EP0155575B1 - Method of regulating the flow of an electrically conductive fluid especially of a molten bath of metal in continuous casting and an apparatus for carrying out the method - Google Patents

Method of regulating the flow of an electrically conductive fluid especially of a molten bath of metal in continuous casting and an apparatus for carrying out the method Download PDF

Info

Publication number
EP0155575B1
EP0155575B1 EP85102328A EP85102328A EP0155575B1 EP 0155575 B1 EP0155575 B1 EP 0155575B1 EP 85102328 A EP85102328 A EP 85102328A EP 85102328 A EP85102328 A EP 85102328A EP 0155575 B1 EP0155575 B1 EP 0155575B1
Authority
EP
European Patent Office
Prior art keywords
flow
metal
coil
insert body
pouring spout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85102328A
Other languages
German (de)
French (fr)
Other versions
EP0155575A1 (en
Inventor
Eduard Mueller
Hans Gloor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Concast Standard AG
Original Assignee
Concast Standard AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concast Standard AG filed Critical Concast Standard AG
Priority to AT85102328T priority Critical patent/ATE32500T1/en
Publication of EP0155575A1 publication Critical patent/EP0155575A1/en
Application granted granted Critical
Publication of EP0155575B1 publication Critical patent/EP0155575B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2082Utilizing particular fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2191By non-fluid energy field affecting input [e.g., transducer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2191By non-fluid energy field affecting input [e.g., transducer]
    • Y10T137/2196Acoustical or thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4456With liquid valves or liquid trap seals
    • Y10T137/4643Liquid valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system

Definitions

  • the invention relates to a method for regulating the flow of an electrically conductive liquid, in particular a molten metal during continuous casting, and a device for carrying out the method.
  • the active length of the coil is understood to mean approximately the length of the coil in the coil axis.
  • the metal located in the pouring tube flow channel in the direction of flow in front of the effective length of the coil is cooled and solidified. Removal of the solidified metal plug can be effected by switching on the coil raised to the height of the metal plug or a second coil arranged at this height. This can e.g. in the case of multi-strand systems, a targeted re-pouring takes place after an interruption for individual strands.
  • the refractory insert body which fills the center at least with its upper part, ensures that the metal flows on the outside of the insert body, as a result of which the electromagnetic influence by the coil takes place in an area close to the inductor, in which the field strength required for regulation takes place with lower energy requirements can be generated. This creates a better possibility of regulation or the possibility of stopping the flow of metal.
  • the insert body preferably forms an annular space with the pouring tube, the length of which influences the control characteristic in the electromagnetic effective range of the coil.
  • the diameter of the insert body filling the center of the pouring tube is advantageous to choose according to the electrical conductivity of the poured metal melt and / or the frequency of the coil current.
  • a particularly good control option is obtained if the diameter of the insert body is greater than three times the depth of penetration 8 of the electromagnetic field into the molten metal. Under this depth of penetration is the penetration, as described for example in DE-OS 1 803 473.
  • the flow channel of the pouring tube preferably has a shoulder-shaped widening in the direction of flow of the metal to a space to the end face of which the insert body is fastened at a distance.
  • the metal flow is displaced into an external gap or annulus.
  • the metal can be constricted well in the space in front of the gap, so that if the displacement is large enough, no metal will flow through the annular space, delimited by the outer surface of the insert body and the pouring tube.
  • the insert part preferably has bores or flow channels in its upper part, in which the metal can flow from the annular space into a central flow channel of the insert body and flows downwards therein.
  • This allows the metal, e.g. the steel can be introduced centrally into a subsequent vessel, which is particularly advantageous for smaller strand formats.
  • the insert body can be adjustable in height in the pouring tube, for example by means of a screw thread provided in the enlarged bore of the pouring tube.
  • the distance between the upper part of the insert piece and the end face of the enlarged bore can be changed. i.e. By changing the space formed by the inner surface of the pouring tube and the top surface of the insert used, this flow space can be adapted to the particular circumstances.
  • a thermally and electrically well-conducting ring can be arranged in front of the upper part of the insert body and concentrically around the flow channel, which can be acted upon by coolant via a supply line. As described below in the exemplary embodiment, this provides a particularly advantageous possibility of stopping and shutting off the metal flow.
  • the electromagnetic coil can be height-adjustable in the axial direction along the pouring tube, advantageously up to the height of the built-in ring.
  • a heat sink can be applied to the upper part of the insert body, which has the task of solidifying the metal that first flowed into the pouring tube during casting.
  • This body is inserted into the bore of the pouring tube before the pouring tube and insert body are assembled, but can also already be integrated in the insert, e.g. consist of a cooling metal attached by means of a dovetail guide.
  • the metal flow can be directed upwards in a flow direction before entering an annular space. opposed to gravity.
  • at least one flow opening can be arranged in the refractory insert body such that the metal melt flows through this flow opening before entering the annular space and can be fed to the annular space from below and that bores for the outflow from the annular space above a boundary edge on the Metal entry side of the annulus are arranged.
  • splashes caused by induced turbulence in the annular space fall back into a lower deflection channel. This means that you cannot exit the pouring pipe.
  • an insert body 2 is fixed in a pouring tube 1, which opens into a continuous casting mold 3 for producing a steel strand 18.
  • the pouring tube 1 is located below a pouring vessel, not shown, e.g. an intermediate container from which the steel flows into the flow channel 5 of the pouring tube 1.
  • This has a step-like or shoulder-shaped widening of the flow channel, in the flow direction of the steel, to a space 21, to the end face 7 of which there is an upper part 9 of the insert body 2 at a distance 10.
  • This upper part 9 has a smaller diameter than the enlarged flow-through bore 14 of the pouring tube 1 and fills the center of this bore to form an annular space 11 between the pouring tube wall and the part 9 of the insert body 2.
  • a screw thread 20 allows the distance 10 to be changed, so that a specific flow cross section can be set directly above the part 9 for the space 21.
  • An electromagnetic coil 25 is arranged concentrically around the pouring tube in such a way that the center of the coil lies approximately in the height range of the space 21.
  • the steel flowing through the pouring tube duct 5 from above is guided radially outward through the upper surface of the part 9 and then flows downward along the annular space 11. This prevents metal flow in the effective area of the coil, which corresponds approximately to the coil length, and in the center of the coil and the pouring tube channel.
  • the upper part of the insert body has, for example, four bores 16 ; through which the steel is fed to an axial and central flow channel 17, from which it can flow into the liquid core of the strand 18 formed in the mold 3.
  • the coil length 26 can be dimensioned according to the desired effect. In the case of a longer coil, which extends for example over the length of the annular space 11, the proportion of the eddy current braking effect is greater, and the flow rate can be regulated more precisely.
  • the mode of action is more restricted to a concentrated constriction of the steel with respect to the edge 28.
  • the electromagnetic coil 25 can be adjustable in height along the pouring tube, as indicated by the double arrow 27.
  • the steel flowing through can be braked or stopped by the constriction being reinforced to such an extent that the meniscus is displaced inwards over the edge 28 of the upper part 9, as shown in FIG. 1.
  • This enables the flow rate to be regulated easily and reliably from 0% to 100%, without mechanically moving parts and without mechanical wear and tear of any components.
  • Unwanted freezing of the steel in the device can be excluded by the inductive heating in the effective range of the coil, which is arranged only a short distance around the pouring tube.
  • the diameter of the flow channel 5 is approximately 40 mm
  • the outer and inner diameter of the annular space 11 is approximately 65 mm or 60 mm
  • that of the four bores 16 is approximately 15 mm
  • the axial bore 17 in the insert body 2 has a diameter of approximately 25 mm.
  • coolant e.g. Air or inert gas
  • the flow is briefly prevented electromagnetically and then the heat-conducting ring 30 is cooled until the metal has solidified in this area. The coil 25 is then switched off.
  • the coil can be axially displaced up to the height of the ring 30, so that there is also the possibility of inductively melting and continuing to pour an interrupted metal flow.
  • a second coil can also be provided, which is attached stationary at the height of the ring 30.
  • FIG. 2 shows a further embodiment in which the insert body 2 has been inserted into the pouring tube 1 from above. If necessary, this body 2 can be fastened in the pouring tube by means of a refractory cement. In this embodiment, the bores 16 are at the same height.
  • the operation of the coil 25 is illustrated in the right half of the figure. When the coil is charged with a sufficiently high current, the material is constricted radially up to the width of the upper part 9 of the insert body 2 and thus prevented from flowing further through the space formed between the inner tube wall and the upper part 9.
  • a heat sink 35 in the form of a disk, which was placed on the insert body 2 before the casting, is indicated by dashed lines.
  • the inductive heating effect of the coil 25 allows the metal solidified in the area of the heat sink 35 to be melted in a targeted manner over time.
  • the heat sink 35 can also already be integrated in the insert and e.g. be attached to it via a dovetail-like guide.
  • the pouring tube shown in Fig. 2 plunges into the bath level of a mold, not shown. It is clear that a short, non-immersing pouring tube can also be used instead.
  • the electromagnetic forces influencing the flow rate can be controlled via the current strength flowing in the coil 25. It is also possible to change the electromagnetic force on the melt at a predetermined current strength by moving the coil along its axis, or generally by changing the geometric position of the coil with respect to the edge 28 or the space 21, or by changing the current flow in the coil through electrical or mechanical current displacement. A combination of the above measures is also conceivable.
  • the coils 25 are arranged around the pouring tube 1.
  • the distance of the coil 25 from the annular space 11 is thus influenced by the wall thickness of the pouring tube 1.
  • the annular space 11 can also be formed directly by the coil 25 and by a displacement body with the edge 28.
  • the coil 25 can be coated with a thin layer of ceramic material and can represent, for example, a pouring tube extension. With such an arrangement, the efficiency is significantly improved.
  • the displacement body can be provided with a stopper-shaped attachment above the edge 28, which forms a stopper closure with an appropriately designed pouring tube.
  • the displacer is used together with an axially movable one Moving the pouring tube part in the direction of the fixed pouring tube part, the plug-shaped attachment can close the fixed pouring tube.
  • a stopper closure which acts from bottom to top, can, for example, completely interrupt the metal outflow as an emergency closure.
  • a refractory insert body 40 with two flow openings 41 is arranged within a pouring tube 43.
  • An annular space 44 is arranged in the effective range of an electromagnetic coil 45 between the insert body 40 and the pouring tube 43.
  • the flow openings 41 open into a likewise annular deflection channel 46, in which the molten metal is deflected before it enters the annular space 44 and is fed therein from below in the direction of the arrow 47.
  • Bores 49 for the outflow of the molten metal from the annular space 44 are located above a boundary edge 50 which defines the entry cross section of the annular space 44.
  • pouring tube 1, 43, insert body 2, 44 and the coil 25, 45 are advantageously designed to be round. However, it is also possible to choose other cross sections such as oval, polygonal, etc.
  • the method and the device according to the invention can advantageously be used in multi-strand casting plants.
  • several billet or billet strands with the same take-off speed and common system parts such as oscillation, roller guide, scissors etc. can be cast with a small strand spacing.
  • the electrical equipment in multi-strand systems for feeding the coil can include an independent medium-frequency power supply for each individual strand, or a medium-frequency supply for each multi-strand system with parallel connection or series connection or individual coils.
  • the individual control of the individual strands could be carried out by one or a combination of the control options listed above. With the parallel connection, a control for the individual strings would also be e.g. conceivable with upstream chokes with variable inductors.
  • the invention is equally advantageous to use in the case of the so-called “twin casting”, in which two strands have to be cast exactly synchronously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Flow Control (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Control For Baths (AREA)

Abstract

In a method for electromagnetically regulating flow and in an apparatus for performing the method, a molten metal flowing in a pouring tube is inhibited in a central region of the pouring tube by an insert member installed in a conduit of the pouring tube and is diverted radially outward. An electromagnetic coil is arranged concentrically about the pouring tube for exerting constrictive electromagnetic forces upon the molten metal and thus regulating the flow of molten metal in a wide range.

Description

Die Erfindung betrifft ein Verfahren zur Regelung des Durchflusses einer elektrisch leitenden Flüssigkeit, insbesondere einer Metallschmelze beim Stranggiessen, und eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for regulating the flow of an electrically conductive liquid, in particular a molten metal during continuous casting, and a device for carrying out the method.

Beim Stranggiessen wird der Durchfluss von Metall von einem Gefäss zum anderen, z.B. von einer Pfanne zu einem Zwischenbehälter oder von einem Zwischenbehälter in eine Stranggiesskokille, durch Stopfen oder Schieber geregelt. Die verschiedenen Nachteile dieser Regelorgane, ebenso die während des Giessbetriebes möglicherweise auftretenden Störungen, sind weitgehend bekannt. Genannt werden beispielsweise sogenannte Stopfenläufer, das Zufrieren von Durchflussquerschnitten, oft ungenügende Regelbarkeit, Abnützung von mechanisch bewegten Teilen, Notwendigkeit einer hydraulischen Stellvorrichtung usw.In continuous casting, the flow of metal from one vessel to another, e.g. from a pan to an intermediate container or from an intermediate container into a continuous casting mold, regulated by stopper or slide. The various disadvantages of these control elements, as well as the malfunctions that may occur during the casting operation, are largely known. So-called plug rotors, the freezing of flow cross-sections, often insufficient controllability, wear of mechanically moving parts, the need for a hydraulic actuating device, etc. are mentioned, for example.

Daher wurde bei einem bekannten Stand der Technik beim Stranggiessen versucht, den Querschnitt des das Giessrohr durchfliessenden Metalls mittels elektromagnetischer Kräfte, erzeugt durch konzentrisch um das Giessrohr angeordnete Spulen, einzuschnüren. Bei dieser elektromagnetischen Giessstrahlbeeinflussung ist jedoch die ausgeübte Wirkung ungenügend. Insbesondere ist ein komplettes Stoppen des Durchflusses nicht möglich, da der zu beeinflussende Metalldurchfluss aus physikalischen Gründen wohl bis zu einem gewissen Grad eingeschnürt, jedoch nicht vollständig abgeschnürt werden kann.Therefore, in a known prior art in continuous casting, attempts have been made to constrict the cross section of the metal flowing through the pouring tube by means of electromagnetic forces generated by coils arranged concentrically around the pouring tube. However, the effect exerted is insufficient with this electromagnetic flow control. In particular, it is not possible to completely stop the flow, since the metal flow to be influenced may be constricted to a certain extent for physical reasons, but cannot be completely cut off.

Aus der DE-AS 1 028 297, die den Oberbegriff von Anspruch 1 und 7 bildet, ist eine Vorrichtung zum Regeln der Strömungsgeschwindigkeit bzw. des Durchflusses einer elektrisch leitfähigen Flüssigkeit bekannt. Mit Hilfe konzentrisch um ein Giessrohr bzw. um eine Ausgussdüse angeordneter Spulen, die ein elektromagnetisches Feld erzeugen, wird die Menge des durchfliessenden Metalls beeinflusst. Ein Unterbrechen des Durchflusses ist jedoch nicht möglich.From DE-AS 1 028 297, which forms the preamble of claims 1 and 7, a device for regulating the flow rate or the flow of an electrically conductive liquid is known. With the help of coils arranged concentrically around a pouring tube or around a pouring nozzle, which generate an electromagnetic field, the amount of metal flowing through is influenced. However, it is not possible to interrupt the flow.

Es ist Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur Regelung des Durchflusses einer elektrisch leitenden Flüssigkeit, insbesondere einer Metallschmelze beim Stranggiessen, zu schaffen, die gegenüber dem bekannten Stopfenmechanismus oder Schieber eine bessere Regulierbarkeit, erhöhte Betriebssicherheit, kleinere Unterhaltskosten und geringeren Materialverschleiss erzielen. Auch soll ein betriebssicheres Starten und Stoppen des Metalldurchflusses erzielt werden.It is an object of the invention to provide a method and a device for regulating the flow of an electrically conductive liquid, in particular a molten metal during continuous casting, which achieve better controllability, increased operational safety, lower maintenance costs and lower material wear compared to the known plug mechanism or slide. An operationally reliable starting and stopping of the metal flow should also be achieved.

Diese Aufgabe wird durch die Summe der Merkmale der Patentansprüche gelöst. Dadurch, dass im Mittenbereich des Giessrohrkanals innerhalb der elektromagnetischen Wirklänge der Spule der Metalldurchfluss der elektrisch leitenden Flüssigkeit verhindert wird und auf das Metall einschnürende elektromagnetische Kräfte ausgeübt werden, kann der Durchfluss bis zum völligen Abstoppen geregelt werden. Die Form und Stärke des elektromagnetischen Feldes bestimmt dann bei gegebenen geometrischen Verhältnissen, die Menge der durchfliessenden Flüssigkeit bzw. des Metalls. Dadurch wird eine bessere Regulierung bzw. die Möglichkeit des Stoppens des Durchflusses geschaffen.This object is achieved by the sum of the features of the claims. The fact that the metal flow of the electrically conductive liquid is prevented in the central region of the pouring tube channel within the electromagnetic effective length of the coil and that electromagnetic forces constricting the metal are exerted, the flow can be regulated until it stops completely. The shape and strength of the electromagnetic field then determine the amount of liquid or metal flowing through under given geometric conditions. This creates better regulation or the possibility of stopping the flow.

Von Vorteil ist es, wenn der Metalldurchfluss unter Umlenkung des fliessenden Metalls innerhalb der Wirklänge der Spule nach aussen verhindert wird, da in diesem Falle die von der Spule erzeugten Kräfte etwa direkt gegen die Fliessrichtung der Flüssigkeit wirken. Unter der Wirklänge der Spule wird etwa die Länge der Spule in der Spulenachse verstanden.It is advantageous if the flow of metal is prevented by deflecting the flowing metal within the effective length of the coil, since in this case the forces generated by the coil act approximately directly against the direction of flow of the liquid. The active length of the coil is understood to mean approximately the length of the coil in the coil axis.

Zur vollständigen Unterbrechung des Metalldurchflusses ist es vorteilhaft, den Durchfluss mittels der elektromagnetischen Wirkung der Spule kurzzeitig zu unterbrechen, das sich im Giessrohrkanal befindliche Metall bis zu seiner Erstarrung zu kühlen und das elektromagnetische Feld hernach auszuschalten. Dadurch kann ein sicherer Verschluss auch über längere Zeit gebildet werden. Ein Wiederaufschmelzen, falls gewünscht, ist durch äussere Einwirkung, z.B. durch Einschalten des elektromagnetischen Feldes, möglich.To completely interrupt the flow of metal, it is advantageous to briefly interrupt the flow by means of the electromagnetic effect of the coil, to cool the metal in the pouring tube channel until it solidifies and then to switch off the electromagnetic field. As a result, a secure closure can also be formed over a long period. Remelting, if desired, is by external action, e.g. by switching on the electromagnetic field.

Eine weitere vorteilhafte Möglichkeit besteht darin, dass das im Giessrohrdurchflusskanal sich in Fliessrichtung vor der Wirklänge der Spule befindliche Metall gekühlt und zur Erstarrung gebracht wird. Eine Entfernung des erstarrten Metallpfropfens kann durch Einschalten der auf die Höhe des Metallpfropfens angehobenen Spule oder einer auf dieser Höhe angeordneten zweiten Spule bewirkt werden. Hierdurch kann z.B. bei Mehrstranganlagen ein gezieltes Wiederangiessen nach einem Unterbruch für einzelne Stränge erfolgen.Another advantageous possibility is that the metal located in the pouring tube flow channel in the direction of flow in front of the effective length of the coil is cooled and solidified. Removal of the solidified metal plug can be effected by switching on the coil raised to the height of the metal plug or a second coil arranged at this height. This can e.g. in the case of multi-strand systems, a targeted re-pouring takes place after an interruption for individual strands.

Ebenso vorteilhaft ist es, zum gezielten Starten des Metalldurchflusses, insbesondere bei Giessbeginn beim Stahlstranggiessen, das Metall im Giessrohrdurchflusskanal und im elektromagnetischen Wirkungsbereich der Spule zu kühlen und zur Erstarrung zu bringen und durch induktives Erwärmen mit Hilfe der Spule zu einem gewünschten Zeitpunkt wieder aufzuschmelzen. Dadurch kann z.B. bei Mehrstranggiessanlagen ein gezieltes Angiessen einzelner Stränge erfolgen.It is also advantageous to start the metal flow, in particular at the start of casting in continuous steel casting, to cool the metal in the pouring tube flow channel and in the electromagnetic effective range of the coil and to solidify it and to melt it again at a desired time by induction heating with the help of the coil. This can e.g. In the case of multi-strand casting plants, targeted casting of individual strands takes place.

Durch den, mindestens mit seinem oberen Teil das Zentrum ausfüllenden, feuerfesten Einsatzkörper wird erreicht, dass das Metall an der Aussenseite des Einsatzkörpers fliesst, wodurch die elektromagnetische Beeinflussung durch die Spule in einem induktornahen Gebiet stattfindet, in welchem die zur Regulierung notwendige Feldstärke mit geringerem Energiebedarf erzeugt werden kann. Dadurch wird eine bessere Regulierungsmöglichkeit, bzw. die Möglichkeit des Stoppens des Metalldurchflusses, geschaffen.The refractory insert body, which fills the center at least with its upper part, ensures that the metal flows on the outside of the insert body, as a result of which the electromagnetic influence by the coil takes place in an area close to the inductor, in which the field strength required for regulation takes place with lower energy requirements can be generated. This creates a better possibility of regulation or the possibility of stopping the flow of metal.

Vorzugsweise bildet der Einsatzkörper mit dem Giessrohr einen Ringraum, dessen Länge im elektromagnetischen Wirkbereich der Spule die Regelcharakteristik beeinflusst.The insert body preferably forms an annular space with the pouring tube, the length of which influences the control characteristic in the electromagnetic effective range of the coil.

Es ist vorteilhaft, den Durchmesser des das Zentrum des Giessrohres ausfüllenden Einsatzkörpers nach der elektrischen Leitfähigkeit der abgegossenen Metallschmelze und/oder der Frequenz des Spulenstromes zu wählen. Eine besonders gute Regelmöglichkeit ergibt sich, wenn der Durchmesser des Einsatzkörpers grösser als das Dreifache der Eindringtiefe 8 des elektromagnetischen Feldes in die Metallschmelze ist. Unter dieser Eindringtiefe versteht man das Eindringmass, wie z.B. in der DE-OS 1 803 473 beschrieben.It is advantageous to choose the diameter of the insert body filling the center of the pouring tube according to the electrical conductivity of the poured metal melt and / or the frequency of the coil current. A particularly good control option is obtained if the diameter of the insert body is greater than three times the depth of penetration 8 of the electromagnetic field into the molten metal. Under this depth of penetration is the penetration, as described for example in DE-OS 1 803 473.

Vorzugsweise besitzt der Durchflusskanal des Giessrohres in Strömungsrichtung des Metalls eine absatzförmige Verbreiterung zu einem Raum, zu dessen Stirnfläche der Einsatzkörper mit Abstand befestigt ist. Dadurch wird der Metallfluss in einen aussenliegenden Spalt bzw. Ringraum verdrängt. In dem, dem Spalt vorgelagerten Raum kann das Metall gut eingeschnürt werden, so dass bei einer genügend grossen Verdrängung nach innen kein Metall mehr durch den Ringraum, begrenzt von der Aussenfläche des Einsatzkörpers und dem Giessrohr, fliesst.The flow channel of the pouring tube preferably has a shoulder-shaped widening in the direction of flow of the metal to a space to the end face of which the insert body is fastened at a distance. As a result, the metal flow is displaced into an external gap or annulus. The metal can be constricted well in the space in front of the gap, so that if the displacement is large enough, no metal will flow through the annular space, delimited by the outer surface of the insert body and the pouring tube.

Vorzugsweise besitzt der Einsatzkörper in seinem oberen Teil Bohrungen bzw. Durchflusskanäle, in denen das Metall aus dem Ringraum in einen zentrischen Durchflusskanal des Einsatzkörpers strömen kann und in diesem abwärts fliesst. Dadurch kann das Metall, z.B. der Stahl, zentrisch in ein nachfolgendes Gefäss eingebracht werden, was insbesondere für kleinere Strangformate vorteilhaft ist.The insert part preferably has bores or flow channels in its upper part, in which the metal can flow from the annular space into a central flow channel of the insert body and flows downwards therein. This allows the metal, e.g. the steel can be introduced centrally into a subsequent vessel, which is particularly advantageous for smaller strand formats.

Nach einem weiteren Merkmal kann der Einsatzkörper im Giessrohr höhenverstellbar sein, beispielsweise mittels eines in der erweiterten Bohrung des Giessrohres vorgesehenen Schraubgewindes. Dadurch kann der Abstand des oberen Teils des Einsatzstückes zur Stirnfläche der erweiterten Bohrung verändert werden. d.h. durch Veränderung des durch Giessrohrinnenfläche und Kopffläche des eingesetzten Einsatzstückes gebildeten Raumes kann dieser Durchflussraum den jeweiligen Gegebenheiten angepasst werden.According to a further feature, the insert body can be adjustable in height in the pouring tube, for example by means of a screw thread provided in the enlarged bore of the pouring tube. As a result, the distance between the upper part of the insert piece and the end face of the enlarged bore can be changed. i.e. By changing the space formed by the inner surface of the pouring tube and the top surface of the insert used, this flow space can be adapted to the particular circumstances.

Im Giessrohr kann ferner, in Strömungsrichtung des Stahles gesehen, vor dem oberen Teil des Einsatzkörpers und konzentrisch um den Durchflusskanal ein thermisch und elektrisch gut leitender Ring angeordnet sein, der über eine Zufuhrleitung mit Kühlmittel beaufschlagt werden kann. Dadurch wird, wie nachstehend noch im Ausführungsbeispiel beschrieben, eine besonders vorteilhafte Möglichkeit des Stoppens und Absperrens des Metallflusses gegeben.In the pouring tube, as seen in the flow direction of the steel, a thermally and electrically well-conducting ring can be arranged in front of the upper part of the insert body and concentrically around the flow channel, which can be acted upon by coolant via a supply line. As described below in the exemplary embodiment, this provides a particularly advantageous possibility of stopping and shutting off the metal flow.

Nach einem weiteren Merkmal kann die elektromagnetische Spule in axialer Richtung längs des Giessrohres höhenverstellbar sein, mit Vorteil bis auf die Höhe des eingebauten Ringes. Dadurch kann ein zum Zwecke des Stoppens des Metallflusses gewollt erzeugter Stahlpfropfen jederzeit wieder aufgeschmolzen werden.According to a further feature, the electromagnetic coil can be height-adjustable in the axial direction along the pouring tube, advantageously up to the height of the built-in ring. As a result, a steel plug deliberately created for the purpose of stopping the metal flow can be melted again at any time.

Auf den oberen Teil des Einsatzkörpers kann ein Kühlkörper aufgebracht sein, der die Aufgabe hat, beim Angiessen das zuerst ins Giessrohr eingeflossene Metall zum Erstarren zu bringen. Dieser Körper wird vor dem Zusammenbau von Giessrohr und Einsatzkörper in die Bohrung des Giessrohres eingebracht, kann aber auch bereits im Einsatzstück integriert sein, z.B. aus einem, mittels Schwalbenschwanzführung aufgestecktem Kühlmetall bestehen.A heat sink can be applied to the upper part of the insert body, which has the task of solidifying the metal that first flowed into the pouring tube during casting. This body is inserted into the bore of the pouring tube before the pouring tube and insert body are assembled, but can also already be integrated in the insert, e.g. consist of a cooling metal attached by means of a dovetail guide.

Wenn beispielsweise eine Regulierung der Durchflussmenge von 0-100% erforderlich ist, kann gemäss einer anderen Ausführungsform der Metallfluss vor dem Eintritt in einen Ringraum in eine Fliessrichtung nach oben, d.h. entgegengesetzt zur Schwerkraft, umgelenkt werden. Bei einer vorrichtungsmässigen Ausgestaltung kann dabei im feuerfesten Einsatzkörper mindestens eine Durchflussöffnung derart angeordnet werden, dass die Metallschmelze vor dem Eintritt in den Ringraum durch diese Durchflussöffnung fliesst und dem Ringraum von unten zuführbar ist und dass Bohrungen für den Abfluss aus dem Ringraum oberhalb einer Begrenzungskante auf der Metalleintrittseite des Ringraumes angeordnet sind. Bei einer solchen Vorrichtung fallen durch induzierte Turbulenzen verursachte Spritzer im Ringraum in einen tieferliegenden Umlenkkanal zurück. Sie können somit nicht aus dem Giessrohr austreten.For example, if it is necessary to regulate the flow rate from 0-100%, according to another embodiment the metal flow can be directed upwards in a flow direction before entering an annular space. opposed to gravity. In a device-like configuration, at least one flow opening can be arranged in the refractory insert body such that the metal melt flows through this flow opening before entering the annular space and can be fed to the annular space from below and that bores for the outflow from the annular space above a boundary edge on the Metal entry side of the annulus are arranged. In such a device, splashes caused by induced turbulence in the annular space fall back into a lower deflection channel. This means that you cannot exit the pouring pipe.

Nachfolgend wird die Erfindung anhand von Zeichnungen beispielsweise beschrieben.The invention is described below with reference to drawings, for example.

Es zeigen:

  • Fig. 1 eine Ausführungsform der Erfindung mit Giessrohr, Einsatzkörper und elektromagnetischer Spule,
  • Fig. 2 eine weitere Ausführungsform,
  • Fig. 3 einen Schnitt nach der Linie 111-111 der Fig. 4 und
  • Fig. 4 einen Schnitt nach der Linie IV-IV der Fig. 3.
Show it:
  • 1 shows an embodiment of the invention with a pouring tube, insert body and electromagnetic coil,
  • 2 shows a further embodiment,
  • Fig. 3 is a section along the line 111-111 of Fig. 4 and
  • 4 shows a section along the line IV-IV of FIG. 3rd

In Fig. 1 ist in einem Giessrohr 1 ein Einsatzkörper 2 befestigt, der in eine Stranggiesskokille 3 zur Erzeugung eines Stahlstranges 18 mündet. Das Giessrohr 1 befindet sich unterhalb eines nicht dargestellten Giessgefässes, z.B. einem Zwischenbehälter, aus dem der Stahl in den Durchflusskanal 5 des Giessrohres 1 strömt. Dieses besitzt eine stufen-oder absatzförmige Erweiterung des Durchflusskanals, in Strömungsrichtung des Stahles, zu einem Raum 21, zu dessen Stirnfläche 7 sich ein oberer Teil 9 des Einsatzkörpers 2 mit einem Abstand 10 befindet. Dieser obere Teil 9 hat einen kleineren Durchmesser als die erweiterte Durchflussbohrung 14 des Giessrohres 1 und füllt das Zentrum dieser Bohrung unter Bildung eines Ringraumes 11 zwischen Giessrohrwand und dem Teil 9 des Einsatzkörpers 2 aus. Ein Schraubgewinde 20 erlaubt eine Veränderung des Abstandes 10, so dass für den Raum 21 ein bestimmter Durchflussquerschnitt unmittelbar oberhalb des Teils 9 eingestellt werden kann. Eine elektromagnetische Spule 25 ist konzentrisch um das Giessrohr so angeordnet, dass die Mitte der Spule etwa im Höhenbereich des Raumes 21 liegt.In Fig. 1, an insert body 2 is fixed in a pouring tube 1, which opens into a continuous casting mold 3 for producing a steel strand 18. The pouring tube 1 is located below a pouring vessel, not shown, e.g. an intermediate container from which the steel flows into the flow channel 5 of the pouring tube 1. This has a step-like or shoulder-shaped widening of the flow channel, in the flow direction of the steel, to a space 21, to the end face 7 of which there is an upper part 9 of the insert body 2 at a distance 10. This upper part 9 has a smaller diameter than the enlarged flow-through bore 14 of the pouring tube 1 and fills the center of this bore to form an annular space 11 between the pouring tube wall and the part 9 of the insert body 2. A screw thread 20 allows the distance 10 to be changed, so that a specific flow cross section can be set directly above the part 9 for the space 21. An electromagnetic coil 25 is arranged concentrically around the pouring tube in such a way that the center of the coil lies approximately in the height range of the space 21.

Der von oben durch den Giessrohrkanal 5 fliessende Stahl wird durch die obere Fläche des Teils 9 radial nach aussen geleitet und fliesst sodann entlang des Ringraumes 11 nach unten. Damit wird im Wirkbereich der Spule, der etwa der Spulenlänge entspricht, und im Zentrum von Spule und Giessrohrkanal der Metalldurchfluss verhindert. Der obere Teil des Einsatzkörper besitzt beispielsweise vier Bohrungen 16; durch die der Stahl einem axialen und zentrischen Durchflusskanal 17 zugeführt wird, von dem er in den flüssigen Kern des in der Kokillle 3 gebildeten Stranges 18 fliessen kann. Bei elektrischer Beaufschlagung der Spule 25 kommt es zu einer elektromagnetischen Beeinflussung des aus dem Durchflusskanal 5 austretenden, nach aussen fliessenden Stahles. Dabei wird eine Bremswirkung erzeugt, da Volumenkräfte auf das nach aussen strömende Metall wirken, eine Wirbelstrom-Bremswirkung beim Durchfliessen des Ringraumes bzw. -spaltes 11 entsteht und ferner die durch eine erhöhte Feldstärke erzeugten Metallverdrängungen Einschnürungen, und damit einen reduzierten Durchflussquerschnitt, zur Folge haben. Die Spulenlänge 26 kann nach der gewünschten Wirkung bemessen werden. Bei einer längeren Spule, die sich beispielsweise über die Länge des Ringraumes 11 erstreckt, ist der Anteil der Wirbelstrom-Bremswirkung grösser, und es kann eine feinere Regulierung des Durchflusses vorgenommen werden. Bei einer kürzeren Spule, deren Wirkungsbereich hauptsächlich den unmittelbar über dem oberen Teil 9 des Einsatzkörpers 2 liegenden Raum 21 erfasst, in der Figur strichliert dargestellt, ist die Wirkungsweise mehr auf eine konzentrierte Einschnürung des Stahles in bezug auf die Kante 28 beschränkt.The steel flowing through the pouring tube duct 5 from above is guided radially outward through the upper surface of the part 9 and then flows downward along the annular space 11. This prevents metal flow in the effective area of the coil, which corresponds approximately to the coil length, and in the center of the coil and the pouring tube channel. The upper part of the insert body has, for example, four bores 16 ; through which the steel is fed to an axial and central flow channel 17, from which it can flow into the liquid core of the strand 18 formed in the mold 3. When the coil 25 is acted upon electrically, there is an electromagnetic influence on the steel emerging from the flow channel 5 and flowing outwards. This creates a braking effect, since volume forces act on the metal flowing outwards, an eddy current braking effect when Flow through the annular space or gap 11 arises and, furthermore, the metal displacements produced by an increased field strength result in constrictions, and thus a reduced flow cross section. The coil length 26 can be dimensioned according to the desired effect. In the case of a longer coil, which extends for example over the length of the annular space 11, the proportion of the eddy current braking effect is greater, and the flow rate can be regulated more precisely. In the case of a shorter coil, the effective range of which mainly covers the space 21 located directly above the upper part 9 of the insert body 2, shown in broken lines in the figure, the mode of action is more restricted to a concentrated constriction of the steel with respect to the edge 28.

Die elektromagnetische Spule 25 kann entlang des Giessrohres höhenverstellbar sein, wie durch den Doppelpfeil 27 angedeutet. Durch wahlweise Beaufschlagung der Spule 25 mit Strom kann der durchfliessende Stahl gebremst bzw. gestoppt werden, indem die Einschnürung soweit verstärkt wird, dass der Meniskus über die Kante 28 des oberen Teiles 9 nach innen verdrängt wird, wie in der Fig. 1 dargestellt. Dadurch ist eine einfache und betriebssichere Regulierbarkeit des Durchflusses von 0% bis 100% möglich und zwar ohne mechanisch bewegte Teile und ohne mechanischen Verschleiss irgendwelcher Komponenten. Durch die induktive Erwärmung im Wirkungsbereich der nur mit geringem Abstand um das Giessrohr angeordneten Spule, kann ein unerwünschtes Einfrieren des Stahles in der Einrichtung ausgeschlossen werden.The electromagnetic coil 25 can be adjustable in height along the pouring tube, as indicated by the double arrow 27. By optionally applying current to the coil 25, the steel flowing through can be braked or stopped by the constriction being reinforced to such an extent that the meniscus is displaced inwards over the edge 28 of the upper part 9, as shown in FIG. 1. This enables the flow rate to be regulated easily and reliably from 0% to 100%, without mechanically moving parts and without mechanical wear and tear of any components. Unwanted freezing of the steel in the device can be excluded by the inductive heating in the effective range of the coil, which is arranged only a short distance around the pouring tube.

Im in Fig. 1 dargestellten Beispiel zum Stranggiessen eines Stahlknüppels von 130 mm Kantenlänge beträgt der Durchmesser des Durchflusskanals 5 etwa 40 mm, der äussere und innere Durchmesser des Ringraumes 11 etwa 65 mm bzw. 60 mm, derjenige der vier Bohrungen 16 etwa 15 mm, und die axiale Bohrung 17 im Einsatzkörper 2 hat einen Durchmesser von etwa 25 mm. Für diese geometrischen Verhältnisse und für eine gesamte ferrostatische Höhe bis zur Spulenmitte von etwa 500 mm ist mit einem Spulenstrom für eine Regelung im Bereich von 50-100% Durchfluss bis ca. 7 kA, von 10-100% ca. 10 kA, und für völliges Abstellen ca. 15 kA zu rechnen. Dies bei einer Frequenz von beispielsweise 1000 Hz und einer Niederspannungsversorgung.In the example shown in FIG. 1 for the continuous casting of a steel billet with an edge length of 130 mm, the diameter of the flow channel 5 is approximately 40 mm, the outer and inner diameter of the annular space 11 is approximately 65 mm or 60 mm, that of the four bores 16 is approximately 15 mm, and the axial bore 17 in the insert body 2 has a diameter of approximately 25 mm. For these geometrical relationships and for a total ferrostatic height up to the coil center of approximately 500 mm, a coil current for regulation in the range from 50-100% flow rate to approximately 7 kA, from 10-100% approximately 10 kA, and for total shutdown approx. 15 kA to be expected. This at a frequency of 1000 Hz, for example, and a low-voltage supply.

Im Giessrohr 1 ist konzentrisch zum Durchflusskanal 5 ein Ring 30 aus grafitiertem Feuerfestmaterial, das sowohl thermisch als auch elektrisch gut leitend ist, eingelegt, der über eine Zuleitung 31 mit Kühlmittel, z.B. Luft oder Inertgas, beaufschlagt werden kann. Dadurch ist bei z.B. Gussende die Möglichkeit gegeben, den Durchfluss auch ohne dauernd eingeschalteter Spule 25 zu stoppen. Dazu wird der Durchfluss kurzzeitig elektromagnetisch unterbunden und danach der gut wärmeleitende Ring 30 gekühlt, bis das Metall in diesem Bereich durcherstarrt ist. Danach wird die Spule 25 ausgeschaltet. Durch die Höhenverstellbarkeit der Spule kann diese axial bis zur Höhe des Ringes 30 verschoben werden, so dass auch die Möglichkeit besteht, einen derart unterbrochenen Metallfluss induktiv wieder aufzuschmelzen und weiterzugiessen. Anstelle der Höhenverstellbarkeit kann auch eine zweite Spule vorgesehen sein, die in der Höhe des Ringes 30 stationär angebracht ist.In the pouring tube 1, a ring 30 made of graphitized refractory material, which is thermally as well as electrically conductive, is inserted concentrically to the flow channel 5 and is connected via a supply line 31 with coolant, e.g. Air or inert gas can be applied. This means that e.g. Gussende given the possibility to stop the flow even without the coil 25 permanently switched on. For this purpose, the flow is briefly prevented electromagnetically and then the heat-conducting ring 30 is cooled until the metal has solidified in this area. The coil 25 is then switched off. Due to the height adjustability of the coil, the coil can be axially displaced up to the height of the ring 30, so that there is also the possibility of inductively melting and continuing to pour an interrupted metal flow. Instead of the height adjustability, a second coil can also be provided, which is attached stationary at the height of the ring 30.

Fig. 2 zeigt eine weitere Ausführungsform bei der der Einsatzkörper 2 von oben in des Giessrohr 1 eingesetzt wurde. Gegebenenfalls kann dieser Körper 2 mittels eines feuerfesten Zements im Giessrohr befestigt sein. Bei dieser Ausführungsform liegen die Bohrungen 16 auf gleicher Höhe. In der rechten Hälfte der Figur wird die Wirkungsweise der Spule 25 veranschaulicht. Bei mit ausreichend hoher Stromstärke beaufschlagter Spule wird das Material radial bis über die Breite des oberen Teils 9 des Einsatzkörpers 2 eingeschnürt und derart am weiteren Durchfluss durch den zwischen Giessrohrinnenwandung und oberem Teil 9 gebildeten Raum verhindert. Strichliert angedeutet ist ein Kühlkörper 35 in Form einer Scheibe, der auf den Einsatzkörper 2 vor dem Angiessen aufgelegt wurde. Dadurch ist ein kontrolliertes Angiessen möglich, indem nach dem Eingiessen des Stahls in das Giessrohr vorerst ein Durchfluss des Metalls durch die Kühlwirkung der Scheibe 35 verhindert wird. Durch induktive Heizwirkung der Spule 25 kann das im Bereich des Kühlkörpers 35 erstarrte Metall zeitlich gezielt aufgeschmolzen werden. Der Kühlkörper 35 kann auch bereits im Einsatzstück integriert sein und z.B. über eine schwalbenschwanzartige Führung daran befestigt sein.2 shows a further embodiment in which the insert body 2 has been inserted into the pouring tube 1 from above. If necessary, this body 2 can be fastened in the pouring tube by means of a refractory cement. In this embodiment, the bores 16 are at the same height. The operation of the coil 25 is illustrated in the right half of the figure. When the coil is charged with a sufficiently high current, the material is constricted radially up to the width of the upper part 9 of the insert body 2 and thus prevented from flowing further through the space formed between the inner tube wall and the upper part 9. A heat sink 35 in the form of a disk, which was placed on the insert body 2 before the casting, is indicated by dashed lines. This enables controlled casting on, in that after the steel has been poured into the pouring tube, flow of the metal is initially prevented by the cooling effect of the disk 35. The inductive heating effect of the coil 25 allows the metal solidified in the area of the heat sink 35 to be melted in a targeted manner over time. The heat sink 35 can also already be integrated in the insert and e.g. be attached to it via a dovetail-like guide.

Das in Fig. 2 dargestellte Giessrohr taucht in den Badspiegel einer nicht dargestellten Kokille ein. Es ist klar, dass statt dessen auch ein kurzes, nicht eintauchendes Giessrohr verwendet werden kann.The pouring tube shown in Fig. 2 plunges into the bath level of a mold, not shown. It is clear that a short, non-immersing pouring tube can also be used instead.

Die Steuerung der die Durchflussmenge beeinflussenden elektromagnetischen Kräfte kann über die in der Spule 25 fliessende Stromstärke erfolgen. Ebenso ist es möglich, bei einer fest vorgegebenen Stromstärke die elektromagnetische Kraft auf die Schmelze zu verändern, indem die Spule entlang ihrer Achse verschoben wird, oder allgemein, indem die geometrische Lage der Spule bezüglich der Kante 28 bzw. des Raumes 21 verändert wird, oder indem der Stromfluss in der Spule durch elektrische oder mechanische Stromverdrängung verändert wird. Im weiteren ist eine Kombination obengenannter Massnahmen denkbar.The electromagnetic forces influencing the flow rate can be controlled via the current strength flowing in the coil 25. It is also possible to change the electromagnetic force on the melt at a predetermined current strength by moving the coil along its axis, or generally by changing the geometric position of the coil with respect to the edge 28 or the space 21, or by changing the current flow in the coil through electrical or mechanical current displacement. A combination of the above measures is also conceivable.

In den Beispielen in Fig. 1 und 2 sind die Spulen 25 um das Giessrohr 1 herum angeordnet. Der Abstand der Spule 25 vom Ringraum 11 wird somit durch die Wandstärke des Giessrohres 1 beeinflusst. Der Ringraum 11 kann aber auch direkt durch die Spule 25 und durch einen Verdrängungskörper mit der Kante 28 gebildet werden. Die Spule 25 kann bei einer solchen Anordnung mit einer dünnen Schicht keramischem Material beschichtet sein und beispielsweise eine Giessrohrfortsetzung darstellen. Bei einer solchen Anordnung wird der Wirkungsgrad wesentlich verbessert.In the examples in FIGS. 1 and 2, the coils 25 are arranged around the pouring tube 1. The distance of the coil 25 from the annular space 11 is thus influenced by the wall thickness of the pouring tube 1. The annular space 11 can also be formed directly by the coil 25 and by a displacement body with the edge 28. In such an arrangement, the coil 25 can be coated with a thin layer of ceramic material and can represent, for example, a pouring tube extension. With such an arrangement, the efficiency is significantly improved.

Der Verdrängungskörper kann im Sinne einer weiteren Ausführungsform oberhalb der Kante 28 mit einem stopfenförmigen Aufsatz versehen werden, der mit einem entsprechend ausgebildeten Giessrohr einen Stopfenverschluss bildet. Wird der Verdrängungskörper zusammen mit einem axial bewegbaren Giessrohrteil in Richtung zum feststehenden Giessrohrteil bewegt, so kann der stopfenförmige Aufsatz das feststehende Giessrohr verschliessen. Ein solcher von unten nach oben wirkender Stopfenverschluss kann beispielsweise als Notverschluss den Metallausfluss völlig unterbrechen.In the sense of a further embodiment, the displacement body can be provided with a stopper-shaped attachment above the edge 28, which forms a stopper closure with an appropriately designed pouring tube. The displacer is used together with an axially movable one Moving the pouring tube part in the direction of the fixed pouring tube part, the plug-shaped attachment can close the fixed pouring tube. Such a stopper closure, which acts from bottom to top, can, for example, completely interrupt the metal outflow as an emergency closure.

In Fig. 3 und 4 ist ein feuerfester Einsatzkörper 40 mit zwei Durchflussöffnungen 41 innerhalb einem Giessrohr 43 angeordnet. Zwischen dem Einsatzkörper 40 und dem Giessrohr 43 ist ein Ringraum 44 im Wirkungsbereich einer elektromagnetischen Spule 45 angeordnet. Die Durchflussöffnungen 41 münden in einen ebenfalls ringförmigen Umlenkkanal 46, in welchem die Metallschmelze vor dem Eintritt in den Ringraum 44 umgelenkt und in diesen in Richtung des Pfeiles 47 von unten zugeführt wird. Bohrungen 49 für den Abfluss der Metallschmelze aus dem Ringraum 44 befinden sich oberhalb einer Begrenzungskante 50, die den Eintrittsquerschnitt des Ringraumes 44 definiert.3 and 4, a refractory insert body 40 with two flow openings 41 is arranged within a pouring tube 43. An annular space 44 is arranged in the effective range of an electromagnetic coil 45 between the insert body 40 and the pouring tube 43. The flow openings 41 open into a likewise annular deflection channel 46, in which the molten metal is deflected before it enters the annular space 44 and is fed therein from below in the direction of the arrow 47. Bores 49 for the outflow of the molten metal from the annular space 44 are located above a boundary edge 50 which defines the entry cross section of the annular space 44.

Giessrohr 1, 43, Einsatzkörper 2, 44 und die Spule 25,45, wie in den Fig. dargestellt, werden mit Vorteil rund ausgeführt. Es ist aber ohne weiteres möglich, auch andere Querschnitte wie oval, polygonal usw. zu wählen.Pouring tube 1, 43, insert body 2, 44 and the coil 25, 45, as shown in the figures, are advantageously designed to be round. However, it is also possible to choose other cross sections such as oval, polygonal, etc.

Das erfindungsgemässe Verfahren und die Einrichtung können vorteilhaft bei Mehrstranggiessanlagen eingesetzt werden. Dabei können z.B. mehrere Knüppel- oder Vorblockstränge mit gleicher Abzugsgeschwindigkeit und gemeinsamen Anlageteilen, wie Oszillation, Rollenführung, Schere usw. bei kleinem Strangabstand gegossen werden. Die elektrische Ausrüstung bei Mehrstranganlagen zur Speisung der Spule kann eine unabhängige Mittelfrequenz-Stromzufuhr für jeden einzelnen Strang, oder eine Mittelfrequenz-Versorgung pro Mehrstranganlage mit Parallelschaltung oder Serienschaltung oder einzelnen Spulen beinhalten. Die individuelle Steuerung der einzelnen Stränge könnte durch eine oder eine Kombination der oben aufgeführten Steuermöglichkeiten erfolgen. Bei der Parallelschaltung wäre auch eine Steuerung für die einzelnen Stränge z.B. über vorgeschaltete Drosseln mitvariablen Induktivitäten denkbar.The method and the device according to the invention can advantageously be used in multi-strand casting plants. Here, e.g. several billet or billet strands with the same take-off speed and common system parts such as oscillation, roller guide, scissors etc. can be cast with a small strand spacing. The electrical equipment in multi-strand systems for feeding the coil can include an independent medium-frequency power supply for each individual strand, or a medium-frequency supply for each multi-strand system with parallel connection or series connection or individual coils. The individual control of the individual strands could be carried out by one or a combination of the control options listed above. With the parallel connection, a control for the individual strings would also be e.g. conceivable with upstream chokes with variable inductors.

Ebenso vorteilhaft ist die Erfindung beim sogenannten «Zwillingsguss» einzusetzen, bei dem zwei Stränge genau synchron gegossen werden müssen.The invention is equally advantageous to use in the case of the so-called “twin casting”, in which two strands have to be cast exactly synchronously.

Claims (18)

1. A method of regulation of the flow of an electrically conductive liquid, in particular the flow of molten metal in continuous casting in a pouring spout (1) by means of a coil (25, 45) arranged round it concentrically and generating an electromagnetic field, characterized in that in the central region of the channel (5) in the pouring spout within the effective electromagnetic length of the coil (25, 45) the flow of metal is prevented by means of an insert body (2) and that in the region of an essentially annular space (11) formed by the insert body (2) and the channel (5) in the pouring spout constricting electromagnetic forces are applied to the metal.
2. A method as in Claim 1, characterized in that the flow of the metal is prevented by deflection of the flowing metal outwards within the effective electromagnetic length of the coil (25).
3. A method as in Claim 1 or 2 for the interruption of the flow of metal in particular during pouring in the case of the continuous casting of steel, characterized in that the flow of the metal is briefly checked electromagnetically, metal present in the channel (5) in the pouring spout is cooled and caused to solidify and the electromagnetic field is hereupon switched off.
4. A method as in Claim. 3, characterized in that the metal which in the direction of flow is present in the channel (5) in the pouring spout before the effective length of the coil (25), is cooled and caused to solidify.
5. A method as in one of the Claims 1 to 4 for the starting of the flow of metal, in particular at the start of pouring in the case of the continuous casting of steel, characterized in that the metal in the channel (5) in the pouring spout within the effective electromagnetic length of the coil (25) is cooled and caused to solidify and at a chosen point in time is fused inductively by the coil (25).
6. A method as in one of the Claims 1-5, characterized in that the flow of metal before entry into an annular space (46) within the effective electromagnetic length of the coil, is deflected and brought into an upwards direction of flow.
7. A device for the regulation of the flow of an electrically conductive liquid, in particular the flow of molten metal in continuous casting in a pouring spout (1) by means of a coil (25, 45) arranged round it concentrically and generating an electromagnetic field, characterized in that in the channel (5) for flow through the pouring spout (1) and within the effective electromagnetic length of the coil (25) a refractory insert body (2) is fixed, which at least by the upper part of it (9) fills out a region in the centre of the channel (5) in the pouring spout and forms together with the pouring spout (1) an essentially annular space (11, 44) for the metal to flow through.
8. A device as in Claim 7, characterized in that the insert body (2) forms with the pouring spout (1) an annular space (11) the length of which in the effective electromagnetic range of the coil influences the regulating characteristic.
9. A device as in Claim 7 or 8, characterized in that the diameter of the insert body (2) filling out the centre of the pouring spout (1) is chosen independently of the electrical conductivity of the molten metal and/or of the frequency of the current in the coil.
10. A device as in one of the Claims 7 to 9, characterized in that the diameter of the insert body (2) is greater than three times the depth of penetration 8 of the electromagnetic field into the molten metal.
11. A device as in one of the Claims 7 to 10, characterized in that the channel (5) for flow through the pouring spout (1) exhibits a widening in the form of a shoulder into a space (21) and the insert body (2) is fixed at a distance (10) from the endface (7) of the space (21).
12. A device as in one of the Claims 7 to 11, characterized in that the upper part (9) of the insert body (2) exhibits drilled holes (16) which connect the annular space (11) to an axial channel (17) for flow through the insert body (2).
13. A device as in one of the Claims 7 to 12, characterized in that the insert body (2) is fixed in the pouring spout (1) to be adjustable for height.
14. A device as in one of the Claims 7 to 13, characterized in that in the pouring spout (1) a thermally and electrically conductive ring (30) is arranged in the direction of pour before the upper part (9) of the insert body (2) and concentrically round the flow channel (5).
15. A device as in Claim 14, characterized in that the coil (25) is adjustable for height at least as far as into the region of the ring (30).
16. A device as in one of the Claims 7 to 15, characterized in that a cooling body (35) is fitted onto the upper part (9) of the insert body (2).
17. A device as in one of the Claims 7 to 16, characterized in that in the refractory insert body (40) at least one opening (41) is arranged for flow through in such a way that the molten metal before entry into the annular space (44) flows through the flow opening (41) and may be fed from below into the annular space (44) and that drilled holes (45) for the outlet from the annular space
(44) are arranged above a boundary edge (50) on the side of the annular space (44) for entry of the metal.
EP85102328A 1984-03-07 1985-03-01 Method of regulating the flow of an electrically conductive fluid especially of a molten bath of metal in continuous casting and an apparatus for carrying out the method Expired EP0155575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85102328T ATE32500T1 (en) 1984-03-07 1985-03-01 METHOD FOR CONTROLLING THE FLOW OF AN ELECTRICALLY CONDUCTIVE LIQUID, ESPECIALLY METAL IN CONTINUOUS CASTING, AND AN APPARATUS FOR CARRYING OUT THE METHOD.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1132/84 1984-03-07
CH1132/84A CH665369A5 (en) 1984-03-07 1984-03-07 METHOD FOR CONTROLLING THE FLOW OF A METAL MELT IN CONTINUOUS CASTING, AND A DEVICE FOR IMPLEMENTING THE METHOD.

Publications (2)

Publication Number Publication Date
EP0155575A1 EP0155575A1 (en) 1985-09-25
EP0155575B1 true EP0155575B1 (en) 1988-02-17

Family

ID=4203244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85102328A Expired EP0155575B1 (en) 1984-03-07 1985-03-01 Method of regulating the flow of an electrically conductive fluid especially of a molten bath of metal in continuous casting and an apparatus for carrying out the method

Country Status (13)

Country Link
US (1) US4655237A (en)
EP (1) EP0155575B1 (en)
JP (1) JPH0675753B2 (en)
KR (1) KR920002402B1 (en)
AT (1) ATE32500T1 (en)
AU (1) AU577091B2 (en)
BR (1) BR8501008A (en)
CA (1) CA1240821A (en)
CH (1) CH665369A5 (en)
DE (1) DE3561615D1 (en)
ES (1) ES8606681A1 (en)
MX (1) MX157862A (en)
ZA (1) ZA851520B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3842690A1 (en) * 1988-12-19 1990-06-21 Didier Werke Ag FIREPROOF CONNECTION AND INDUCTION COIL HERE
DE4301330A1 (en) * 1993-01-20 1994-08-18 Didier Werke Ag Method for inductively heating up a ceramic moulding
DE102013101962B3 (en) * 2013-02-27 2014-05-22 Schuler Pressen Gmbh Casting device and casting process

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8711041D0 (en) * 1987-05-11 1987-06-17 Electricity Council Electromagnetic valve
US4842170A (en) * 1987-07-06 1989-06-27 Westinghouse Electric Corp. Liquid metal electromagnetic flow control device incorporating a pumping action
JPS6453748A (en) * 1987-08-21 1989-03-01 Nippon Steel Corp Method for controlling flow rate of molten steel flow
DE3809072A1 (en) * 1988-03-18 1989-09-28 Didier Werke Ag TURN AND / OR SLIDE LOCK AND ITS LOCKING PARTS
GB2218019B (en) * 1988-04-25 1992-01-08 Electricity Council Electromagnetic valve
MA21865A1 (en) * 1989-06-09 1990-12-31 Galva Lorraine METHOD, ENCLOSURE AND INSTALLATION FOR CONTINUOUS / INTERMITTENT COATING OF OBJECTS BY PASSING THESE OBJECTS THROUGH A LIQUID MASS OF A COATING PRODUCT.
MX170398B (en) * 1989-11-14 1993-08-19 Hylsa Sa IMPROVED METHOD AND APPARATUS TO REGULATE THE FLOW OF PARTICULATED FERROMAGNETIC SOLIDS
GB9013199D0 (en) * 1990-06-13 1990-08-01 Alcan Int Ltd Apparatus and process for direct chill casting of metal ingots
DE4100166A1 (en) * 1991-01-05 1992-07-09 Freudenberg Carl Fa PRESSURE REGULATING VENTILATION VALVE
DE4108153A1 (en) * 1991-03-14 1992-09-17 Didier Werke Ag Refractory molded part and its use
US5186886A (en) * 1991-09-16 1993-02-16 Westinghouse Electric Corp. Composite nozzle assembly for conducting a flow of molten metal in an electromagnetic valve
DE4132910C1 (en) * 1991-10-04 1992-11-12 Otto Junker Gmbh, 5107 Simmerath, De
US5137045A (en) * 1991-10-31 1992-08-11 Inland Steel Company Electromagnetic metering of molten metal
US5353839A (en) * 1992-11-06 1994-10-11 Byelocorp Scientific, Inc. Magnetorheological valve and devices incorporating magnetorheological elements
US5350159A (en) * 1993-02-18 1994-09-27 Westinghouse Electric Corporation On/off valve apparatus for use in conjunction with electromagnetic flow control device controlling the flow of liquid metal through an orifice
DE4319966A1 (en) * 1993-06-17 1994-12-22 Didier Werke Ag Immersion spout
DE19500012A1 (en) * 1995-01-02 1996-07-04 Didier Werke Ag Control and closure device for a metallurgical vessel
JP3792743B2 (en) * 1995-01-26 2006-07-05 株式会社リコー Toner filling method and apparatus
US5839485A (en) * 1995-10-12 1998-11-24 Xerox Corporation Electromagnetic valve and demagnetizing circuit
GB2312861B (en) * 1996-05-08 1999-08-04 Keith Richard Whittington Valves
US5685348A (en) * 1996-07-25 1997-11-11 Xerox Corporation Electromagnetic filler for developer material
DE19651534C2 (en) * 1996-08-03 1999-01-14 Didier Werke Ag Method, device and refractory pouring spout for pouring and / or pouring liquid metals
KR20000029583A (en) 1996-08-03 2000-05-25 하랄드 발라우;안젤리카 미카레피엘 Method, device and fireproof nozzle for the injection and/or casting of liquid metals
US6321766B1 (en) 1997-02-11 2001-11-27 Richard D. Nathenson Electromagnetic flow control valve for a liquid metal with built-in flow measurement
US6044858A (en) * 1997-02-11 2000-04-04 Concept Engineering Group, Inc. Electromagnetic flow control valve for a liquid metal
US6799595B1 (en) * 2003-03-06 2004-10-05 The United States Of America As Represented By The Secretary Of The Navy Meltable and reclosable drain plug for molten salt reactor
JP2006341281A (en) * 2005-06-09 2006-12-21 Sukegawa Electric Co Ltd Electromagnetic pump for molten metal
JP5145791B2 (en) * 2007-06-28 2013-02-20 新日鐵住金株式会社 Continuous casting method for small section billet
DE102007052524B4 (en) * 2007-11-01 2012-05-31 Von Ardenne Anlagentechnik Gmbh Transport and vacuum coating system for substrates of different sizes
DE102008037259A1 (en) * 2008-08-08 2010-02-25 Doncasters Precision Castings-Bochum Gmbh Electromagnetic plug
NZ705599A (en) * 2010-06-23 2016-06-24 Greenward Company L L C Flow regulating applied magnetic envelope
US8453330B2 (en) 2010-10-06 2013-06-04 The Invention Science Fund I Electromagnet flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US8584692B2 (en) * 2010-10-06 2013-11-19 The Invention Science Fund I, Llc Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US9008257B2 (en) 2010-10-06 2015-04-14 Terrapower, Llc Electromagnetic flow regulator, system and methods for regulating flow of an electrically conductive fluid
US8397760B2 (en) * 2010-10-06 2013-03-19 The Invention Science Fund I, Llc Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid
US8781056B2 (en) 2010-10-06 2014-07-15 TerraPower, LLC. Electromagnetic flow regulator, system, and methods for regulating flow of an electrically conductive fluid

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970830A (en) * 1957-03-21 1961-02-07 Soudure Electr Autogene Varying the falling speed of a stream of molten metal
US3268958A (en) * 1963-12-19 1966-08-30 Midvale Heppenstall Company Slow pouring and casting system for ferrous and other metals
US3701357A (en) * 1968-09-30 1972-10-31 Asea Ab Electromagnetic valve means for tapping molten metal
DE1803473A1 (en) * 1968-10-17 1970-05-21 Demag Ag Continuous metal casting installation
US3943964A (en) * 1970-07-07 1976-03-16 U.S. Philips Corporation Heating device
US3776439A (en) * 1972-04-03 1973-12-04 Gen Electric Fail-safe liquid pumping and flow control system
FR2252154B1 (en) * 1973-11-28 1976-12-03 Siderurgie Fse Inst Rech
SE378536B (en) * 1973-12-19 1975-09-08 Asea Ab
US3931960A (en) * 1975-04-07 1976-01-13 Alcan Research And Development Limited Apparatus for circulating molten metal
FR2316026A1 (en) * 1975-07-04 1977-01-28 Anvar ELECTROMAGNETIC DEVICE FOR CONTAINING LIQUID METALS
SE410284B (en) * 1978-02-10 1979-10-08 Asea Ab PROCEDURE FOR REMOVAL OF METALLIC MELT AND DEVICE FOR IMPLEMENTATION OF THIS PROCEDURE
DE3009189B1 (en) * 1980-03-11 1981-08-20 Mannesmann Demag Ag, 4100 Duisburg Process for the horizontal continuous casting of liquid metals, in particular steel, and device therefor
CH648500A5 (en) * 1980-07-11 1985-03-29 Concast Ag METHOD AND DEVICE FOR CONTINUOUSLY casting metal in a closed pouring system.
KR870000714B1 (en) * 1981-11-18 1987-04-09 하세가와 겐고오 Horizontal continuous casting method
LU84103A1 (en) * 1982-04-22 1984-03-02 Arbed AUTOMATIC SCRUBBER SCRAPING SYSTEM DURING METAL CASTING
JPS6099458A (en) * 1983-11-07 1985-06-03 Toshiba Corp Device and method for adjusting transfer rate of molten metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3842690A1 (en) * 1988-12-19 1990-06-21 Didier Werke Ag FIREPROOF CONNECTION AND INDUCTION COIL HERE
DE3842690C2 (en) * 1988-12-19 1998-04-30 Didier Werke Ag Refractory connection and induction coil therefor
DE4301330A1 (en) * 1993-01-20 1994-08-18 Didier Werke Ag Method for inductively heating up a ceramic moulding
DE102013101962B3 (en) * 2013-02-27 2014-05-22 Schuler Pressen Gmbh Casting device and casting process

Also Published As

Publication number Publication date
ES541397A0 (en) 1986-04-16
CA1240821A (en) 1988-08-23
ZA851520B (en) 1985-10-30
JPS6178542A (en) 1986-04-22
KR920002402B1 (en) 1992-03-23
AU577091B2 (en) 1988-09-15
AU3913485A (en) 1985-09-12
ATE32500T1 (en) 1988-03-15
US4655237A (en) 1987-04-07
EP0155575A1 (en) 1985-09-25
CH665369A5 (en) 1988-05-13
KR850007013A (en) 1985-10-30
DE3561615D1 (en) 1988-03-24
JPH0675753B2 (en) 1994-09-28
ES8606681A1 (en) 1986-04-16
BR8501008A (en) 1985-10-29
MX157862A (en) 1988-12-16

Similar Documents

Publication Publication Date Title
EP0155575B1 (en) Method of regulating the flow of an electrically conductive fluid especially of a molten bath of metal in continuous casting and an apparatus for carrying out the method
DE2629045C2 (en)
DE2731238A1 (en) METHOD AND DEVICE FOR CONTINUOUS PASTING, IN PARTICULAR STEEL, UNDER THE EFFECT OF A MAGNETIC WALKING FIELD
EP0035675B2 (en) Method and arrangement for horizontal continuous casting of liquid metals, especially steel
DE3006618C2 (en)
EP0019114B1 (en) Method and apparatus for the continuous casting of several strands
EP0107068A1 (en) Method for the horizontal continuous casting of metals, in particular of steel
EP2326441B1 (en) Electromagnetic braking device on continuous casting molds
DE19654021A1 (en) Process for remelting metals into a strand and device therefor
DE60100707T2 (en) DEVICE FOR LOADING LIQUID METAL INTO A CONTINUOUS CASTING CHOCOLATE AND METHOD FOR USE THEREOF
CH638413A5 (en) DEVICE FOR SUPPLYING METAL MELT FROM A FURNACE TO A CONTINUOUSLY WORKING CONTINUOUS CASTING CHILL.
DE2911541C2 (en)
DE1803473A1 (en) Continuous metal casting installation
EP0083916B1 (en) Device for the horizontal continuous casting of metals and alloys, especially of steel
DE4006842A1 (en) Strip casting assembly - has die head with flow guides to prevent turbulence in molten metal passing to the mouthpiece
EP0614714A1 (en) Continuous casting machine for the production of thin steel slabs
EP0820824B1 (en) Electromagnetic brake for a continuous casting mould
DE3041741C2 (en) Induction channel furnace
DE1508906C3 (en) Continuous casting mold
EP0263779A2 (en) Installation for continuous casting of molten metal
DE19651531C2 (en) Process for regulating the temperature and for uniformizing the temperature profile of a molten, metallic strand
DE1954763A1 (en) Operating an inductor with ingot mould
DE19546340A1 (en) Device for feeding steel into a continuous casting mold
DE4132910C1 (en)
DE1758777A1 (en) Process and casting metal supply for the continuous casting of metal, in particular steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19851204

17Q First examination report despatched

Effective date: 19861029

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 32500

Country of ref document: AT

Date of ref document: 19880315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3561615

Country of ref document: DE

Date of ref document: 19880324

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85102328.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970210

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970213

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970224

Year of fee payment: 13

Ref country code: BE

Payment date: 19970224

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970225

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970408

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

BERE Be: lapsed

Owner name: CONCAST STANDARD A.G.

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

EUG Se: european patent has lapsed

Ref document number: 85102328.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST