EP0154517B1 - Semiconductor laser array - Google Patents
Semiconductor laser array Download PDFInfo
- Publication number
- EP0154517B1 EP0154517B1 EP85301371A EP85301371A EP0154517B1 EP 0154517 B1 EP0154517 B1 EP 0154517B1 EP 85301371 A EP85301371 A EP 85301371A EP 85301371 A EP85301371 A EP 85301371A EP 0154517 B1 EP0154517 B1 EP 0154517B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- laser emitting
- optical guide
- substrate
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 29
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000005253 cladding Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 18
- 230000008878 coupling Effects 0.000 claims description 17
- 238000010168 coupling process Methods 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 17
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 239000012071 phase Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2231—Buried stripe structure with inner confining structure only between the active layer and the upper electrode
Definitions
- the present invention relates to a semiconductor laser structure and, more particularly, to a semiconductor laser array which includes a current confinement structure and a built-in refractive index difference, the refractive index being the vaule of the real part only.
- a semiconductor laser has widely been used as a light source in an optical information processing system such as an optical disc system and a laser printer.
- a rapid processing is required in such an optical information processing system as the amount of information to be handled increases.
- the semiconductor laser must emit the laser beam at a high power level in a stable operating range.
- the practical maximum output is around 50 mW.
- a laser device wherein a plurality of semiconductor lasers are aligned in a parallel fashion, and the plurality of semiconductor lasers are optically, phase coupled to each other so as to emit the laser beam in a single phase.
- This is referred to as the phase coupled laser array.
- the semiconductor laser array of the gain guide type the gain is substantially reduced at the coupling region positioned between the adjacent two laser emitting regions and, therefore, the electric field has the phase difference of 180 degrees at the ajacent two laser emitting regions.
- the far field pattern has a plurality of peaks as shown in FIGURE 1.
- the semiconductor laser array of the gain guide type can not endure the practical use.
- a semiconductor laser array of the index guide type has been proposed.
- D. E. Ackley et al of Hewlett-Packard Laboratories proposed a semiconductor laser array of the leaky mode built-in type (Appl. Phys. Letters, 39(1), 1 July 1981. P27).
- the proposed laser array ensures an effective coupling of the laser emitting regions, but has two peaks in the far field pattern because of the leaky mode.
- CSP-LOC Channel-Substrate-Large-Optical-Cavity
- the proposed semiconductor laser utilizes the distribution of effective refractive index which is formed by the coupling to the GaAs substrate.
- the region disposed between the adjacent two laser emitting regions has a high absorption coefficient.
- the refractive index difference is not obtained when the absorption coefficient is minimized. Accordingly, it is difficult to reduce the phase difference between the adjacent two laser emitting regions to zero.
- Each pair of the adjacent two laser emitting regions has the phase difference of 180 degrees because of the high absorption caused by the electrode disposed at the coupling region of the adjacent two laser emitting regions.
- E. Kapon et al of California Institute of Technology disclosed an integrated semiconductor laser phased array of the gain-guided type having separate contacts for each laser element (Appl. Phys. Letters, 44(2), 15 January 1984. P157).
- the individual laser stripes were delineated by using proton implantation and the separate contacting was accomplished by employing two-level metalisation. The different laser currents were varied for different results.
- a semiconductor laser array comprising: a substrate; a layered structure formed on said substrate, said structure comprising an active layer with a plurality of grooves formed in the part of the layered structure over said active layer so as to form a plurality of mesa stripes on said active layer; and current injection means for injecting current into said active layer through said plurality of mesa stripes, wherein said grooves contain high resistance layer portions for separating adjacent said mesa stripes and thereby causing division of said injected current into a plurality of current paths through respective said mesa stripes, laser emitting regions defined by respective said mesa stripes being optically phase coupled to the next said laser emitting region by a coupling region, said laser emitting regions and said coupling regions and said coupling regions having refractive indices of the real part only which differ from each other whereby an index-guided structure is formed in each laser emitting region.
- a semiconductor laser array comprising: a substrate; a first cladding layer formed on said substrate; an active layer formed on said first cladding layer; an optical guide layer formed on said active layer; a second cladding layer formed on said optical guide layer; a cap layer formed on said second cladding layer; a plurality of mesa stripes formed on said optical guide layer, each mesa stripe being separated from the next mesa stripe by a groove extending into said optical guide layer, and each said groove containing high resistance layer portions; and current injection means for injecting current into said active layer through said plurality of mesa stripes, wherein laser emitting regions are defined by said mesa stripes, each laser emitting region being optically phase coupled connected to the next laser emitting region, by a coupling region, said laser emitting regions and said coupling regions having refractive indices of the real part only which differ from each other whereby an index-guided structure is formed in each laser emitting region.
- FIGURE 2 shows an embodiment of a semiconductor laser array of the present invention.
- a semiconductor laser array of the present invention includes a p-GaAs substrate 1, a p-Ga 1-x Al x As cladding layer 2 formed on the substrate 1, a Ga 1-y Al y As active layer 3, an n-Ga 1-z Al z As optical guide layer 4, an n-Ga 1-x Al x As cladding layer 5, and an n-GaAs cap layer 6.
- the layers 2, 3, 4, 5 and 6 are sequentially formed on the p-GaAs substrate 1 by the well-known liquid-phase epitaxial growth method so as to form a multilayered laser emitting crystal of the double-hetero structure.
- An etching operation is effected to the multi-layered laser emitting crystal by the photo-lithography method so as to form a plurality of stripes 7 on the GaAs substrate 1.
- Each stripe 7 has a width of 4 ⁇ m, and the stripes 4 has a pitch of 8 ⁇ m.
- the etching is effected from the cap layer 6, and the etching depth is controlled so that the etched portion reaches the inside of the intermediate layer 4.
- Each etched groove has a width of 4 ⁇ m.
- a Ga 1-b Al b As high resistance layer 8 is formed in the etched groove through the use of the liquid-phase epitaxial growth method.
- the crystal formation temperature cycle is properly controlled so that the high resistance layer 8 is formed in the etched groove, but is not formed on the stripes 7.
- the AlAs mole fractions of the respective layers must satisfy the following conditions. y ⁇ z ⁇ x (1) z ⁇ b (2) An n-side electrode is formed on the surface of the grown crystal, which creates the ohmic contact to the cap layer 6. A p-side electrode is formed on the rear surface of the GaAs substrate 1. When a D.C. voltage is applied between the n-side and p-side electrodes, the carrier is injected into the active layer 3 through the stripes 7 to conduct the laser emitting operation.
- the p-cladding layer 2, the active layer 3, and the optical guide layer 4 formed on the GaAs substrate 1 are common to each of the stripes 7.
- the n-cladding layer 5, and the cap layer 6 are divided into the stripes 7 by the high resistance layer 8. Therefore, the current is divided into plural paths.
- Each stripe 7 forms the current confinement structure which defines each laser emitting region 9.
- the active layer 3 included in the laser emitting region 9 emits the laser beam.
- the regions disposed between the adjacent two laser emitting regions 9 function as optical coupling regions 10 at which the laser beam is optically phase coupled.
- the laser emitting region 9 and the optical coupling region 10 have the refractive indexes of the real part only, which differ from each other. The refractive index difference should be greater than the reduction of the refractive index (-1.3 x 10 ⁇ 3) caused by the current injection.
- the optical guide layer 4 is provided for facilitating the control of the refractive index difference between the laser emitting region 9 and the optical coupling region 10, and for enhancing the optical coupling efficiency between the adjacent laser emitting regions 9. Theoretically, the optical guide layer 4 can be omitted.
- a semiconductor laser array including five (5) stripes 7 is formed as an example.
- Figure 3 shows the optical output characteristic of this example, and
- Figure 4 shows the far field pattern of this example.
- Figure 4 shows that each laser emitting region 9 is connected to the next laser emitting region 9 with the phase difference of zero degree.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP39144/84 | 1984-02-28 | ||
JP59039144A JPS60182181A (ja) | 1984-02-28 | 1984-02-28 | 半導体レ−ザアレイ |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0154517A2 EP0154517A2 (en) | 1985-09-11 |
EP0154517A3 EP0154517A3 (en) | 1986-11-12 |
EP0154517B1 true EP0154517B1 (en) | 1991-11-21 |
Family
ID=12544907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85301371A Expired EP0154517B1 (en) | 1984-02-28 | 1985-02-28 | Semiconductor laser array |
Country Status (4)
Country | Link |
---|---|
US (1) | US4694461A (enrdf_load_stackoverflow) |
EP (1) | EP0154517B1 (enrdf_load_stackoverflow) |
JP (1) | JPS60182181A (enrdf_load_stackoverflow) |
DE (1) | DE3584684D1 (enrdf_load_stackoverflow) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61113293A (ja) * | 1984-11-07 | 1986-05-31 | Sharp Corp | 半導体レ−ザアレイ装置 |
JPH0722214B2 (ja) * | 1985-07-18 | 1995-03-08 | シャープ株式会社 | 半導体レーザ素子の製造方法 |
JPS63124484A (ja) * | 1986-11-12 | 1988-05-27 | Sharp Corp | 半導体レ−ザ素子 |
JP2768672B2 (ja) * | 1987-09-30 | 1998-06-25 | 株式会社日立製作所 | 面発光半導体レーザ |
JP4911957B2 (ja) * | 2005-12-02 | 2012-04-04 | シャープ株式会社 | 半導体レーザ素子および応用システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4255717A (en) * | 1978-10-30 | 1981-03-10 | Xerox Corporation | Monolithic multi-emitting laser device |
JPS5624399A (en) * | 1979-08-06 | 1981-03-07 | Reisu Ueringusu Furederitsuku | Electroacoustic converter |
-
1984
- 1984-02-28 JP JP59039144A patent/JPS60182181A/ja active Granted
-
1985
- 1985-02-08 US US06/700,018 patent/US4694461A/en not_active Expired - Lifetime
- 1985-02-28 EP EP85301371A patent/EP0154517B1/en not_active Expired
- 1985-02-28 DE DE8585301371T patent/DE3584684D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0154517A3 (en) | 1986-11-12 |
JPH029468B2 (enrdf_load_stackoverflow) | 1990-03-02 |
DE3584684D1 (de) | 1992-01-02 |
US4694461A (en) | 1987-09-15 |
JPS60182181A (ja) | 1985-09-17 |
EP0154517A2 (en) | 1985-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4870652A (en) | Monolithic high density arrays of independently addressable semiconductor laser sources | |
US4461007A (en) | Injection lasers with short active regions | |
US6399407B1 (en) | Methods of electrostatic control in semiconductor devices | |
US6052399A (en) | Independently addressable laser array with native oxide for optical confinement and electrical isolation | |
US4706255A (en) | Phased array semiconductor laser with preferred emission in the fundamental supermode | |
US6148017A (en) | Laser diode/modulator combination | |
US4371966A (en) | Heterostructure lasers with combination active strip and passive waveguide strip | |
EP0310038B1 (en) | Surface emitting type semiconductor laser | |
EP0337688B1 (en) | Phase-locked array of semiconductor lasers using closely spaced antiguides | |
EP0115390A2 (en) | Semiconductor lasers | |
US4805179A (en) | Transverse junction stripe laser | |
US4803691A (en) | Lateral superradiance suppressing diode laser bar | |
JPH0728087B2 (ja) | ゲイン/屈折率複合ガイド形半導体レ−ザ及びアレイレ−ザ | |
US4958202A (en) | Semiconductor light-emitting device and method of manufacturing the same | |
US4823352A (en) | Semiconductor laser with a variable oscillation wavelength | |
US4905246A (en) | Semiconductor laser device | |
EP0154517B1 (en) | Semiconductor laser array | |
EP0162660B1 (en) | A compound resonator type semiconductor laser device | |
EP0174839B1 (en) | A semiconductor laser array device | |
EP0161924B1 (en) | Semiconductor laser array | |
EP0284684B1 (en) | Inverted channel substrate planar semiconductor laser | |
US4737959A (en) | Semiconductor laser array device | |
JP3241360B2 (ja) | 光半導体装置 | |
EP0144205B1 (en) | Semiconductor laser | |
EP0193404B1 (en) | A semiconductor laser array device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE GB NL |
|
17P | Request for examination filed |
Effective date: 19870430 |
|
17Q | First examination report despatched |
Effective date: 19890331 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB NL |
|
REF | Corresponds to: |
Ref document number: 3584684 Country of ref document: DE Date of ref document: 19920102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980219 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980226 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980306 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991201 |