en rotation du train de tiges et l'autre solidaire en rotation de l'outil ou instrument.
  • La figure 13 montre un autre mode de réalisation dans lequel une première pièce 39 est solidaire du train de tiges, au moins en rotation et une seconde pièce 40 est solidaire de l'outil 41 par une liaison 42.
  • A l'intérieur des pièces 39 et 40 sont logés deux éléments tubulaires coaxiaux 43 et 44. Le premier élément 43 est solidaire de la pièce 39 par l'intermédiaire de la liaison 45 et porte un connecteur tournant 46 réalisant la connexion électrique entre l'outil et la première extrémité d'un câble électrique 47. L'autre extrémité de ce câble est connectée à l'extrémité du câble de transmission 6 par l'intermédiaire de la douille 5. Ainsi, la fiche 4 se trouve éloignée de l'outil. Le ;econd élément tubulaire 44 qui entoure le premier comprend à l'une de ses extrémités une rainure 48 coopérant avec au moins un doigt 49 solidaire de la pièce 40.
  • Cette rainure peut être du type décrit dans le brevet US 4.286.676. Jne partie au moins de cette rainure peut être inclinée par rapport à l'axe de ladite seconde pièce 44. De préférence, la rainure est fisposée de façon que l'outil 41 tourne lorsque le second élément cubulaire 44 est descendu, par exemple en augmentant la pression d'un luide depuis la surface.
  • Ce fluide exerce une force sur un piston 50 solidaire du second élément tubulaire 44 à la seconde extrémité de celui-ci. Ledit second élément 44 peut comprendre un second piston 52 et un orifice 51 permettant la circulation dudit fluide à travers un second orifice 65 nénagé dans ledit premier élément 43. Les pistons 50 et 52 coopèrent successivement avec un alésage 53 ménagé à l'intérieur de la pièce 39.
  • Au repos, le piston 52 est situé à l'intérieur dudit alésage. Lorsque le débit de fluide est inférieur à une certaine valeur déterminée par la raideur et la compression initiale d'un ressort 54 qui coopère avec une butée 55 et tend à rappeler le second élément 44, il n'y a aucun déplacement.
  • Lorsque le débit de fluide augmente, le fluide exerce une force suffisante sur le piston 52 pour déplacer le second élément 44 vers le bas. Alors le premier piston 50 coopère avec l'alésage 53. A cet instant, l'orifice 51 n'est plus en communication avec le fluide et la force exercée sur le premier piston 50 augmente suffisamment pour entrainer la rotation de la pièce 40 et de l'outil.
  • Lorsque le second élément est dans sa position la plus basse, l'orifice 51 communique à nouveau avec le fluide dont il permet la circulation.
  • Lorsque le débit de fluide est interrompu, le ressort 54 rappelle le second élément vers sa position de repos.
  • Le premier élément 43 a un orifice permettant la circulation du fluide à travers l'orifice 51.
  • En outre, le second élément comprend une rainure 56 qui coopère avec un doigt de guidage 57, ces deux pièces mentionnées en dernier empêchant la rotation du second élément par rapport à la pièce 39.
  • Les figures 14 et 14A illustrent un autre mode de réalisation. Suivant ce mode de réalisation, une pièce 58 est solidaire en rotation et en translation du train de tiges 3. Cette pièce 58 comporte des rainures 59 telles que celles décrites ci-dessus, mais qui sont agencées suivant des directions opposées, c'est-à-dire de manière à entraîner l'outil en rotation lorsqu'on retire celui-ci. Ces rainures coopèrent avec au moins un doigt solidaire d'une seconde pièce 61 qui peut tourner autour de la première pièce 58 et peut également se mouvoir par translation par rapport à la première pièce.
  • L'outil 62 est solidaire au moins en rotation avec ladite seconde pièce. La première pièce 58 est solidaire en rotation, mais non en translation d'un premier élément 63 d'un connecteur électrique rotatif. Ceci peut être obtenu au moyen d'un doigt 66 solidaire dudit premier élément du connecteur rotatif, ce doigt coopérant avec une rainure axiale 67 ménagée dans la première pièce 58.
  • Le premier élément 63 du connecteur rotatif coopère avec un second élément 64 dudit connecteur, situé sur l'outil 62.
  • Ces deux éléments peuvent tourner l'un par rapport à l'autre. Un câble électrique extensible 65 relie électriquement le premier élément 63 du connecteur rotatif à une prise électrique, cette prise coopérant avec la douille 5.
  • Pour faire tourner la seconde pièce 61 et par suite l'outil, le train de tiges est relevé depuis la surface et les pièces 58 et 61 sont déplacées depuis leur position de la figure 14 jusqu'à la position illustrée sur la figure 14A, ce qui entraine la rotation de la pièce 61.
  • Le train de tiges peut ensuite être abaissé. Il est évident que les modes de réalisation selon ls figures 10A et 10B peuvent être combinés avec ceux des figures 13, 14 et 14A.
  • Il est également évident que l'on peut utiliser d'autres moyens pour entrainer l'outil en rotation, par exemple un moteur électrique 68 accouplé à l'outil (Fig. 10B) soit directement, soit par l'intermédiaire d'engrenages 69 et 70 (Fig. 10A), ou bien accouplé à une pompe de façon à actionner une pièce telle que le second élément 44 du mode de réalisation illustré par la figure 13.
  • Il y a en outre d'autres dispositifs utilisables pour convertir un mouvement de translation en rotation, par exemple une pièce animée d'un mouvement de translation alternatif, cette pièce comportant au moins une rainure hélicoïdale coopérant avec des doigts d'une pièce intermédiaire qui se déplace seulement en rotation. Ainsi la pièce intermédiaire a un mouvement de rotation alternatif. Cette pièce peut être équipée de cliquets coopérant avec un mécanisme d'entrainement. Ainsi le mouvement de translation alternatif de ladite pièce ayant au moins une rainure hélicoïdale est converti en mouvement de rotation alternatif de la pièce intermédiaire, ce qui entraine à son tour une succession de mouvements de rotation du mécanisme d'entrainement à cliquets, lequel est solidaire de l'outil.

Claims (10)

1. - Méthode utilisable pour effectuer des opérations de diagraphie ou des interventions dans une zone prédéterminée d'un puits foré qui présente à partir de la surface du sol une portion initiale sensiblement verticale ou peu inclinée, suivie d'une portion inclinée ou horizontale, ladite zone prédéterminée étant située au-delà de ladite portion initiale du puits, cette méthode comportant les étapes suivantes :
a) on fixe en surface un corps d'outil de diagraphie ou d'intervention à la partie inférieure d'une première tige d'un train de tiges, ledit corps d'outil étant relié électriquement à un premier connecteur électrique solidaire de ladite première tige et accessible depuis la partie supérieure de celle-ci,
b) on assemble le train de tiges en connectant bout à bout de nouvelles tiges de forage au-dessus de ladite première tige et on fait descendre progressivement dans le puits l'ensemble du corps d'outil et du train de tiges, au fur et à mesure de l'assemblage de ce dernier,
c) on introduit dans le train de tiges, depuis la surface, un second connecteur électrique raccordable en milieu liquide audit premier connecteur, ce second connecteur étant fixé mécaniquement à l'extrémité inférieure d'un câble de transmission électrique et relié électriquement à la surface par l'intermédiaire de ce câble,
d) lorsque le corps d'outil atteint sensiblement ladite zone prédéterminée du puits, on fait descendre dans le train de tiges ledit second connecteur fixé au câble en faisant coulisser ledit câble à travers un raccord spécial et l'on fait progresser ce second connecteur à travers ladite portion inclinée ou horizontale du puits par pompage d'un fluide à travers le train de tiges depuis la surface jusqu'à ce que ledit second connecteur électrique vienne se raccorder audit premier connecteur.
e) on fait progresser ledit corps d'outil dans ladite zone prédéterminée du puits en ajoutant des éléments tubulaires au train de tiges au-dessus dudit raccord spécial (13), ledit corps d'outil (2) restant solidaire de ladite première tige du train de tiges, et
f) on effectue au moins une opération de diagraphie, ou une intervention,

caractérisée en ce que l'on effectue une rotation du corps de l'outil sans faire tourner l'ensemble du train de tiges.
2. - Méthode selon la revendication 1, caractérisée en ce que l'on effectue ladite rotation après avoir positionner l'outil dans ladite zone prédéterminée.
3. - Méthode selon la revendication 1, caractérisée en ce que l'on effectue ladite rotation avant d'effectuer l'opération de diagraphie ou d'intervention.
4. - Méthode selon la revendication 1, caractérisée en ce que l'on effectue ladite rotation pendant l'opération de diagraphie ou d'intervention.
5. - Méthode selon la revendication 1 mettant en oeuvre un outil dont une génératrice est repérée et comportant un accéléromètre dont l'axe de rotation est confondu avec celui de l'outil, caractérisée en ce qu'avant la mise en fonctionnement de l'outil, on provoque la rotation de l'outil sans faire tourner l'ensemble du train de tiges jusqu'à ce que le signal fourni par l'accéléromètre indique que la génératrice repérée de l'outil se trouve dans le plan vertical passant par l'axe de la colonne de forage.
6. - Méthode selon la revendication 1 mettant en oeuvre un outil dont une génératrice est repérée et comportant deux accéléromètres dont les axes de rotation sont perpendiculaires entre eux et perpendiculaires à l'axe de l'outil, caractérisée en ce qu'on détermine, à partir des indications des accéléromètres, l'angle formé entre le plan vertical passant par l'axe de l'outil et le plan contenant l'axe de l'outil et la génératrice repérée de l'outil et en ce qu'on provoque la rotation de l'outil sans faire tourner l'ensemble du train de tiges jusqu'à ce que l'angle déterminé atteigne une valeur choisie à l'avance.
7. - Dispositif pour effectuer des opérations de diagraphie ou des interventions à l'aide d'un outil spécialisé, dans une zone prédéterminée d'un puits foré, comportant en combinaison une tige rigide creuse à laquelle est fixé l'outil, un premier connecteur électrique de raccordement relié à l'outil, un train de tiges se raccordant à la partie supérieure de ladite tige rigide, et un câble électrique pouvu à son extrémité d'un second connecteur électrique complémentaire du premier connecteur, un organe d'étanchéité à entrée latérale (13) à travers lequel le câble (6) peut coulisser, cet organe (13) étant surmonté d'éléments de train de tiges d'une longueur (2) correspondant au déplacement (A) souhaité de l'outil dans ladite zone prédéterminée du puits, caractérisé en ce qu'il comporte en outre des moyens pour entraîner l'outil en rotation, sans entraîner en rotation l'ensemble du train de tiges.
8. - Dispositif selon la revendication 7, caractérisé en ce que lesdits moyens d'entraînement en rotation comprennent une première pièce solidaire du train de tiges, une seconde pièce solidaire en rotation de l'outil, un premier élément tubulaire solidaire de ladite première pièce, un second élément tubulaire coaxial audit premier élément tubulaire et comportant une rainure coopérant avec au moins un doigt solidaire de ladite seconde pièce.
9. - Dispositif selon la revendication 8, caractérisé en ce que ledit second élément comprend deux pistons entre lesquels est situé un orifice ménagé dans ledit second élément, ledit orifice coopérant avec un second orifice ménagé dans ledit premier élément.
10. - Dispositif selon la revendication 7, caractérisé en ce que lesdits moyens d'entrainement en rotation comprennent une première pièce solidaire du train de tiges en rotation et en translation, ladite première pièce comportant une rainure et une seconde pièce solidaire en rotation avec l'outil, ladite seconde pièce comprenant au moins un doigt d'entrainement coopérant avec ladite rainure.
EP85401016A 1984-05-25 1985-05-23 Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales Expired EP0165154B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8408369 1984-05-25
FR8408369A FR2564893B2 (fr) 1984-05-25 1984-05-25 Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales.

Publications (2)

Publication Number Publication Date
EP0165154A1 true EP0165154A1 (fr) 1985-12-18
EP0165154B1 EP0165154B1 (fr) 1989-04-26

Family

ID=9304475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401016A Expired EP0165154B1 (fr) 1984-05-25 1985-05-23 Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales

Country Status (5)

Country Link
EP (1) EP0165154B1 (fr)
JP (1) JPH0768842B2 (fr)
DE (1) DE3569774D1 (fr)
FR (1) FR2564893B2 (fr)
NO (1) NO173347C (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583815A1 (fr) * 1985-06-19 1986-12-26 Inst Francais Du Petrole Dispositif et methode de protection temporaire d'un outil d'intervention ou d'un instrument de mesure fixe a l'extremite d'une colonne
EP0291005A2 (fr) * 1987-05-14 1988-11-17 Preussag Aktiengesellschaft Berlin/Hannover Procédé et dispositif pour les mesures dans des puits profonds courbes ou inclinés vers l'horizontale
EP0313374A1 (fr) * 1987-10-23 1989-04-26 Halliburton Company Procédé de mesure d'un puits utilisant un système de mesure mû par la tige de forage
EP0375100A1 (fr) * 1988-08-18 1990-06-27 Halliburton Company Procédé et dispositif pour faire des mesures dans des puits déviés
GB2237831A (en) * 1989-11-01 1991-05-15 Marathon Oil Co Logging short radius horizontal drainholes
EP0773344A1 (fr) * 1995-11-10 1997-05-14 Institut Francais Du Petrole Dispositif d'exploration d'une formation souterraine traversée par un puits horizontal comportant plusieurs sondes ancrables

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO302429B1 (no) 1987-05-07 1998-03-02 Inst Francais Du Petrole Mellomstykke innrettet til å innkobles i en rörstreng
FR2626380B1 (fr) * 1988-01-22 1990-05-18 Inst Francais Du Petrole Interpretation de diagraphies electriques
CN106062302B (zh) * 2014-04-08 2018-09-21 哈利伯顿能源服务公司 柔性铰刀外壳及钻井系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286676A (en) * 1978-07-24 1981-09-01 Institut Francais Du Petrole Crank connector for directional drilling
US4321965A (en) * 1980-07-03 1982-03-30 Otis Engineering Corporation Self-aligning well tool guide
EP0049668A2 (fr) * 1980-10-06 1982-04-14 Schlumberger Limited Procédé et dispositif pour effectuer des opérations de diagraphie on de perforation dans un trou de forage
FR2501777A1 (fr) * 1981-03-13 1982-09-17 Inst Francais Du Petrole Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
FR2522059A2 (fr) * 1981-03-13 1983-08-26 Inst Francais Du Petrole Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE412421B (sv) * 1976-08-27 1980-03-03 Defibrator Ab Sett att framstella fibermassa av lignocellulosahaltigt material
US4168747A (en) 1977-09-02 1979-09-25 Dresser Industries, Inc. Method and apparatus using flexible hose in logging highly deviated or very hot earth boreholes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286676A (en) * 1978-07-24 1981-09-01 Institut Francais Du Petrole Crank connector for directional drilling
US4321965A (en) * 1980-07-03 1982-03-30 Otis Engineering Corporation Self-aligning well tool guide
EP0049668A2 (fr) * 1980-10-06 1982-04-14 Schlumberger Limited Procédé et dispositif pour effectuer des opérations de diagraphie on de perforation dans un trou de forage
FR2501777A1 (fr) * 1981-03-13 1982-09-17 Inst Francais Du Petrole Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
FR2522059A2 (fr) * 1981-03-13 1983-08-26 Inst Francais Du Petrole Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583815A1 (fr) * 1985-06-19 1986-12-26 Inst Francais Du Petrole Dispositif et methode de protection temporaire d'un outil d'intervention ou d'un instrument de mesure fixe a l'extremite d'une colonne
EP0206917A1 (fr) * 1985-06-19 1986-12-30 Institut Français du Pétrole Dispositif et méthode de protection témporaire d'un outil d'intervention ou d'un instrument de mesure fixé à l'extrémité d'une colonne
EP0291005A2 (fr) * 1987-05-14 1988-11-17 Preussag Aktiengesellschaft Berlin/Hannover Procédé et dispositif pour les mesures dans des puits profonds courbes ou inclinés vers l'horizontale
EP0291005A3 (fr) * 1987-05-14 1990-02-07 Preussag Aktiengesellschaft Berlin/Hannover Procédé et dispositif pour les mesures dans des puits profonds courbes ou inclinés vers l'horizontale
EP0313374A1 (fr) * 1987-10-23 1989-04-26 Halliburton Company Procédé de mesure d'un puits utilisant un système de mesure mû par la tige de forage
EP0375100A1 (fr) * 1988-08-18 1990-06-27 Halliburton Company Procédé et dispositif pour faire des mesures dans des puits déviés
GB2237831A (en) * 1989-11-01 1991-05-15 Marathon Oil Co Logging short radius horizontal drainholes
GB2237831B (en) * 1989-11-01 1993-04-21 Marathon Oil Co Method of apparatus for logging short radius horizontal drainholes
EP0773344A1 (fr) * 1995-11-10 1997-05-14 Institut Francais Du Petrole Dispositif d'exploration d'une formation souterraine traversée par un puits horizontal comportant plusieurs sondes ancrables
FR2741108A1 (fr) * 1995-11-10 1997-05-16 Inst Francais Du Petrole Dispositif d'exploration d'une formation souterraine traversee par un puits horizontal comportant plusieurs sondes ancrables
US5810080A (en) * 1995-11-10 1998-09-22 Institut Francais Du Petrole Device for exploring an underground formation crossed by a horizontal well comprising several anchorable sondes

Also Published As

Publication number Publication date
JPS60253694A (ja) 1985-12-14
NO173347B (no) 1993-08-23
FR2564893B2 (fr) 1987-02-13
EP0165154B1 (fr) 1989-04-26
FR2564893A2 (fr) 1985-11-29
DE3569774D1 (en) 1989-06-01
NO173347C (no) 1993-12-01
JPH0768842B2 (ja) 1995-07-26
NO852094L (no) 1985-11-26

Similar Documents

Publication Publication Date Title
CA1193541A (fr) Methode et dispositif pour effectuer, a l'aide d'outils specialises des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
CA1265122A (fr) Ensemble permettant d'effectuer des forages orientes
EP1525371B1 (fr) Conduite de guidage telescopique de forage en mer
EP0136935B1 (fr) Dispositif de forage et de mise en production pétrolière multidrains
EP0526293B1 (fr) Méthode et dispositif pour effectuer des mesures et/ou interventions dans un puits foré ou en cours de forage
EP0404669B1 (fr) Méthode et dispositif pour conduire des opérations de perforation dans un puits
EP0122839A1 (fr) Méthode et dispositif permettant d'effectuer des mesures et/ou interventions dans un puits
FR2713697A1 (fr) Ensemble de forage de fond de puits.
FR2484525A1 (fr) Appareil et procede de raccordement hydraulique, notamment pour train d'essai de puits de petrole sous-marin
FR2914006A1 (fr) Procede et appareil pour une diagraphie de puits acheminee par tige
FR2814494A1 (fr) Moteur de trepan de carottage ameliore et procede pour obtenir un echantillon de carotte de materiau
WO1988005111A1 (fr) Methode et dispositif pour effectuer des mesures ou/et interventions dans une portion de puits fortement inclinee et son application a la realisation de profils sismiques
FR2522059A2 (fr) Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales
EP0165154B1 (fr) Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales
EP0773344B1 (fr) Dispositif d'exploration d'une formation souterraine traversée par un puits horizontal comportant plusieurs sondes ancrables
CA2031602C (fr) Systeme pour conduire un dispositif d'exploration non rigide dans un puits ou sa progression par gravite est difficile
EP0307266A1 (fr) Procédé et dispositif pour manoeuvrer des équipements spécialisés d'intervention dans un puits foré ayant au moins une section fortement inclinée par rapport à la verticale
CA1273286A (fr) Dispositif pour mettre en place un outil ou instrument dans une conduite utilisable notamment pour l'exploitation en fond de puits de pompes hydrauliques autonomes, en production par l'interieur d'un tubing
EP0296207B1 (fr) Methode et dispositif pour effectuer des mesures et/ou interventions dans un puits soumis a compression hydraulique
EP0295291B1 (fr) Systeme de deplacement d'un ensemble d'instruments et methode de mesures ou/et d'interventions dans un puits
FR2458670A1 (fr) Dispositif de carottage a la turbine avec tube suiveur
FR2564894A2 (fr) Methode et dispositif permettant d'effectuer des mesures et/ou interventions dans un puits.
FR2609103A1 (fr) Methode et dispositif pour effectuer des mesures ou/et interventions dans une zone d'un puits et controler la circulation de fluide vers une autre zone de ce puits ou l'on effectue une compression hydraulique
FR2594482A1 (fr) Methode et dispositif permettant d'effectuer des mesures ou interventions dans un puits immerge sans utilisation d'un tube prolongateur
FR2573472A2 (fr) Methode et dispositif permettant d'effectuer des mesures et/ou interventions dans un puits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19860227

17Q First examination report despatched

Effective date: 19870505

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3569774

Country of ref document: DE

Date of ref document: 19890601

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010613

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020527

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030328

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030422

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030530

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

BERE Be: lapsed

Owner name: *INSTITUT FRANCAIS DU PETROLE

Effective date: 20030531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST