EP0151700B1 - Industrial furnace, especially a multiple chamber vacuum furnace, for heat treating batches of metal workpieces - Google Patents

Industrial furnace, especially a multiple chamber vacuum furnace, for heat treating batches of metal workpieces Download PDF

Info

Publication number
EP0151700B1
EP0151700B1 EP84113445A EP84113445A EP0151700B1 EP 0151700 B1 EP0151700 B1 EP 0151700B1 EP 84113445 A EP84113445 A EP 84113445A EP 84113445 A EP84113445 A EP 84113445A EP 0151700 B1 EP0151700 B1 EP 0151700B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
cooling
charge
industrial furnace
batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84113445A
Other languages
German (de)
French (fr)
Other versions
EP0151700A2 (en
EP0151700A3 (en
Inventor
Joachim Dr.-Ing. Wünning
Wilhelm Neubauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichelin GmbH Germany
Original Assignee
Aichelin GmbH Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichelin GmbH Germany filed Critical Aichelin GmbH Germany
Priority to AT84113445T priority Critical patent/ATE35428T1/en
Publication of EP0151700A2 publication Critical patent/EP0151700A2/en
Publication of EP0151700A3 publication Critical patent/EP0151700A3/en
Application granted granted Critical
Publication of EP0151700B1 publication Critical patent/EP0151700B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone

Definitions

  • the invention relates to an industrial furnace, in particular a multi-chamber vacuum furnace for the heat treatment of batches of metallic workpieces, with a heating chamber and a cooling chamber containing a cooling device acted upon with cooling gas, in which a heat-treated batch is flowed with cooling gas which is circulated via a heat exchanger, and optionally with a Oil bath.
  • Industrial furnaces of this type are used to a large extent for hardening steel parts, in particular all types of parts made of tool steels, as well as for various cooling processes and other heat treatments of metal parts.
  • An example of such an industrial furnace is described in DE-A-1 933 593.
  • This vacuum oven has a heating compartment and an adjoining cooling compartment.
  • the cooling compartment contains a cooling chamber housing which is open at the bottom and in which there is a bell-shaped partition. At the upper tapered opening there is a fan through which the cooling gas is to be circulated in the cooling chamber. Between the cooling chamber housing and the intermediate wall, a heat exchanger surrounding the intermediate wall is arranged over its entire longitudinal extent.
  • the interior of the cooling chamber housing to the cooling compartment is thereby closed off by the lifting device for the pallet.
  • an annular gap remains between the pallet and the lower edge of the partition.
  • the fan of the cooling chamber sucks the cooling gas up through the annular gap past the hot charge, from where it passes down again to the annular gap via the water-cooled heat exchanger. Since the opening for the fan has a smaller cross-section than the base area of the space surrounded by the intermediate wall, there is essentially a flow along a cone shell through the charge.
  • the object of the invention is therefore to provide an industrial furnace, in particular a multi-chamber vacuum furnace with a cooling chamber containing a gas cooling device, in which an optimal adaptation of the flow conditions of the respective batch to be cooled to the conditions of this batch is possible with simple means, without the need for expensive , expensive or difficult to use facilities would be required.
  • the industrial furnace mentioned at the outset has a nozzle box which is arranged in the cooling chamber and is supplied with cooling gas and in which at least one nozzle plate arranged opposite the batch is interchangeably used to change the blowing conditions of the batch.
  • the exchangeable nozzle plates differ by nozzles with different nozzle arrangements and / or with different nozzle diameters and / or with different distances from the batch.
  • the new industrial furnace only allows high cooling gas speeds to be generated in the cooling chamber by means of a corresponding nozzle plate arrangement and thus a corresponding selection of the nozzle arrangement, nozzle distribution and other nozzle characteristics at or within the batch to be cooled, where maximum cooling effect is required.
  • the design effort for the simple nozzle box with the interchangeable nozzle plates is low.
  • At least some nozzles of at least one nozzle plate are arranged in an orientation resulting in a baffle flow and / or a parallel flow of the cooling gas on the charge.
  • the maximum cooling speed of the batch depends on the heat transfer values achieved. It is known that the gas inflow of the charge has a decisive influence on the degree of heat transfer from the cooling gas / charge, with higher heat transfer values being achieved in the case of an impact flow than in the case of parallel flow, in which the cooling gas flows parallel to the workpiece surface.
  • Other parameters for heat transfer include Nozzle outlet speed, nozzle diameter, nozzle distance from the batch, distance between the nozzles, average cooling gas temperatures and average batch temperatures.
  • the nozzles are advantageously arranged surrounding the batch on several sides in the cooling chamber, which results in particularly simple structural conditions if the nozzle box has guide devices into which the respective nozzle plate can be inserted.
  • the above-described adaptation of the cooling device to the parameters mentioned for the heat transfer can be achieved in a very simple manner.
  • the individual, interchangeable nozzle plates can not only have different nozzle arrangements (nozzle images) and nozzle diameters, etc., but it can also have, for example, a nozzle plate projecting into or out of the interior of the cooling chamber, in order to reduce the distance between the nozzles and the Change batch according to the respective circumstances.
  • the heat-treated batch will be surrounded by nozzles on several sides, for which purpose the nozzle box is expediently tunnel-shaped and is delimited on its inner wall by at least one nozzle plate.
  • at least one gas-impermeable blind plate can be detachably used. In this way, an effective impingement flow can be achieved with plate-shaped workpieces by inserting lateral nozzle plates and a blind plate above the charge, so that the stationary workpiece can be optimally cooled from all sides.
  • only parallel flow can be used as through-flow cooling, because cooling by means of impingement flow is not possible due to the shape of the workpiece and the large number of workpieces.
  • a nozzle plate is inserted above and dummy plates on both sides of the batch.
  • the nozzle distance from the batch can then be optimized on each side by means of the nozzle plates already mentioned, with an area projecting into or out of the interior of the cooling chamber.
  • the nozzle box is delimited on at least three inner sides by nozzle plates, two of which are arranged opposite one another and the third nozzle plate is arranged between the other two nozzle plates.
  • a lifting and lowering device receiving the batch can be arranged in the cooling chamber, by means of which the batch can be brought into a predetermined distance from at least part of the nozzle orifices of at least one nozzle plate.
  • the nozzle plates are evenly charged with cooling gas, an equal exit speed is guaranteed at all nozzles of the respective nozzle plate, and thus a uniform cooling effect on the entire loaded batch area.
  • Such a uniform cooling effect is important to achieve a desired structural state in the batch to be cooled.
  • the cooling device is not located in the heating chamber, but in its own cooling chamber.
  • the cold batch environment in the cooling chamber not only exploits the convective heat transfer from the batch to the cooling gas, but also the heat dissipation by radiation, which helps in the upper temperature range in particular to increase the cooling effect.
  • the heating chamber, the heating elements and the batch hearth do not have to be cooled together with the batch after the heat treatment in the critical cooling range, so that the cooling capacity achieved on the batch is not reduced by the heat dissipation of the heating chamber device .
  • the cooling chamber separate from the heating chamber enables the described adaptability of the nozzle cooling device to the conditions of the respective batch, while on the other hand the heating chamber can be designed for optimum heating conditions regardless of the cooling of the batch required after the heat treatment.
  • the double-chamber vacuum furnace shown in FIGS. 1 to 4 has a double-walled, water-cooled housing 1, in the rear part of which a heating chamber 2 and in the front part of which a cooling chamber 3 are accommodated.
  • the essentially cylindrical housing 1 is closed on the front side by a water-cooled double-jacket door 4 which serves for loading and unloading the furnace and can be pivoted or pushed.
  • a double-walled swing door 5 is provided, which closes a housing opening available for assembly purposes.
  • a double-walled, water-cooled container 6 adjoins the housing 1 below the cooling chamber 3, which is flanged to the housing 1 and in which there is an oil bath, the level of which is indicated at 7.
  • the housing 1 In the front part of the cooling chamber 3, the housing 1 carries three radially projecting flanges 8 distributed around its circumference in the manner shown in FIG. 2, onto which double-walled, water-cooled hoods 9 are placed, each of which covers a fan drive unit 10 .
  • the heating chamber 2 which is essentially rectangular in cross section, is constructed in a lightweight steel construction and is lined with a multi-layer insulation made of high-quality ceramic fiber material and the purest graphite felt.
  • Large-area graphite heating elements 12 are arranged on both sides and above the batch indicated at 11. This all-round arrangement of the graphite heating elements 12 ensures rapid and uniform heating of the batch 11.
  • the current supply of the graphite heating elements 11 takes place via heating element connecting bolts 13 and one heating element connecting flange 14 in each case.
  • the batch 11 is located in the heating chamber 2 on a stove 15, which can be raised and lowered for transport purposes.
  • the end wall of the heating chamber 2 adjoining the cooling chamber 3 is closed by a horizontally movable heating chamber door 16.
  • the heating chamber 2 is optimally designed for the lowest possible storage heat and for heat treatment according to a preselected temperature program. Compared to single-chamber furnaces, neither the cooling gas flow and cooling gas speed nor other parameters for heat dissipation from the batch need to be taken into account.
  • the cooling chamber 3 which is arranged approximately coaxially to the heating chamber 2, contains a cooling device 17 which has a nozzle box 18 which is tunnel-shaped with an essentially U-shaped cross section and a heat-treated batch 11a to be cooled in the manner shown in FIG. 3 above and covering on both sides.
  • the nozzle box 18 carries on the open inner sides pointing towards the batch 11a in pairs mutually associated side guide grooves 19 into which the nozzle plates 20, 20a or blind plates 21 are optionally inserted interchangeably, as will be explained with reference to FIGS. 5 to 18.
  • the nozzle box 18 is directly connected to three fan housings 22, each of which contains a high-performance fan wheel 23, which sits directly on the shaft end of the associated drive motor 10, the vacuum-tight current feedthroughs of which are indicated at 24.
  • the suction opening of each fan housing 22 is preceded laterally by two heat exchangers 25, which are supplied with cooling water via vacuum-tight feed and discharge ducts and to which gas guide plates 26 are assigned.
  • three fan housings 22 and three associated fan units 10, 23 are provided. Embodiments are also conceivable in which only two fan housings 22 or also a single fan housing 22 are or are present.
  • the oil bath contained in the container 6 can be circulated evenly and vigorously by a hydraulic oil circulator 27, the speed of rotation of the oil circulator 27 being adjustable as required.
  • An oil bath heater 28 allows the vacuum quenching oil to be brought to the desired temperature and to be kept at this temperature.
  • a lifting and lowering platform 29 is arranged, which makes it possible to bring a heat-treated batch 11 a coming from the heating chamber 2 in the cooling chamber 3 to a certain height with respect to the nozzle box 18 - as will be explained in more detail below - Or immerse the batch 11 a in the quenching oil contained in the container 6.
  • the container 6 with the oil bath contained therein is dispensed with.
  • the double-chamber vacuum oven can be charged manually or automatically, the batch 11 being automatically moved into the open heating chamber 2.
  • the heating chamber door 16 and the door 4 closing the loading opening are then closed, whereupon the vacuum furnace is evacuated.
  • the batch 11 is then heat-treated in the heating chamber 2 according to a preselected temperature program.
  • the vacuum furnace is filled with inert gas under a maximum pressure of 6 bar abs. fumigated again.
  • the fan drive motors 10 are switched on.
  • the heating elements 12 are switched off and the batch 11 is moved into the cooling chamber 3, where it takes the place of the batch 11a and is quenched with cooling gas.
  • the charge in the cooling chamber 3 can be moved up to the nozzle plate 20 of the nozzle box 18 located above as required.
  • the batch 11 is to be quenched in oil after the heat treatment in the heating chamber 2, it is lowered into the oil bath after it has been moved out of the heating chamber 2 by means of the lifting and lowering platform 29. If necessary, you can pre-cool briefly with inert gas before quenching the oil.
  • the double chamber vacuum furnace is controlled automatically; the complete heat treatment cycle can be selected.
  • the nozzle box 18 is designed so that only low gas speeds occur in it, which on the one hand cause only small flow losses and on the other hand create the same pressure conditions at the nozzles of the nozzle plates 20, 20a, which lead to the same nozzle outlet speeds, which are the prerequisite for uniform cooling of the batch 11 are.
  • the quenching conditions in the cooling chamber 3 can be optimally adapted to the shape and composition of each batch 1a. This is illustrated by way of example in FIGS. 5 to 18:
  • the batch 11 a to be quenched consists of a number of slim, cylindrical tools, for example twist drills or milling cutters, with a diameter of 45 mm ⁇ 300 mm.
  • the cylindrical workpieces designated with 30 are charged standing, whereby they are evenly distributed on the base of the batch.
  • the base area of the batch corresponds to the rectangular outline area of the nozzle plate 20 shown in FIG. 6.
  • a horizontal nozzle plate 20 is inserted into the nozzle box 18 above the charge 11a, while blind plates 21 are attached to the side of the charge 11a.
  • the nozzle plate 20 carries nozzle openings 35 (FIG. 6) which are uniformly distributed over its entire surface and which ensure uniform and simultaneous cooling of all workpieces 30.
  • the distance between the nozzle openings 35 and the batch 11a has been optimized by lifting by means of the lifting and lowering platform 29.
  • the overstroke is indicated at 32 in FIG. 5.
  • the batch 11 a consists only of a workpiece 33 in the form of a cylindrical mandrel. Since this mandrel has a relatively small inflow area in comparison to the batch base area given by the rectangular outline of the nozzle plate 20a of FIG. 8, a cooling gas flow concentration in the region of the workpiece 33 to be cooled is necessary in order to achieve maximum cooling speeds. This requirement can be achieved either by reducing the number of nozzle openings 35 while simultaneously increasing the nozzle outlet speed, or with a constant number of nozzles by reducing the nozzle spacing 36 (FIG. 8).
  • a nozzle plate 20a is inserted in the nozzle box 18 above the charge 11, which has a region 40 projecting into the interior of the cooling chamber 3, in which the nozzle openings 35 are arranged.
  • the nozzle plate 20a thereby has a channel-like or box-like shape; the area containing the nozzle openings 35 is delimited on both sides by an unperforated area 41.
  • the nozzle pattern is determined in the manner shown in FIG. 18 by nozzle bores 35 of the same diameter arranged in a rectangular pattern with the same height and lateral spacings.
  • dummy plates 21 are inserted in the nozzle box 18 in order to prevent opposing cooling gas flows colliding against one another in the vicinity of the workpiece because this would substantially reduce the cooling gas velocity directly on the workpiece 33.
  • the batch 11 from a heavy, compact tool, for example a cylindrical die, which in comparison to the batch base area given by the rectangular outline shape of the nozzle plate 20 (FIG. 10) has a small projecting inflow area.
  • the most effective cooling results from a combination of impingement cooling of the upper flat surface on the one hand and a parallel flow on the cylindrical lateral surface or the bores of the workpiece 33 on the other hand, while two blind plates 21 are inserted in the nozzle box 18 on the side of the workpiece 33.
  • the nozzle pattern of the upper nozzle plate 20 is approximately diamond-shaped, again all the nozzle openings 35 having the same height and side distances 36.
  • the workpiece 33 is moved to the upper nozzle plate 20 by means of the lifting and lowering platform 29 in the cooling chamber 3, as is indicated at 32.
  • a batch 11 a is illustrated, which consists of several cylindrical stamps 33.
  • two blind plates 21 are inserted in the nozzle box 18 to the side of the charge 11, while a nozzle plate 20 is provided above the charge 11, the nozzle image of which can be seen in FIG. 12:
  • the nozzle openings 35 are each arranged in rectangular groups corresponding to the stamps 33, which are separated from one another by gas-impermeable intermediate spaces 34.
  • the side and height spacing 36 of adjacent nozzle openings 35 is the same again.
  • the batch 11a can be brought to the nozzle plate 20 through the lifting and lowering platform 29, as is indicated at 32 in FIG. 11; however, it is also conceivable to quench the charge 11a at a greater distance from the upper nozzle plate 20, which is illustrated in broken lines.
  • FIGS. 13, 14 A typical example of a batch 11 quenched by intensive impingement cooling is illustrated in FIGS. 13, 14. Above the batch 11 consisting of two plate-shaped workpieces 33, for example in the form of a die-casting mold, a blind plate 21 is arranged in the nozzle box 18, while two nozzle plates 20a are provided to the side of the upright standing plate-shaped workpieces 33, which are shown in FIG. 13 Have a region 40 projecting into the cooling chamber 3, in which the nozzle openings 35 are arranged.
  • the plate-shaped workpieces 33 are vertical to avoid distortion in the upper temperature range during the dwell time in the heating chamber 2 in the vacuum oven.
  • the nozzle openings 35 of the box-like nozzle plates 20a are brought close to the batch side surface, the nozzle openings 35 being arranged, according to the nozzle image shown in FIG. 14, uniformly distributed over the entire batch side surface with equal height and side spacings 36, in order thereby to ensure uniform and simultaneous cooling of the Ensure workpieces 33.
  • a single plate-shaped workpiece 33 for example in the form of a compression mold, is quenched in the cooling chamber 3, which - similar to FIG. 13 - with an overhead blind plate 21 and two lateral box or trough-like nozzle plates 20a is equipped.
  • the nozzle plates 20a are designed in the manner shown in FIG. 16 with a nozzle pattern which is matched to the side face of the batch:
  • the nozzle openings 35 which have the same height and side spacing 36, are concentrated on a rectangular region approximately corresponding to the batch side surface, which is surrounded by gas-impermeable regions 41.
  • the resulting reduction in the number of nozzle openings 35 results in an increase in the nozzle outlet speed.
  • the distance of the nozzle openings 35 from the workpiece or batch side surface is optimized in the described manner by using the nozzle plates 20a. The impingement flow applied to the workpiece on both sides guarantees a distortion-free and intensive cooling of the batch 11a.
  • a nozzle plate 20 is arranged in the nozzle box 18 above the batch 11 consisting of three workpieces 33, while dummy plates 21 are inserted on the side of the batch 11a.
  • the nozzle openings 35 - as can be seen from FIG. 17 - are again combined according to the three workpieces 33 into three adjacent, rectangularly delimited groups, between which gas-impermeable areas 41 are arranged.
  • the charge 11 a is brought up to the upper nozzle plate 20 by the lifting and lowering platform 29, as indicated at 32.
  • nozzle openings 35 of the same diameter are provided in the nozzle plates 20, 20a in different nozzle patterns.
  • the nozzle plates 20a instead of one in the cooling chamber 3 inwardly projecting part 40 have an outwardly projecting area, while for special cases the arrangement can also be such that a nozzle plate is present in the area of the batch base in order to allow the flow of the batch 11 from below.
  • the drive motors 10 of the fans can be designed to be controllable in order to be able to select the cooling gas speed in the cooling chamber 3 in accordance with the requirements.
  • the maximum cooling gas pressure is usually 2 bar abs. If necessary, it can also be higher.
  • cooling intensities are achieved in the cooling chamber, which correspond to those of conventional and commercially available vacuum furnaces with high-pressure gas quenching.
  • Conventional vacuum furnaces (predominantly single-chamber furnaces) must, for example, with 5 bar abs. Cooling gas pressure work in order to achieve a cooling effect comparable to that of the new industrial furnace in the cooling chamber 3 even at a cooling gas pressure of 2 bar abs. is obtained.
  • the decisive advantage of the low cooling gas pressures that can thus be achieved is a substantial saving of cooling gas (in particular nitrogen) during a heat treatment cycle, which means a correspondingly high cost saving.
  • low cooling gas pressures allow the production of cost-effective system housings that are not subject to official approval.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Details (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Joints Allowing Movement (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An industrial furnace for heat-treating metallic workpieces has separate heating and cooling chambers. The latter uses a circulating cooling gas, the flow of which against or past the workpieces produces cooling or gas-quenching. The furnace may have another chamber for oil-quenching lying below the gas-cooling chamber. In order to enable the gas cooling to operate quickly and efficiently, a cooling box fed with air by ventilator fans is provided in the shape of a tunnel, with internal surfaces above and at both sides of the effective cooling space constituted by interchangeable nozzle plates (or blank plates if no nozzle openings are desired at the top or at the sides). The workpieces to be cooled rest on a platform which may be raised or lowered to adjust the distance from the top nozzle plate or lowered into an oil bath. The nozzle plates provide a choice of nozzle patterns for different articles or groups of articles to be cooled after heat treatment. The nozzle plates may have setbacks or protrusions in order to vary the spacing of the nozzle openings from the median plane of the cooling tunnel.

Description

Die Erfindung betrifft einen Industrieofen, insbesondere Mehrkammer-Vakuumofen zur Wärmebehandlung von Chargen metallischer Werkstücke, mit einer Heizkammer und einer eine mit Kühlgas beaufschlagte Kühleinrichtung enthaltende Kühlkammer, in der eine wärmebehandelte Charge mit im Kreislauf über einen Wärmetauscher geführtem Kühlgas angeströmt ist, sowie gegebenenfalls mit einem Ölbad.The invention relates to an industrial furnace, in particular a multi-chamber vacuum furnace for the heat treatment of batches of metallic workpieces, with a heating chamber and a cooling chamber containing a cooling device acted upon with cooling gas, in which a heat-treated batch is flowed with cooling gas which is circulated via a heat exchanger, and optionally with a Oil bath.

Solche Industrieöfen werden in großem Maße zum Härten von Stahlteilen, insbesondere aller Arten von Teilen aus Werkzeugstählen, sowie für verschiedene Kühlprozesse und andere Wärmebehandlungen von Metallteilen verwendet. Ein Beispiel für einen solchen Industrieofen ist in der DE-A-1 933 593 beschrieben.Industrial furnaces of this type are used to a large extent for hardening steel parts, in particular all types of parts made of tool steels, as well as for various cooling processes and other heat treatments of metal parts. An example of such an industrial furnace is described in DE-A-1 933 593.

Dieser Vakuumofen weist ein Heizabteil und ein daran anschließendes Kühlabteil auf. Das Kühlabteil enthält oben ein nach unten offenes Kühlkammergehäuse in dem sich eine glockenförmige Zwischenwand befindet. An der oberen verjüngten Öffnung sitzt ein Ventilator, durch den das Kühlgas in der Kühlkammer umzuwälzen ist. Zwischen dem Kühlkammergehäuse und der Zwischenwand ist ein die Zwischenwand über ihre ganze Längserstreckung umgebender Wärmetauscher angeordnet.This vacuum oven has a heating compartment and an adjoining cooling compartment. The cooling compartment contains a cooling chamber housing which is open at the bottom and in which there is a bell-shaped partition. At the upper tapered opening there is a fan through which the cooling gas is to be circulated in the cooling chamber. Between the cooling chamber housing and the intermediate wall, a heat exchanger surrounding the intermediate wall is arranged over its entire longitudinal extent.

Wenn die Palette mit den Werkstücken von unten her durch die Öffnung hindurch in das Innere des Kühlkammergehäuses eingebracht wird, ist hierdurch von der Hebeeinrichtung für die Palette das Innere des Kühlkammergehäuses zum Kühlabteil hin abgeschlossen. Zwischen der Palette und dem unteren Rand der Zwischenwand verbleibt jedoch ein ringförmiger Spalt. Der Ventilator der Kühlkammer saugt das Kühlgas durch den ringförmigen Spalt an der heißen Charge vorbei nach oben, von wo es über den wassergekühlten Wärmetauscher wieder nach unten zu dem ringförmigen Spalt gelangt. Da die Öffnung für den Ventilator einen kleineren Querschnitt aufweist als die Grundfläche des von der Zwischenwand umgebenen Raumes, ergibt sich im wesentlichen eine Strömung entlang eines Kegelmantels durch die Charge.If the pallet with the workpieces is introduced from below through the opening into the interior of the cooling chamber housing, the interior of the cooling chamber housing to the cooling compartment is thereby closed off by the lifting device for the pallet. However, an annular gap remains between the pallet and the lower edge of the partition. The fan of the cooling chamber sucks the cooling gas up through the annular gap past the hot charge, from where it passes down again to the annular gap via the water-cooled heat exchanger. Since the opening for the fan has a smaller cross-section than the base area of the space surrounded by the intermediate wall, there is essentially a flow along a cone shell through the charge.

Aus der DE-C-863 070 ist es bekannt, in einen Einkammerofen über die Charge, die sowohl zum Erwärmen als auch zum Abkühlen an der selben Stelle im Ofen verbleibt, von oben her ein doppelwandiges zylindrisches Rohr zu führen, dessen Innenrohr Löcher aufweist. Von oben wird die Luft über eine ringförmige Luftzufuhr in den ringförmigen Kanal zwischen Innen- und Außenrohr eingeblasen und strömt dann durch die Löcher auf die Charge zu. Neben der Tatsache, daß der Ofen zum Einführen des Zylinders geöffnet werden muß, - dabei erfolgt ein unkontrolliertes Abkühlen der Charge - muß bei unterschiedlichen Chargen auch das komplette Rohr gegen ein anderes mit entsprechend an die Charge angepaßten Löchern ausgetauscht werden.From DE-C-863 070 it is known to guide a double-walled cylindrical tube, the inner tube of which has holes, into a single-chamber furnace via the batch, which remains in the furnace for heating and cooling at the same place. From above, the air is blown into the annular channel between the inner and outer tubes via an annular air supply and then flows through the holes towards the batch. In addition to the fact that the furnace has to be opened to insert the cylinder - this leads to an uncontrolled cooling of the batch - the complete pipe must also be exchanged for another batch with holes adapted to the batch in the case of different batches.

Aufgabe der Erfindung ist es deshalb, einen Indusrieofen, insbesondere einen Mehrkammervakuumofen mit einer eine Gas-Kühleinrichtung enthaltenden Kühlkammer zu schaffen, bei dem eine optimale Anpassung der Anströmverhältnisse der jeweiligen abzukühlenden Charge an die Gegebenheiten dieser Charge mit einfachen Mitteln möglich ist, ohne daß dazu aufwendige, teure oder schwer zu bedienende Einrichtungen erforderlich wären.The object of the invention is therefore to provide an industrial furnace, in particular a multi-chamber vacuum furnace with a cooling chamber containing a gas cooling device, in which an optimal adaptation of the flow conditions of the respective batch to be cooled to the conditions of this batch is possible with simple means, without the need for expensive , expensive or difficult to use facilities would be required.

Zur Lösung der Aufgabe ist der eingangs genannte Industrieofen einen in der Kühlkammer angeordneten, mit Kühlgas beaufschlagten Düsenkasten aufweist, in dem zumindest ein der Charge gegenüber angeordnetes Düsenblech zur Veränderung der Anblasverhältnisse der Charge austauschbar eingesetzt ist.To achieve the object, the industrial furnace mentioned at the outset has a nozzle box which is arranged in the cooling chamber and is supplied with cooling gas and in which at least one nozzle plate arranged opposite the batch is interchangeably used to change the blowing conditions of the batch.

Bei einer bevorzugten Ausführungsform unterscheiden sich die austauschbaren Düsenbleche durch Düsen mit unterschiedlicher Düsenanordnung und/oder mit unterschiedlichem Düsendurchmesser und/oder mit unterschiedlichem Abstand zur Charge.In a preferred embodiment, the exchangeable nozzle plates differ by nozzles with different nozzle arrangements and / or with different nozzle diameters and / or with different distances from the batch.

Der neue Industrieofen gestattet es, in der Kühlkammer durch eine entsprechenden Düsenblechanordnung und damit eine entsprechende Auswahl der Düsenanordnung, Düsenverteilung und anderer Düsencharakteristiken an oder innerhalb der abzukühlenden Charge nur dort hohe Kühlgasgeschwindigkeiten zu erzeugen, wo maximale Kühlwirkung benötigt wird. Dabei ist der Konstruktionsaufwand für den einfachen Düsenkasten mit den austauschbaren Düsenblechen gering.The new industrial furnace only allows high cooling gas speeds to be generated in the cooling chamber by means of a corresponding nozzle plate arrangement and thus a corresponding selection of the nozzle arrangement, nozzle distribution and other nozzle characteristics at or within the batch to be cooled, where maximum cooling effect is required. The design effort for the simple nozzle box with the interchangeable nozzle plates is low.

Es ist vorteilhaft, wenn wenigstens einige Düsen wenigstens eines Düsenbleches in einer eine Prallströmung und/oder eine Parallelströmung des Kühlgases an der Charge ergebenden Ausrichtung angeordnet sind. Bei gegebener Kühlgasumwälzleistung hängt nämlich die maximale Kühlgeschwindigkeit der Charge von den erzielten Wärmeübergangswerten ursächlich ab. Es ist bekannt, daß die Gasanströmung der Charge auf das Maß des Wärmeübergangs Kühlgas/Charge entscheidenden Einfluß hat, wobei bei Prallströmung höhere Wärmeübergangswerte erreicht werden als bei Parallelströmung, bei der das Kühlgas parallel zu der Werkstückoberfläche strömt. Weitere Parameter für den Wärmeübergang sind u.a. Düsenaustrittsgeschwindigkeit, Düsendurchmesser, Düsenabstand von der Charge, Abstand der Düsen untereinander, mittlere Kühlgastemperaturen und mittlere Chargentemperaturen.It is advantageous if at least some nozzles of at least one nozzle plate are arranged in an orientation resulting in a baffle flow and / or a parallel flow of the cooling gas on the charge. For a given cooling gas circulation capacity, the maximum cooling speed of the batch depends on the heat transfer values achieved. It is known that the gas inflow of the charge has a decisive influence on the degree of heat transfer from the cooling gas / charge, with higher heat transfer values being achieved in the case of an impact flow than in the case of parallel flow, in which the cooling gas flows parallel to the workpiece surface. Other parameters for heat transfer include Nozzle outlet speed, nozzle diameter, nozzle distance from the batch, distance between the nozzles, average cooling gas temperatures and average batch temperatures.

Die Düsen sind mit Vorteil die Charge auf mehreren Seiten umgebend in der Kühlkammer angeordnet, wobei sich besonders einfache konstruktive Verhältnisse ergeben, wenn der Düsenkasten Führungseinrichtungen aufweist, in die das jeweilige Düsenblech einschiebbar ist.The nozzles are advantageously arranged surrounding the batch on several sides in the cooling chamber, which results in particularly simple structural conditions if the nozzle box has guide devices into which the respective nozzle plate can be inserted.

Durch einfaches Austauschen der Düsenbleche läßt sich die oben erläuterte Anpassung der Kühleinrichtung an die erwähnten Parameter für den Wärmeübergang in sehr einfacher Weise erzielen. Die einzelnen, gegeneinander austauschbaren Düsenbleche können nicht nur unterschiedliche Düsenanordnungen (Düsenbilder) und Düsendurchmesser etc. haben, sondern es kann bspw. ein Düsenblech einen in das Innere der Kühlkammer vorspringenden oder aus diesem zurückspringenden Bereich aufweisen, um damit den Abstand zwischen den Düsen und der Charge entsprechend den jeweiligen Gegebenheiten zu verändern.By simply replacing the nozzle plates, the above-described adaptation of the cooling device to the parameters mentioned for the heat transfer can be achieved in a very simple manner. The individual, interchangeable nozzle plates can not only have different nozzle arrangements (nozzle images) and nozzle diameters, etc., but it can also have, for example, a nozzle plate projecting into or out of the interior of the cooling chamber, in order to reduce the distance between the nozzles and the Change batch according to the respective circumstances.

In der Regel wird die wärmebehandelte Charge von mehreren Seiten von Düsen umgeben sein, wozu der Düsenkasten zweckmäßigerweise tunnelförmig ausgebildet ist und an seiner Innenwand durch wenigstens ein Düsenblech begrenzt ist. Zusätzlich zu dem Düsenblech kann wenigstens ein gasundurchlässiges Blindblech lösbar eingesetzt sind. Auf diese Weise läßt sich eine wirkungsvolle Prallströmung bei plattenförmigen Werkstücken erzielen, indem seitliche Düsenbleche und oberhalb der Charge ein Blindblech eingeschoben werden, so daß das stehende Werkstück von allen Seiten optimal gekühlt werden kann. Bei einer Charge von zylindrischen stehenden Werkzeugen kann nur mittels einer Parallelströmung als Durchströmkühlung gearbeitet werden, weil wegen der Werkstückform und der großen Zahl von Werkstücken eine Kühlung mittels Prallströmung nicht möglich ist. Für diese Durchströmkühlung werden ein Düsenblech oberhalb und Blindbleche an den beiden Seiten der Charge eingeschoben. Der Düsenabstand von der Charge kann dann auf jeder Seite durch bereits erwähnte Düsenbleche mit einem in das Innere der Kühlkammer vorspringenden oder aus diesem zurückspringenden Bereich optimiert werden. Um die erwähnte Anordnung der Düsenbleche einfach ausführen zu können, ist es vorteilhaft, wenn der Düsenkasten auf wenigstens drei Innenseiten durch Düsenbleche begrenzt ist, von denen zwei einander gegenüberliegend und das dritte Düsenblech zwischen den beiden anderen Düsenblechen angeordnet ist.As a rule, the heat-treated batch will be surrounded by nozzles on several sides, for which purpose the nozzle box is expediently tunnel-shaped and is delimited on its inner wall by at least one nozzle plate. In addition to the nozzle plate, at least one gas-impermeable blind plate can be detachably used. In this way, an effective impingement flow can be achieved with plate-shaped workpieces by inserting lateral nozzle plates and a blind plate above the charge, so that the stationary workpiece can be optimally cooled from all sides. With a batch of cylindrical stationary tools, only parallel flow can be used as through-flow cooling, because cooling by means of impingement flow is not possible due to the shape of the workpiece and the large number of workpieces. For this through-flow cooling, a nozzle plate is inserted above and dummy plates on both sides of the batch. The nozzle distance from the batch can then be optimized on each side by means of the nozzle plates already mentioned, with an area projecting into or out of the interior of the cooling chamber. In order to be able to carry out the aforementioned arrangement of the nozzle plates in a simple manner, it is advantageous if the nozzle box is delimited on at least three inner sides by nozzle plates, two of which are arranged opposite one another and the third nozzle plate is arranged between the other two nozzle plates.

In der Kühlkammer kann darüber hinaus eine die Charge aufnehmende Hub- und Senkvorrichtung angeordnet sein, durch die die Charge in einen vorbestimmten Abstand zu wenigstens einem Teil der Düsenmündungen zumindest eines Düsenbleches bringbar ist.In addition, a lifting and lowering device receiving the batch can be arranged in the cooling chamber, by means of which the batch can be brought into a predetermined distance from at least part of the nozzle orifices of at least one nozzle plate.

Dadurch, daß in dem Düsenkasten die Düsenbleche gleichmäßig mit Kühlgas beaufschlagt sind, ist eine gleiche Austrittsgeschwindigkeit an allen Düsen des jeweiligen Düsenbleches, und somit eine gleichmäßige Kühlwirkung an der gesamten beaufschlagten Chargenfläche gewährleistet. Eine solche gleichmäßige Kühlwirkung ist zur Erzielung eines gewünschten Gefügezustandes in der abzukühlenden Charge von Wichtigkeit.Characterized in that in the nozzle box, the nozzle plates are evenly charged with cooling gas, an equal exit speed is guaranteed at all nozzles of the respective nozzle plate, and thus a uniform cooling effect on the entire loaded batch area. Such a uniform cooling effect is important to achieve a desired structural state in the batch to be cooled.

Die Kühleinrichtung ist bei dem neuen Industrieofen nicht in der Heizkammer, sondern in einer eigenen Kühlkammer angeordnet. Durch die in der Kühlkammer gegebene kalte Chargenumgebung wird nicht nur die konvektive Wärmeabgabe der Charge auf das Kühlgas ausgenutzt, sondern auch die Wärmeabfuhr durch Strahlung, die besonders im oberen Temperaturbereich mithilft, die Kühlwirkung zu erhöhen. Gegenüber Einkammer-Vakuumöfen besteht der Vorteil, daß die Heizkammer, die Heizelemente und der Chargenherd nach der Wärmebehandlung im kritischen Abkühlbereich nicht gemeinsam mit der Charge abgekühlt werden müssen, so daß die an der Charge erzielte Kühlleistung nicht durch das Abführen der Speicherwärme der Heizkammereinrichtung geschmälert wird. Die von der Heizkammer getrennte Kühlkammer ermöglicht die erläuterte Anpaßbarkeit der Düsen-Kühleinrichtung an die Gegebenheiten der jeweiligen Charge, währed andererseits die Heizkammer ohne Rücksicht auf die nach der Wärmebehandlung erforderliche Abkühlung der Charge auf optimale Heizverhältnisse ausgelegt werden kann.In the new industrial furnace, the cooling device is not located in the heating chamber, but in its own cooling chamber. The cold batch environment in the cooling chamber not only exploits the convective heat transfer from the batch to the cooling gas, but also the heat dissipation by radiation, which helps in the upper temperature range in particular to increase the cooling effect. Compared to single-chamber vacuum ovens, there is the advantage that the heating chamber, the heating elements and the batch hearth do not have to be cooled together with the batch after the heat treatment in the critical cooling range, so that the cooling capacity achieved on the batch is not reduced by the heat dissipation of the heating chamber device . The cooling chamber separate from the heating chamber enables the described adaptability of the nozzle cooling device to the conditions of the respective batch, while on the other hand the heating chamber can be designed for optimum heating conditions regardless of the cooling of the batch required after the heat treatment.

In der Zeichnung ist ein Ausführungsbeispiel des Gegenstandes der Erfindung dargestellt. Es zeigen:

  • Fig. 1 einen Doppelkammer-Vakuumofen gemäß der Erfindung, im axialen Schnitt, in einer Seitenansicht,
  • Fig. 2 den Doppelkammer-Vakuumofen nach Fig. 1, geschnitten längs der Linie 11-11 der Fig. 1, in einer Seitenansicht,
  • Fig. 3 den Dpppelkammer-Vakuumofen nach Fig. 1, geschnitten längs der Linie 111-111 der Fig. 1, in einer Seitenansicht,
  • Fig. 4 den Doppelkammer-Vakuumofen nach Fig. 1, geschnitten längs der Linie IV-IV der Fig. 1, in einer Seitenansicht,
  • Fig. 5 den Düsenkasten des Doppelkammer-Vakuumofens nach Fig. 3, in einer schematischen Seitenansicht, im Querschnitt, in einem anderen Maßstab, unter Veranschaulichung einer bestimmten Charge und einer bestimmten Düsenanordnung,
  • Fig. 6 das an der oberhalb der Charge angeordnete Düsenblech der Anordnung nach Fig. 5, in einer Draufsicht,
  • Fig. 7 den Düsenkasten nach Fig. 5, mit einer anderen Anordnung der Düsenbleche, in einer entsprechenden Darstellung,
  • Fig. 8 ein oberhalb der Charge angeordnetes Düsenblech der Anordnung nach Fig. 7, in einer Draufsicht,
  • Fig. 9 den Düsenkasten nach Fig. 7, in einer entsprechenden Darstellung,
  • Fig. 10 ein seitlich der Charge angeordnetes Düsenblech der Anordnung nach Fig. 9, in einer Draufsicht,
  • Fig. 11 den Düsenkasten nach Fig. 5, mit einer anderen Anordnung der Düsenbleche, in einer entsprechenden Darstellung,
  • Fig. 12 ein oberhalb der Charge angeordnetes Düsenblech der Anordnung nach Fig. 11, in einer Draufsicht,
  • Fig. 13 den Düsenkasten nach Fig. 5, beschickt mit einer anderen Charge, in einer entsprechenden Darstellung,
  • Fig. 14 ein seitlich der Charge angeordnetes Düsenblech der Anordnung nach Fig. 13, in einer Draufsicht,
  • Fig. 15 den Düsenkasten nach Fig. 5, beschickt mit einer anderen Charge, in einer entsprechenden Darstellung,
  • Fig. 16 ein seitlich der Charge angeordnetes Düsenblech der Anordnung nach Fig. 15, in einer Draufsicht,
  • Fig. 17 den Düsenkasten nach Fig. 5, mit einer anderen Anordnung der Düsenbleche, in einer entsprechenden Darstellung, und
  • Fig. 18 das oberhalb der Charge angeordnete Düsenblech der Anordnung nach Fig. 17 in einer Draufsicht.
In the drawing, an embodiment of the object of the invention is shown. Show it:
  • 1 is a double-chamber vacuum furnace according to the invention, in axial section, in a side view,
  • 2 shows the double-chamber vacuum oven according to FIG. 1, cut along the line 11-11 of FIG. 1, in a side view,
  • 3 shows the double chamber vacuum furnace according to FIG. 1, cut along the line 111-111 of FIG. 1, in a side view,
  • 4 shows the double-chamber vacuum furnace according to FIG. 1, cut along the line IV-IV of FIG. 1, in a side view,
  • 5 shows the nozzle box of the double-chamber vacuum furnace according to FIG. 3, in a schematic side view, in cross section, on a different scale, illustrating a specific batch and a specific nozzle arrangement,
  • 6 is a top view of the nozzle plate of the arrangement according to FIG. 5 arranged above the batch,
  • 7, the nozzle box according to FIG. 5, with a different arrangement of the nozzle plates, in a corresponding representation,
  • 8 is a top view of a nozzle plate of the arrangement according to FIG. 7 arranged above the batch,
  • 9, the nozzle box according to FIG. 7, in a corresponding representation,
  • 10 is a top view of a nozzle plate of the arrangement according to FIG. 9 arranged on the side of the charge,
  • 11 shows the nozzle box according to FIG. 5, with a different arrangement of the nozzle plates, in a corresponding representation,
  • FIG. 12 shows a nozzle plate of the arrangement according to FIG. 11 arranged above the batch, in a Top view,
  • 13 shows the nozzle box according to FIG. 5, loaded with another batch, in a corresponding representation,
  • 14 is a top view of a nozzle plate of the arrangement according to FIG. 13 arranged to the side of the batch,
  • 15 shows the nozzle box according to FIG. 5, loaded with another batch, in a corresponding representation,
  • 16 is a top view of a nozzle plate of the arrangement according to FIG. 15 arranged on the side of the charge,
  • FIG. 17 shows the nozzle box according to FIG. 5, with a different arrangement of the nozzle plates, in a corresponding representation, and
  • 18 shows a top view of the nozzle plate of the arrangement according to FIG. 17 arranged above the batch.

Der in den Fig. 1 bis 4 dargestellte Doppelkammer-Vakuumofen weist ein doppelwandiges, wassergekühltes Gehäuse 1 auf, in dessen hinterem Teil eine Heizkammer 2 und in dessen vorderem Teil eine Kühlkammer 3 untergebracht sind. Das im wesentlichen zylindrische Gehäuse 1 ist auf der Vorderseite durch eine zum Beschicken und Entladen des Ofens dienende, schwenk- oder schiebbare, wassergekühlte Doppelmanteltür 4 verschlossen. Auf seiner Rückseite ist in dem Bereich hinter der Heizkammer 2 eine doppelwandige Schwenktür 5 vorgesehen, die eine für Montagezwecke vorhandene Gehäuseöffnung abschließt. An das Gehäuse 1 schließt sich unterhalb der Kühlkammer 3 ein doppelwandiger, wassergekühlter Behälter 6 an, der an das Gehäuse 1 angeflanscht ist und in dem sich ein Ölbad befindet, dessen Spiegel bei 7 angedeutet ist.The double-chamber vacuum furnace shown in FIGS. 1 to 4 has a double-walled, water-cooled housing 1, in the rear part of which a heating chamber 2 and in the front part of which a cooling chamber 3 are accommodated. The essentially cylindrical housing 1 is closed on the front side by a water-cooled double-jacket door 4 which serves for loading and unloading the furnace and can be pivoted or pushed. On the rear side in the area behind the heating chamber 2, a double-walled swing door 5 is provided, which closes a housing opening available for assembly purposes. A double-walled, water-cooled container 6 adjoins the housing 1 below the cooling chamber 3, which is flanged to the housing 1 and in which there is an oil bath, the level of which is indicated at 7.

In dem vorderen Teil der Kühlkammer 3 trägt das Gehäuse 1 drei in der aus Fig. 2 ersichtlichen Weise rings um seinen Umfang verteilte, radial abstehende Flansche 8, auf die doppelwandige, wassergekühlte Hauben 9 aufgesetzt sind, von denen jede ein Ventilator-Antriebsaggregat 10 abdeckt.In the front part of the cooling chamber 3, the housing 1 carries three radially projecting flanges 8 distributed around its circumference in the manner shown in FIG. 2, onto which double-walled, water-cooled hoods 9 are placed, each of which covers a fan drive unit 10 .

Die im Querschnitt im wesentlichen rechteckige Heizkammer 2 ist in Stahlbau-Leichtbauweise aufgebaut und mit einer mehrlagigen Isolierung aus hochwertigen keramischen Fasermaterial und reinstem Graphit-Filz ausgekleidet. Beidseitig und oberhalb der bei 11 angedeuteten Charge sind großflächige Graphit-Heizelemente 12 angeordnet. Diese Rundumanordnung der Graphit-Heizelemente 12 sorgt für ein rasches und gleichmäßiges Aufheizen der Charge 11. Die Stromzuführung der Graphit-Heizelemente 11 erfolgt über Heizelementanschlußbolzen 13 und jeweils einen Heizelementanschlußflansch 14.The heating chamber 2, which is essentially rectangular in cross section, is constructed in a lightweight steel construction and is lined with a multi-layer insulation made of high-quality ceramic fiber material and the purest graphite felt. Large-area graphite heating elements 12 are arranged on both sides and above the batch indicated at 11. This all-round arrangement of the graphite heating elements 12 ensures rapid and uniform heating of the batch 11. The current supply of the graphite heating elements 11 takes place via heating element connecting bolts 13 and one heating element connecting flange 14 in each case.

Die Charge 11 liegt in der Heizkammer 2 auf einem Herd 15, der für Transportzwecke heb- und senkbar ausgeführt ist. Die an die Kühlkammer 3 angrenzende Stirnwand der Heizkammer 2 ist mit einer horizontal verfahrbaren Heizkammertür 16 verschlossen.The batch 11 is located in the heating chamber 2 on a stove 15, which can be raised and lowered for transport purposes. The end wall of the heating chamber 2 adjoining the cooling chamber 3 is closed by a horizontally movable heating chamber door 16.

Im übrigen ist die Heizkammer 2 für geringstmögliche Speicherwärme und für die Wärmebehandlung nach einem vorgewählten Temperaturprogramm optimal ausgelegt. Im Vergleich zu Einkammer-Öfen muß dabei weder auf Kühlgasführung und Kühlgasgeschwindigkeit noch auf andere Parameter für die Wärmeableitung von der Charge Rücksicht genommen werden.Otherwise, the heating chamber 2 is optimally designed for the lowest possible storage heat and for heat treatment according to a preselected temperature program. Compared to single-chamber furnaces, neither the cooling gas flow and cooling gas speed nor other parameters for heat dissipation from the batch need to be taken into account.

Die etwa koaxial zu der Heizkammer 2 angeordnete Kühlkammer 3 enthält eine Kühleinrichtung 17, die einen Düsenkasten 18 aufweist, der mit im wesentlichen U-förmigem Querschnitt tunnelförmig ausgebildet ist und eine abzukühlende, wärmebehandelte Charge 11a in der insbesondere aus Fig. 3 ersichtlichen Weise oben und auf den beiden Seiten abdeckt. Der Düsenkasten 18 trägt auf den zu der Charge 11 a hinweisenden offenen Innenseiten paarweise einander zugeordnete Seitenführungsnuten 19, in die Düsenbleche 20, 20a oder Blindbleche 21 wahlweise austauschbar eingeschoben sind, wie dies anhand der Fig.5 bis 18 noch erläutert werden wird.The cooling chamber 3, which is arranged approximately coaxially to the heating chamber 2, contains a cooling device 17 which has a nozzle box 18 which is tunnel-shaped with an essentially U-shaped cross section and a heat-treated batch 11a to be cooled in the manner shown in FIG. 3 above and covering on both sides. The nozzle box 18 carries on the open inner sides pointing towards the batch 11a in pairs mutually associated side guide grooves 19 into which the nozzle plates 20, 20a or blind plates 21 are optionally inserted interchangeably, as will be explained with reference to FIGS. 5 to 18.

An seiner vorderen Stirnseite ist der Düsenkasten 18 mit drei Ventilatorgehäusen 22 unmittelbar verbunden, von denen jedes ein Hochleistungslüfterrad 23 enthält, das unmittelbar auf dem Wellenstummel des zugeordneten Antriebsmotors 10 sitzt, dessen vakuumdichte Stromdurchführungen bei 24 angedeutet sind. Der Ansaugöffnung jedes Ventilatorgehäuses 22 sind je zwei Wärmetauscher 25 seitlich vorgelagert, die über vakuumdichte Zu- und Ableitungs-Durchführungen mit Kühlwasser versorgt werden und denen jeweils Gasführungsbleche 26 zugeordnet sind.At its front end, the nozzle box 18 is directly connected to three fan housings 22, each of which contains a high-performance fan wheel 23, which sits directly on the shaft end of the associated drive motor 10, the vacuum-tight current feedthroughs of which are indicated at 24. The suction opening of each fan housing 22 is preceded laterally by two heat exchangers 25, which are supplied with cooling water via vacuum-tight feed and discharge ducts and to which gas guide plates 26 are assigned.

Bei der dargestellten Ausführungsform sind drei Ventilatorgehäuse 22 und drei zugeordnete Ventilatoreinheiten 10,23 vorgesehen. Es sind auch Ausführungsformen denkbar, bei denen lediglich zwei Ventilator-Gehäuse 22 oder auch ein einziges Ventilatorgehäuse 22 vorhanden sind bzw. ist.In the embodiment shown, three fan housings 22 and three associated fan units 10, 23 are provided. Embodiments are also conceivable in which only two fan housings 22 or also a single fan housing 22 are or are present.

Das in dem Behälter 6 enthaltene Ölbad kann durch einen hydraulischen Ölumwälzer 27 gleichmäßig und kräftig umgewälzt werden, wobei die Drehzahl des Ölumwälzers 27 bedarfsgemäß einregelbar ist. Eine Ölbadheizung 28 gestattet es, das Vakuum-Abschrecköl auf die jeweils gewünschte Temperatur zu bringen und auf dieser Temperatur zu halten.The oil bath contained in the container 6 can be circulated evenly and vigorously by a hydraulic oil circulator 27, the speed of rotation of the oil circulator 27 being adjustable as required. An oil bath heater 28 allows the vacuum quenching oil to be brought to the desired temperature and to be kept at this temperature.

In dem Behälter 6 ist eine Hub- und Senkbühne 29 angeordnet, die es gestattet, eine aus der Heizkammer 2 kommende wärmebehandelte Charge 11 a in der Kühlkammer 3 auf eine bestimmte Höhe bezüglich des Düsenkastens 18 zu bringen - wie dies im einzelnen noch erläutert werden wird - oder die Charge 11 a in das in dem Behälter 6 enthaltene Abschrecköl zu tauchen.In the container 6, a lifting and lowering platform 29 is arranged, which makes it possible to bring a heat-treated batch 11 a coming from the heating chamber 2 in the cooling chamber 3 to a certain height with respect to the nozzle box 18 - as will be explained in more detail below - Or immerse the batch 11 a in the quenching oil contained in the container 6.

Bei einer Ausbildung des Dpppelkammer-Vakuumofens ohne Ölbadabschreckung entfällt der Behälter 6 mit dem darin enthaltenen Ölbad.If the double chamber vacuum furnace is designed without oil bath quenching, the container 6 with the oil bath contained therein is dispensed with.

Bei geöffneter Tür 4 kann der Doppelkammer-Vakuumofen von Hand oder automatisch chargiert werden, wobei die Charge 11 selbsttätig in die geöffnete Heizkammer 2 gefahren wird. Sodann werden die Heizkammertür 16 und die die Beschickungsöffnung verschließende Tür 4 geschlossen, worauf der Vakuumofen evakuiert wird. Die Charge 11 wird in der Heizkammer 2 sodann nach einem vorgewählten Temperaturprogramm wärmebehandelt. Am Ende des Heizzyklus wird der Vakuumofen mit Inertgas unter einem Druck von maximal 6 bar abs. wiederbegast. Die Ventilatorantriebsmotoren 10 werden eingeschaltet. Die Heizelemente 12 werden abgeschaltet und die Charge 11 wird in die Kühlkammer 3 gefahren, wo sie die Stelle der Charge 11a einnimmt und mit Kühlgas abgeschreckt wird.When the door 4 is open, the double-chamber vacuum oven can be charged manually or automatically, the batch 11 being automatically moved into the open heating chamber 2. The heating chamber door 16 and the door 4 closing the loading opening are then closed, whereupon the vacuum furnace is evacuated. The batch 11 is then heat-treated in the heating chamber 2 according to a preselected temperature program. At the end of the heating cycle, the vacuum furnace is filled with inert gas under a maximum pressure of 6 bar abs. fumigated again. The fan drive motors 10 are switched on. The heating elements 12 are switched off and the batch 11 is moved into the cooling chamber 3, where it takes the place of the batch 11a and is quenched with cooling gas.

Durch entsprechende Betätigung der Hub- und Senkbühne 29 kann dabei die Charge in der Kühlkammer 3 bedarfsgemäß an das obenliegende Düsenblech 20 des Düsenkastens 18 herangefahren werden.By appropriate actuation of the lifting and lowering platform 29, the charge in the cooling chamber 3 can be moved up to the nozzle plate 20 of the nozzle box 18 located above as required.

Soll die Charge 11 nach der Wärmebehandlung in der Heizkammer 2 in Öl abgeschreckt werden, so wird sie nach dem Ausfahren aus der Heizkammer 2 mittels der Hub- und Senkbühne 29 in das Ölbad abgesenkt. Nach Bedarf kann vor der Ölabschreckung kurz mit Inertgas vorgekühlt werden. Der Doppelkammer-Vakuumofen ist automatisch gesteuert; der komplette Wärmebehandlungszyklus kann vorgewählt werden.If the batch 11 is to be quenched in oil after the heat treatment in the heating chamber 2, it is lowered into the oil bath after it has been moved out of the heating chamber 2 by means of the lifting and lowering platform 29. If necessary, you can pre-cool briefly with inert gas before quenching the oil. The double chamber vacuum furnace is controlled automatically; the complete heat treatment cycle can be selected.

Der Düsenkasten 18 ist so ausgebildet, daß in ihm nur geringe Gasgeschwindigkeiten auftreten, die einerseits nur kleine Strömungsverluste verursachen und andererseits an den Düsen der Düsenbleche 20, 20a gleiche Druckverhältnisse schaffen, die zu gleichen Düsenaustrittsgeschwindigkeiten führen, welche die Voraussetzung für eine gleichmäßige Abkühlung der Charge 11 sind.The nozzle box 18 is designed so that only low gas speeds occur in it, which on the one hand cause only small flow losses and on the other hand create the same pressure conditions at the nozzles of the nozzle plates 20, 20a, which lead to the same nozzle outlet speeds, which are the prerequisite for uniform cooling of the batch 11 are.

Da die Düsenbleche 20, 20a in dem Düsenkasten 18 austauschbar und gegebenenfalls durch Blindbleche 21 ersetzbar angeordnet sind, können die Abschreckverhältnisse in der Kühlkammer 3 optimal an die Form und Zusammensetzung jeder Charge 1 la angepaßt werden. Dies ist beispielhaft in den Fig. 5 bis 18 veranschaulicht:Since the nozzle plates 20, 20a are arranged interchangeably in the nozzle box 18 and, if appropriate, can be replaced by blind plates 21, the quenching conditions in the cooling chamber 3 can be optimally adapted to the shape and composition of each batch 1a. This is illustrated by way of example in FIGS. 5 to 18:

Bei der Anordnung nach Fig. 5 besteht die abzuschreckende Charge 11 a aus einer Anzahl schlanker, zylindrischer Werkzeuge, bspw. Spiralbohrer oder Fräser, mit 45 mm Durchmesser x 300 mm. Um den Verzug bei der Wärmebehandlung und der Abschreckung gering zu halten, werden die mit 30 bezeichneten zylindrischen Werkstücke stehend chargiert, wobei sie auf der Chargengrundfläche gleichmäßig verteilt sind. Die Chargengrundfläche entspricht der rechteckigen Umrißfläche des in Fig. 6 dargestellten Düsenbleches 20.In the arrangement according to FIG. 5, the batch 11 a to be quenched consists of a number of slim, cylindrical tools, for example twist drills or milling cutters, with a diameter of 45 mm × 300 mm. In order to keep the distortion during heat treatment and quenching to a minimum, the cylindrical workpieces designated with 30 are charged standing, whereby they are evenly distributed on the base of the batch. The base area of the batch corresponds to the rectangular outline area of the nozzle plate 20 shown in FIG. 6.

Zur gleichmäßigen und intensiven Gasabschreckung ist ein Durchströmkühlung mit Parallelströmung erforderlich. Zu diesem Zwecke ist in den Düsenkasten 18 oberhalb der Charge 11a ein waagrechtes Düsenblech 20 eingeschoben, während seitlich der Charge 11 a Blindbleche 21 angebracht sind. Das Düsenblech 20 trägt auf seiner ganzen Fläche gleichmäßig verteilte Düsenöffnungen 35 (Fig. 6), die für eine gleichmäßige und gleichzeitige Abkühlung aller Werkstücke 30 sorgen.Through-flow cooling with parallel flow is required for uniform and intensive gas quenching. For this purpose, a horizontal nozzle plate 20 is inserted into the nozzle box 18 above the charge 11a, while blind plates 21 are attached to the side of the charge 11a. The nozzle plate 20 carries nozzle openings 35 (FIG. 6) which are uniformly distributed over its entire surface and which ensure uniform and simultaneous cooling of all workpieces 30.

Der Abstand der Düsenöffnungen 35 von der Charge 11a ist durch Überheben mittels der Hub-und Senkbühne 29 optimiert worden. Der Überhub ist bei 32 in Fig. 5 angedeutet.The distance between the nozzle openings 35 and the batch 11a has been optimized by lifting by means of the lifting and lowering platform 29. The overstroke is indicated at 32 in FIG. 5.

Werkstücke, die die gesamte zur Verfügung stehende Chargenlänge beanspruchen, müssen liegend chargiert werden. Dies ist in den Fig. 7, 8 veranschaulicht:Workpieces that occupy the entire available batch length must be loaded horizontally. This is illustrated in FIGS. 7, 8:

Um die Wärmeübergabe durch Strahlung auf die runden kalten Kühlkammerwände voll ausnützen zu können, besteht die Charge 11 a lediglich aus einem Werkstück 33 in Gestalt eines zylindrischen Dornes. Da dieser Dorn eine verhältnismäßig geringe Anströmfläche im Vergleich zu der durch die rechteckige Umrißfläche des Düsenbleches 20a der Fig. 8 gegebenen Chargengrundfläche aufweist, ist eine Kühlgasstromkonzentration im Bereich des zu kühlenden Werkstückes 33 notwendig, um maximale Kühlgeschwindigkeiten zu erzielen. Diese Forderung ist entweder durch Verringerung der Zahl der Düsenöffnungen 35 bei gleichzeitiger Erhöhung der Düsenaustrittsgeschwindigkeit oder bei gleichbleibender Düsenanzahl durch Verringerung des Düsenabstandes 36 (Fig. 8) zu erzielen.In order to be able to fully utilize the heat transfer by radiation to the round cold cooling chamber walls, the batch 11 a consists only of a workpiece 33 in the form of a cylindrical mandrel. Since this mandrel has a relatively small inflow area in comparison to the batch base area given by the rectangular outline of the nozzle plate 20a of FIG. 8, a cooling gas flow concentration in the region of the workpiece 33 to be cooled is necessary in order to achieve maximum cooling speeds. This requirement can be achieved either by reducing the number of nozzle openings 35 while simultaneously increasing the nozzle outlet speed, or with a constant number of nozzles by reducing the nozzle spacing 36 (FIG. 8).

Aus den vorstehenden Überlegungen ist in den Düsenkasten 18 oberhalb der Charge 11 ein Düsenblech 20a eingesetzt, das einen in den Innenraum der Kühlkammer 3 vorspringenden Bereich 40 aufweist, in dem die Düsenöffnungen 35 angeordnet sind. Das Düsenblech 20a weist dadurch eine rinnen- oder kastenförmige Gestalt auf; der die Düsenöffnungen 35 enthaltende Bereich ist beidseitig durch einen ungelochten Bereich 41 begrenzt.For the above considerations, a nozzle plate 20a is inserted in the nozzle box 18 above the charge 11, which has a region 40 projecting into the interior of the cooling chamber 3, in which the nozzle openings 35 are arranged. The nozzle plate 20a thereby has a channel-like or box-like shape; the area containing the nozzle openings 35 is delimited on both sides by an unperforated area 41.

Außerdem ist das Werkstück 33 durch die Hub-und Senkbühne 29 an die Düsenöffnungen 35 herangebracht worden, wie dies bei 32 in Fig. 7 angedeutet ist.In addition, the workpiece 33 has been brought up to the nozzle openings 35 through the lifting and lowering platform 29, as is indicated at 32 in FIG. 7.

Das Düsenbild ist in diesem Falle in der aus Fig. 18 ersichtlichen Weise durch in einem rechteckigen Muster mit gleichen Höhen- und Seitenabständen angeordnete Düsenbohrungen 35 gleichen Durchmessers bestimmt.In this case, the nozzle pattern is determined in the manner shown in FIG. 18 by nozzle bores 35 of the same diameter arranged in a rectangular pattern with the same height and lateral spacings.

Seitlich des Werkstücks 21 sind in dem Düsenkasten 18 Blindbleche 21 eingesetzt, um ein Aufeinanderprallen einander entgegengesetzter Kühlgasströme in Werkstücknähe zu verhindern, weil dadurch die Kühlgasgeschwindigkeit unmittelbar an dem Werkstück 33 wesentlich verringert würde.To the side of the workpiece 21, dummy plates 21 are inserted in the nozzle box 18 in order to prevent opposing cooling gas flows colliding against one another in the vicinity of the workpiece because this would substantially reduce the cooling gas velocity directly on the workpiece 33.

Bei der Anordnung nach den Fig. 9, 10 besteht die Charge 11 aus einem schweren, gedrungenen Werkzeug, bspw. einer zylindrischen Matrize, die im Vergleich zu der wiederum durch die rechteckige Umrißgestalt des Düsenbleches 20 (Fig. 10) gegebenen Chargengrundfläche geringe projezierende Anströmfläche aufweist. Die wirksamste Kühlung ergibt sich durch Kombination einer Prallkühlung der oberen Planfläche einerseits und einer Parallelanströmung an der zylindrischen Mantelfläche bzw. der Bohrungen des Werkstücks 33 andererseits, während seitlich des Werkstücks 33 in den Düsenkasten 18 zwei Blindbleche 21 eingesetzt sind.In the arrangement according to FIGS. 9, 10 there is the batch 11 from a heavy, compact tool, for example a cylindrical die, which in comparison to the batch base area given by the rectangular outline shape of the nozzle plate 20 (FIG. 10) has a small projecting inflow area. The most effective cooling results from a combination of impingement cooling of the upper flat surface on the one hand and a parallel flow on the cylindrical lateral surface or the bores of the workpiece 33 on the other hand, while two blind plates 21 are inserted in the nozzle box 18 on the side of the workpiece 33.

Das Düsenbild des oberen Düsenbleches 20 ist, wie aus Fig. 9 zu entnehmen, etwa rautenförmig begrenzt, wobei wiederum alle Düsenöffnungen 35 gleiche Höhen- und Seitenabstände 36 aufweisen.As can be seen in FIG. 9, the nozzle pattern of the upper nozzle plate 20 is approximately diamond-shaped, again all the nozzle openings 35 having the same height and side distances 36.

Zur Optimierung der Kühlwirkung ist das Werkstück 33 mittels der Hub- und Senkbühne 29 in der Kühlkammer 3 an das obere Düsenblech 20 herangefahren, wie dies bei 32 angedeutet ist.To optimize the cooling effect, the workpiece 33 is moved to the upper nozzle plate 20 by means of the lifting and lowering platform 29 in the cooling chamber 3, as is indicated at 32.

In den Fig. 11, 12 ist eine Charge 11 a veranschaulicht, die aus mehreren zylindrischen Stempeln 33 besteht. In den Düsenkasten 18 sind in diesem Falle seitlich der Charge 11 zwei Blindbleche 21 eingefügt, während oberhalb der Charge 11 ein Düsenblech 20 vorgesehen ist, dessen Düsenbild aus Fig. 12 ersichtlich ist:11, 12 a batch 11 a is illustrated, which consists of several cylindrical stamps 33. In this case, two blind plates 21 are inserted in the nozzle box 18 to the side of the charge 11, while a nozzle plate 20 is provided above the charge 11, the nozzle image of which can be seen in FIG. 12:

Die Düsenöffnungen 35 sind entsprechend den Stempeln 33 jeweils in rechteckigen Gruppen angeordnet, die durch gasundurchlässige Zwischenräume 34 voneinander getrennt sind. Der Seiten- und Höhenabstand 36 benachbarter Düsenöffnungen 35 ist wieder gleich.The nozzle openings 35 are each arranged in rectangular groups corresponding to the stamps 33, which are separated from one another by gas-impermeable intermediate spaces 34. The side and height spacing 36 of adjacent nozzle openings 35 is the same again.

Die Charge 11a kann durch die Hub- und Senkbühne 29 an das Düsenblech 20 herangebracht sein, wie dies bei 32 in Fig. 11 angedeutet ist; es ist aber auch denkbar, die Charge 11a in größerem Abstand von dem oberen Düsenblech 20 abzuschrecken, was gestrichelt veranschaulicht ist.The batch 11a can be brought to the nozzle plate 20 through the lifting and lowering platform 29, as is indicated at 32 in FIG. 11; however, it is also conceivable to quench the charge 11a at a greater distance from the upper nozzle plate 20, which is illustrated in broken lines.

In den Fig. 13,14 ist ein typisches Beispiel einer durch intensive Prallstromkühlung abgeschreckten Charge 11 veranschaulicht. Oberhalb der aus zwei plattenförmigen Werkstücken 33, bspw. in Gestalt einer Druckgußform, bestehenden Charge 11 ist in dem Düsenkasten 18 ein Blindblech 21 angeordnet, während seitlich der hochkant stehenden plattenförmigen Werkstücke 33 zwei Düsenbleche 20a vorgesehen sind, die in der in Fig. 13 dargestellten Weise einen in die Kühlkammer 3 vorspringenden Bereich 40 aufweisen, in dem die Düsenöffnungen 35 angeordnet sind.A typical example of a batch 11 quenched by intensive impingement cooling is illustrated in FIGS. 13, 14. Above the batch 11 consisting of two plate-shaped workpieces 33, for example in the form of a die-casting mold, a blind plate 21 is arranged in the nozzle box 18, while two nozzle plates 20a are provided to the side of the upright standing plate-shaped workpieces 33, which are shown in FIG. 13 Have a region 40 projecting into the cooling chamber 3, in which the nozzle openings 35 are arranged.

Die plattenförmigen Werkstücke 33 stehen zur Vermeidung von Verzug im oberen Temperaturbereich während der Verweilzeit in der Heizkammer 2 in dem Vakuumofen senkrecht. Die Düsenöffnungen 35 der kastenartigen Düsenbleche 20a sind nahe an die Chargenseitenfläche herangebracht, wobei die Düsenöffnungen 35 gemäß dem in Fig. 14 dargestellten Düsenbild über die gesamte Chargenseitenfläche gleichmäßig verteilt mit gleichen Höhen- und Seitenabständen 36 angeordnet sind, um damit eine gleichmäßige und gleichzeitige Abkühlung der Werkstücke 33 sicherzustellen.The plate-shaped workpieces 33 are vertical to avoid distortion in the upper temperature range during the dwell time in the heating chamber 2 in the vacuum oven. The nozzle openings 35 of the box-like nozzle plates 20a are brought close to the batch side surface, the nozzle openings 35 being arranged, according to the nozzle image shown in FIG. 14, uniformly distributed over the entire batch side surface with equal height and side spacings 36, in order thereby to ensure uniform and simultaneous cooling of the Ensure workpieces 33.

Bei der Anordnung nach den Fig. 15, 16 wird ein einziges plattenförmiges Werkstück 33, bspw. in Gestalt einer Preßform, in der Kühlkammer 3 abgeschreckt, die - ähnlich wie in Fig. 13 - mit einem obenliegenden Blindblech 21 und zwei seitlichen kasten- oder rinnenartigen Düsenblechen 20a bestückt ist.15, 16, a single plate-shaped workpiece 33, for example in the form of a compression mold, is quenched in the cooling chamber 3, which - similar to FIG. 13 - with an overhead blind plate 21 and two lateral box or trough-like nozzle plates 20a is equipped.

Um eine extreme Optimierung der Kühlbedingungen zu erzielen, sind die Düsenbleche 20a in der aus Fig. 16 ersichtlichen Weise mit einem Düsenbild ausgebildet, das auf die Chargenseitenfläche abgestimmt ist:In order to achieve extreme optimization of the cooling conditions, the nozzle plates 20a are designed in the manner shown in FIG. 16 with a nozzle pattern which is matched to the side face of the batch:

Die Düsenöffnungen 35, die gleichen Höhen-und Seitenabstand 36 aufweisen, sind auf einen etwa der Chargenseitenfläche entsprechenden rechteckigen Bereich konzentriert, der von gasundurchlässigen Bereichen 41 umgeben ist. Durch die dadurch bedingte Verringerung der Zahl der Düsenöffnungen 35 ergibt sich eine Erhöhung der Düsenaustrittsgeschwindigkeit. Außerdem ist der Abstand der Düsenöffnungen 35 von der Werkstück- oder Chargenseitenfläche in beschriebener Weise durch Verwendung der Düsenbleche 20a optimiert. Die auf beiden Seiten auf das Werkstück aufgebrachte Prallstromströmung garantiert ein verzugsfreies und intensives Abkühlen der Charge 11a.The nozzle openings 35, which have the same height and side spacing 36, are concentrated on a rectangular region approximately corresponding to the batch side surface, which is surrounded by gas-impermeable regions 41. The resulting reduction in the number of nozzle openings 35 results in an increase in the nozzle outlet speed. In addition, the distance of the nozzle openings 35 from the workpiece or batch side surface is optimized in the described manner by using the nozzle plates 20a. The impingement flow applied to the workpiece on both sides guarantees a distortion-free and intensive cooling of the batch 11a.

In den Fig. 17, 18 schließlich geht es um das Abschrecken einer Charge 11 a, die aus Werkstücken besteht, für welche nicht zu hohe kritische Abkühlgeschwindigkeiten erforderlich sind und die mit Rücksicht auf ihre geringe Wandstärke mit Parallelströmung gekühlt werden können. Zu diesem Zwecke ist in dem Düsenkasten 18 oberhalb der aus drei Werkstücken 33 bestehenden Charge 11 ein Düsenblech 20 angeordnet, während seitlich der Charge 11a Blindbleche 21 eingesetzt sind.17, 18 is finally the quenching of a batch 11 a, which consists of workpieces for which not too high critical cooling speeds are required and which can be cooled with parallel flow in consideration of their small wall thickness. For this purpose, a nozzle plate 20 is arranged in the nozzle box 18 above the batch 11 consisting of three workpieces 33, while dummy plates 21 are inserted on the side of the batch 11a.

Die Düsenöffnungen 35 sind - wie aus Fig. 17 zu ersehen - wiederum entsprechend den drei Werkstücken 33 in drei nebeneinander liegende, rechteckig begrenzte Gruppen zusammengefaßt, zwischen denen gasundurchlässige Bereiche 41 angeordnet sind.The nozzle openings 35 - as can be seen from FIG. 17 - are again combined according to the three workpieces 33 into three adjacent, rectangularly delimited groups, between which gas-impermeable areas 41 are arranged.

Die Charge 11 a ist durch die Hub- und Senkbühne 29 an das obere Düsenblech 20 herangebracht, wie dies bei 32 angedeutet ist.The charge 11 a is brought up to the upper nozzle plate 20 by the lifting and lowering platform 29, as indicated at 32.

Bei den im Vorstehenden beschriebenen Ausführungsbeispielen sind in den Düsenblechen 20, 20a in verschiedenen Düsenbildern angeordnete Düsenöffnungen 35 gleichen Durchmessers vorgesehen. Grundsätzlich ist es natürlich auch denkbar, den Durchmesser der Düsenöffnungen 35 entsprechend den jeweiligen Erfordernissen zu variieren und auch anstelle von zylindrischen Düsenöffnungen 35 anders gestaltete Düsenöffnungen, bspw. in Form von Schlitzen, zu verwenden. Außerdem ist es möglich, daß die Düsenbleche 20a anstelle eines in die Kühlkammer 3 nach innen vorspringenden Teiles 40 einen nach außen vorspringenden Bereich aufweisen, während für besondere Fälle auch die Anordnung derart getroffen sein kann, daß im Bereiche der Chargengrundfläche ein Düsenblech vorhanden ist, um eine Anströmung der Charge 11 von unten her zu ermöglichen.In the exemplary embodiments described above, nozzle openings 35 of the same diameter are provided in the nozzle plates 20, 20a in different nozzle patterns. In principle, it is of course also conceivable to vary the diameter of the nozzle openings 35 according to the respective requirements and also to use differently designed nozzle openings, for example in the form of slots, instead of cylindrical nozzle openings 35. It is also possible that the nozzle plates 20a instead of one in the cooling chamber 3 inwardly projecting part 40 have an outwardly projecting area, while for special cases the arrangement can also be such that a nozzle plate is present in the area of the batch base in order to allow the flow of the batch 11 from below.

Die Antriebsmotoren 10 der Ventilatoren können regelbar ausgebildet sein, um die Kühlgasgeschwindigkeit in der Kühlkammer 3 den Erfordernissen entsprechend wählen zu können. Der maximale Kühlgasdruck liegt in der Regel bei 2 bar abs. Er kann erforderlichenfalls auch höher sein.The drive motors 10 of the fans can be designed to be controllable in order to be able to select the cooling gas speed in the cooling chamber 3 in accordance with the requirements. The maximum cooling gas pressure is usually 2 bar abs. If necessary, it can also be higher.

Bei dem neuen Industrieofen werden in der Kühlkammer 3 Kühlintensitäten erreicht, die denen von herkömmlichen und handelsüblichen Vakuumöfen mit Hochdruckgasabschreckung entsprechen. Herkömmliche Vakuumöfen (vorwiegend Einkammer-Öfen) müssen bspw. mit 5 bar abs. Kühlgasdruck arbeiten, um eine vergleichbare Kühlwirkung zu erzielen, wie sie bei dem neuen Industrieofen in der Kühlkammer 3 schon bei einem Kühlgasdruck von 2 bar abs. erhalten wird. Der entscheidende Vorteil der somit erzielbaren niedrigen Kühlgasdrücke liegt in einer wesentlichen Ersparnis von Kühlgas (insbesondere Stickstoff) während eines Wärmebehandlungszyklus, was eine entsprechend hohe Kostenersparnis bedeutet. Außerdem erlauben niedrige Kühlgasdrücke die Herstellung von kostengünstigen Anlagengehäusen, die keiner behördlichen Genehmigungspflicht unterliegen.With the new industrial furnace, 3 cooling intensities are achieved in the cooling chamber, which correspond to those of conventional and commercially available vacuum furnaces with high-pressure gas quenching. Conventional vacuum furnaces (predominantly single-chamber furnaces) must, for example, with 5 bar abs. Cooling gas pressure work in order to achieve a cooling effect comparable to that of the new industrial furnace in the cooling chamber 3 even at a cooling gas pressure of 2 bar abs. is obtained. The decisive advantage of the low cooling gas pressures that can thus be achieved is a substantial saving of cooling gas (in particular nitrogen) during a heat treatment cycle, which means a correspondingly high cost saving. In addition, low cooling gas pressures allow the production of cost-effective system housings that are not subject to official approval.

Claims (10)

1. An industrial furnace (1), more particularly a multichamber furnace for the thermal treatment of charges (11, 11a) of metallic workpieces, having: a heating chamber (2); a cooling chamber (3) which contains a cooling device (17) supplied with cooling gas and in which a cooling gas circulated over a heat exchanger (25) flows against a thermally treated charge (11,11 a); and if necessary an oil bath (6), characterized in that the cooling device (17) has a nozzle box (18) which is disposed in the cooling chamber (3) and supplied with cooling gas and in which at least one nozzle plate (20, 20a) disposed opposite the charge (11a) is interchangeably inserted to change the conditions in which the charge (11 a) is blown.
2. An industrial furnace according to claim 1, characterized in that the interchangeable nozzle plates (20, 20a) differ by nozzles with different nozzle arrangement (configuration) and/or with different nozzle diameter and/or with a different distance from the charge.
3. An industrial furnace according to claims 1 or 2, characterized in that at least some nozzles (35) of at least one nozzle plate are disposed in an alignment producing a rebound flow and/or a parallel flow of the cooling gas on the charge (11a).
4. An industrial furnace according to one of the preceding claims, characterized in that the nozzles (35) of the nozzle plates (20, 20a) are disposed enclosing the charge (11a) on a number of sides.
5. An industrial furnace according to one of the preceding claims, characterized in that the nozzle box (18) has guide devices (19) into which the nozzle plate (20, 20a) can be inserted.
6. An industrial furnace according to claim 5, characterized in that the nozzle plate (20a) has a zone (40) projecting inwardly into the cooling chamber (3) or outwardly therefrom.
7. An industrial furnace according to one of the preceding claims, characterized in that the nozzle box (18) is tunnel-shaped in construction and bounded at its inner wall by at least one nozzle plate (20, 20a).
8. An industrial furnace according to one of the preceding claims, characterized in that in addition to the the nozzle plate (20, 20a) at least one gas-impermeable blind plate (21) is releasably inserted in the nozzle box (18).
9. An industrial furnace according to one of the preceding claims, characterized in that the nozzle box (18) is bounded on at least three inner sides by nozzle plates (20, 20a), of which two are disposed opposite one another, the third nozzle plate being disposed between the two other nozzle plates.
10. An industrial furnace according to one of the preceding claims, characterized in that disposed in the cooling chamber (3) is a raising and lowering device (29) which receives the charge (11a) and by means of which the charge can be moved to a predetermined distance from at least some of the nozzle mouths of a nozzle plate (20, 20a).
EP84113445A 1984-02-15 1984-11-07 Industrial furnace, especially a multiple chamber vacuum furnace, for heat treating batches of metal workpieces Expired EP0151700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84113445T ATE35428T1 (en) 1984-02-15 1984-11-07 INDUSTRIAL FURNACES, ESPECIALLY MULTI-CHAMBER VACUUM FURNACES FOR THE HEAT TREATMENT OF BATCHES OF METALLIC WORKPIECES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3405244 1984-02-15
DE3405244A DE3405244C1 (en) 1984-02-15 1984-02-15 Industrial furnace, especially a multi-chamber vacuum furnace for the heat treatment of batches of metallic workpieces

Publications (3)

Publication Number Publication Date
EP0151700A2 EP0151700A2 (en) 1985-08-21
EP0151700A3 EP0151700A3 (en) 1985-12-27
EP0151700B1 true EP0151700B1 (en) 1988-06-29

Family

ID=6227686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84113445A Expired EP0151700B1 (en) 1984-02-15 1984-11-07 Industrial furnace, especially a multiple chamber vacuum furnace, for heat treating batches of metal workpieces

Country Status (11)

Country Link
US (1) US4653732A (en)
EP (1) EP0151700B1 (en)
JP (1) JPS60184625A (en)
AT (1) ATE35428T1 (en)
CS (1) CS264117B2 (en)
DD (1) DD231375A5 (en)
DE (1) DE3405244C1 (en)
HU (1) HU202598B (en)
PL (1) PL140026B1 (en)
SU (1) SU1386047A3 (en)
YU (1) YU43395B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204869A1 (en) * 2019-04-05 2020-10-08 Audi Ag Quenching device for batch cooling of metal components
DE102019006201A1 (en) * 2019-05-09 2020-11-12 Aerospace Transmission Technologies GmbH Method and fixture hardening device for fixture hardening of components
DE102019128267A1 (en) * 2019-10-21 2021-04-22 Audi Ag Quenching device for the batch quenching of metal components and preferred use

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735883A (en) * 1985-04-06 1988-04-05 Canon Kabushiki Kaisha Surface treated metal member, preparation method thereof and photoconductive member by use thereof
DE3934103A1 (en) * 1989-10-12 1991-04-25 Ipsen Ind Int Gmbh OVEN FOR PARTIAL HEAT TREATMENT OF TOOLS
DE4208485C2 (en) * 1992-03-17 1997-09-04 Wuenning Joachim Method and device for quenching metallic workpieces
EP0651220B1 (en) * 1993-09-20 1999-11-24 Peacock Limited L.C. Kiln for firing and/or casting prosthodontic products
DE4419332A1 (en) * 1994-06-02 1995-12-14 Wuenning Joachim Industrial burner with low NO¶x¶ emissions
US5419792A (en) * 1994-07-25 1995-05-30 General Electric Company Method and apparatus for cooling a workpiece
US5876118A (en) * 1995-12-08 1999-03-02 The Perkin-Elmer Corporation Calorimeter having rapid cooling of a heating vessel therein
DE19845805C1 (en) * 1998-09-30 2000-04-27 Tacr Turbine Airfoil Coating A Method and treatment device for cooling highly heated metal components
EP1154024B1 (en) * 2000-04-14 2004-03-24 Ipsen International GmbH Process and device for heat treating metallic workpieces
US6492631B2 (en) 2000-04-27 2002-12-10 Kabushiki Kaisha Toshiba Apparatus for quenching metallic material
US6394793B1 (en) 2001-01-13 2002-05-28 Ladish Company, Incorporated Method and apparatus of cooling heat-treated work pieces
US20030098106A1 (en) * 2001-11-29 2003-05-29 United Technologies Corporation Method and apparatus for heat treating material
US6902635B2 (en) 2001-12-26 2005-06-07 Nitrex Metal Inc. Multi-cell thermal processing unit
US7150627B2 (en) * 2005-04-30 2006-12-19 Siddhartha Gaur Transported material heating with controlled atmosphere
JP2009287085A (en) * 2008-05-29 2009-12-10 Ihi Corp Apparatus and method for heat-treatment
DE202008010215U1 (en) 2008-07-31 2008-10-09 Ipsen International Gmbh Industrial furnace as multi-chamber vacuum furnace, especially two-chamber vacuum furnace for heat treatment of batches of metal workpieces
US10196730B2 (en) * 2009-09-10 2019-02-05 Ald Vacuum Technologies Gmbh Method and device for hardening workpieces, and workpieces hardened according to the method
DE102009041041B4 (en) * 2009-09-10 2011-07-14 ALD Vacuum Technologies GmbH, 63450 Method and apparatus for hardening workpieces, as well as work hardened workpieces
US9995481B2 (en) 2011-12-20 2018-06-12 Eclipse, Inc. Method and apparatus for a dual mode burner yielding low NOx emission
US9310132B1 (en) 2012-02-08 2016-04-12 Carbonyx, Inc. Replaceable insulation roof for industrial oven
US9242313B2 (en) 2012-07-30 2016-01-26 General Electric Company Welding furnace and viewport assembly
FR3001229B1 (en) 2013-01-23 2015-10-30 Ecm Technologies GAS TUMBLE CELL
US9840747B2 (en) 2013-02-20 2017-12-12 Rolls-Royce Corporation Wall member useful in quenching
CN104913630A (en) * 2014-02-19 2015-09-16 南京三超新材料股份有限公司 Protective atmosphere fast cooling sintering furnace
SE543318C2 (en) * 2018-06-21 2020-11-24 Mats Olsson Method and system for cooling hot objects

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE863070C (en) * 1951-04-22 1953-01-15 Ofu Ofenbau Union G M B H Method and device for quenching steel objects by means of gaseous media
FR1153262A (en) * 1955-09-13 1958-03-04 Improvements in ovens
DE1219058B (en) * 1962-06-26 1966-06-16 Deutsche Edelstahlwerke Ag Quenching shower
DE1933593A1 (en) * 1969-07-02 1971-01-28 Ugine Infra Oil hardening of metals
US4171126A (en) * 1978-03-13 1979-10-16 Midland-Ross Corporation Vacuum furnace with cooling means
DE2839807C2 (en) * 1978-09-13 1986-04-17 Degussa Ag, 6000 Frankfurt Vacuum furnace with gas cooling device
JPS5569055A (en) * 1978-11-20 1980-05-24 Toyobo Co Ltd Temperature control mechanism of automatic analyzer
PL129105B1 (en) * 1979-12-05 1984-03-31 Lubuskie Zaklady Termotech Single-chamber vacuum furnace with pressure type cahrge cooling system utilizing gas as a cooling medium
JPS5721666U (en) * 1980-07-15 1982-02-04
JPS57108218A (en) * 1980-12-25 1982-07-06 Shimadzu Corp Gas cooler in vacuum hardening furnace
DE3208574A1 (en) * 1982-03-10 1983-09-22 Schmetz Industrieofenbau und Vakuum-Hartlöttechnik KG, 5750 Menden Vacuum shaft furnace
DE3215509A1 (en) * 1982-04-26 1983-10-27 Schmetz Industrieofenbau und Vakuum-Hartlöttechnik KG, 5750 Menden Vacuum chamber oven
DE3224971A1 (en) * 1982-07-03 1984-01-05 Schmetz Industrieofenbau und Vakuum-Hartlöttechnik KG, 5750 Menden Vacuum shaft furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204869A1 (en) * 2019-04-05 2020-10-08 Audi Ag Quenching device for batch cooling of metal components
DE102019006201A1 (en) * 2019-05-09 2020-11-12 Aerospace Transmission Technologies GmbH Method and fixture hardening device for fixture hardening of components
DE102019128267A1 (en) * 2019-10-21 2021-04-22 Audi Ag Quenching device for the batch quenching of metal components and preferred use

Also Published As

Publication number Publication date
DD231375A5 (en) 1985-12-24
CS105585A2 (en) 1988-09-16
US4653732A (en) 1987-03-31
EP0151700A2 (en) 1985-08-21
PL140026B1 (en) 1987-03-31
PL250866A1 (en) 1985-08-27
HU202598B (en) 1991-03-28
YU224884A (en) 1987-06-30
JPH0549724B2 (en) 1993-07-27
EP0151700A3 (en) 1985-12-27
HUT43651A (en) 1987-11-30
YU43395B (en) 1989-06-30
JPS60184625A (en) 1985-09-20
CS264117B2 (en) 1989-06-13
DE3405244C1 (en) 1985-04-11
ATE35428T1 (en) 1988-07-15
SU1386047A3 (en) 1988-03-30

Similar Documents

Publication Publication Date Title
EP0151700B1 (en) Industrial furnace, especially a multiple chamber vacuum furnace, for heat treating batches of metal workpieces
DE4110114C2 (en)
DE102007012180B3 (en) Heat treating method for semi-finished steel products is carried out in continuous furnace, semi-finished product being passed into first zone and then moved so that section of it is in second zone at a different temperature from first
EP0422353A2 (en) Furnace for the partial thermic treatment of tools
DE3346884A1 (en) INDUSTRIAL STOVES FOR HEAT TREATMENT OF METAL WORKPIECES
EP0129701B1 (en) Oven device for cooling a workload, especially of metallic workpieces
DE3215509C2 (en)
WO2015128416A1 (en) Method and system for thermally treating elongate, flat metallic material, in particular aluminum rolled ingots, in a ring hearth furnace
EP0066539A1 (en) Scrap heating apparatus
EP1154024B1 (en) Process and device for heat treating metallic workpieces
DE19747018A1 (en) Heat treatment unit for steel bow saw blades
AT509356B1 (en) DEVICE AND METHOD FOR HEAT-TREATING STEEL WIRES
DE102007023703A1 (en) Hot isostatic press rapid cooling method includes pressure reservoir, which has inner lying loading area and insulation with opening, fluid is transferred from loading area into annular gap for protecting inner circulation circle
EP2622107A1 (en) Method and device for conducting the flow in industrial furnaces for the thermal treatment of metal materials/workpieces
EP1294512B1 (en) Method and device for sintering aluminium based sintered parts
EP0483596B1 (en) Vacuum furnace for the thermal treatment of metallic workpieces
DE19628383A1 (en) Furnace for heat treatment of batches of metal workpieces - with a heating chamber which can be isolated from the pressure and suction chambers of the cooling gas fan
DE3209245A1 (en) TURNING OVENS
DE2512485A1 (en) PROCEDURE FOR FIRING CERAMIC PRODUCTS IN A DISCONTINUOUS FURNACE AND FURNACE FOR CARRYING OUT THE PROCEDURE
DE10038782C1 (en) Process for cooling, especially quenching and hardening metallic workpieces, especially steel in a cooling chamber comprises circulating parallel cooling gas streams over the workpiece and a heat exchanger
DE102007038991A1 (en) Rotary oven for heat treating metallic workpieces comprises radially charging frames aligned on a rotary plate for holding workpieces or workpiece supports and inner walls each having a passage molded to the frames
AT390322B (en) DEVICE FOR HEATING STEEL PARTS
DE102005022242B4 (en) Plant for debinding / residual removal and sintering
EP3978854B1 (en) Tunnel furnace for heat treatment of products, a method for operating such a tunnel furnace and the use of such a tunnel furnace
EP3285035A1 (en) Temperiing oven

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT FR GB IT SE

17P Request for examination filed

Effective date: 19860311

17Q First examination report despatched

Effective date: 19870309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT SE

REF Corresponds to:

Ref document number: 35428

Country of ref document: AT

Date of ref document: 19880715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920925

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920930

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921117

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931112

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941107

EUG Se: european patent has lapsed

Ref document number: 84113445.5

Effective date: 19940610