EP0151301B1 - Aluminium-Lithium-Legierung - Google Patents

Aluminium-Lithium-Legierung Download PDF

Info

Publication number
EP0151301B1
EP0151301B1 EP84115927A EP84115927A EP0151301B1 EP 0151301 B1 EP0151301 B1 EP 0151301B1 EP 84115927 A EP84115927 A EP 84115927A EP 84115927 A EP84115927 A EP 84115927A EP 0151301 B1 EP0151301 B1 EP 0151301B1
Authority
EP
European Patent Office
Prior art keywords
alloy
aluminium
article
lithium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84115927A
Other languages
English (en)
French (fr)
Other versions
EP0151301A1 (de
Inventor
William E. Quist
R. Eugene Curtis
G. Hari Narayanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of EP0151301A1 publication Critical patent/EP0151301A1/de
Application granted granted Critical
Publication of EP0151301B1 publication Critical patent/EP0151301B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the present invention relates to a process of manufacturing products from an aluminium alloy having lithium together with magnesium and copper as main alloying elements. Its object is particularly to provide products of high fracture toughness and high strength that may be used in the aircraft industry.
  • aluminium-lithium alloys have been used only sparsely in aircraft structure. Their relatively low use has been caused by casting difficulties associated with aluminium-lithium alloys and by their relatively low fracture toughness compared to other more conventional aluminium alloys. Aluminium-lithium alloys, however, provide a substantial lowering of the density of aluminium alloys (as well as a relatively high strength to weight ratio), which has been found to be very important in decreasing the overall weight of structural materials used in an aircraft. While substantial strides have been made in improving the aluminium-lithium processing technology, a major challenge is still to obtain a good blend of fracture toughness and high strength in an aluminium-lithium alloy.
  • the invention thus provides a process of manufacturing products from an aluminium alloy having lithium together with magnesium and copper as main alloying elements, which process comprises the steps of:
  • EP-A-0 124 286 (GB-A-2 137 227).
  • Some alloy compositions exemplified therein are falling within the compositional ranges of the alloy of the present invention but, on the other hand, all articles formed from the exemplified alloys in EP-A-0 124 286 are subjected to an aging step at a conventional temperature of about 170°C or 190°C.
  • An aluminium-lithium alloy formulated in accordance with the present invention will contain 2.2 to 2.8% lithium, 0.2 to 0.8% magnesium, 1.5 to 2.1% copper and max 0.15% zirconium. All percentages herein are by weight based on the total weight of the alloy unless otherwise indicated.
  • the magnesium in the alloy functions to increase strength and slightly decreases density. It also provides solid solution strengthening.
  • the copper adds strength to the alloy.
  • Zirconium functions as a grain refiner.
  • Iron and silicon can be present only in trace amounts, limiting the iron to a maximum of 0.15% and the silicon to a maximum of 0.12%, and preferably limiting them to less than 0.10% and 0.10%, respectively.
  • Certain trace elements such as zinc, may be present in amounts up to, but not exceeding 0.25% of the total.
  • Other elements such as chrominium and manganese must be held to levels of 0.05% or below. If the maximums of these trace elements are exceeded, the desired properties of the aluminium-lithium alloy will tend to deteriorate.
  • the trace elements sodium and hydrogen are also thought to be harmful to the properties (fracture toughness in particular) of aluminium-lithium alloys and should be held to the lowest levels practically attainable, for example on the order of 15 to 30 ppm (0.0015-0.0030 wt.%) for the sodium and less than 15 ppm (0.0015 wt.%) and preferably less than 1.0 ppm (0.0001 wt.%) for the hydrogen.
  • the balance of the alloy comprises aluminium.
  • An aluminium-lithium alloy formulated in the proportions set forth in the foregoing paragraph is processed into an article utilizing known techniques.
  • the alloy is formulated in molten form and cast into an ingot.
  • the ingot is then homogenized at temperatures ranging from 496°C to 538°C.
  • the alloy is converted into a usable article by conventional mechanical formation techniques such a rolling, extrusion or the like.
  • the alloy is normally subjected to a solution treatment at temperatures ranging from 510°C to 538°C, quenched in a quenching medium such as water that is maintained at a temperature on the order of 21°C to 67°C. If the alloy has been rolled or extruded, it is generally stretched on the order of 1 to 3% of its original length to relieve internal stresses.
  • the aluminium alloy can then be further worked and formed into the various shapes for its final application. Additional heat treatments, such as solution heat treatment can be employed if desired.
  • additional heat treatments such as solution heat treatment can be employed if desired.
  • an extruded product after being cut to desired length is generally solution heat-treated at temperatures on the order of 524°C for 1 to 4 hours.
  • the product is then quenched in a quenching medium held at temperatures ranging from about 21°C to 67°C.
  • the article is subjected to an aging treatment that will increase the strength of the material, while maintaining its fracture toughness and other engineering properties at relatively high levels.
  • the articles are subjected to a low temperature underage heat treatment at temperatures ranging from about 93°C to about 149°C. It is preferred that the alloy be heat treated in the range of from about 121°C to 135°C. At the higher temperatures, less time is needed to bring about the proper balance between strength and fracture toughness than at lower aging temperatures, but the overall properties mix will be slightly less desireable.
  • the aging when the aging is conducted attemperatures on the order of 135°C to 149°C, it is preferred that the product be subjected to the aging temperature for periods of from 1 to 40 hours.
  • aging when aging is conducted at temperatures on the order of 121°C or below, aging times from 2 to 80 hours or more are preferred to bring about the proper balance between fracture toughness and strength.
  • the aluminium-lithium articles are cooled to room temperature.
  • the treatment will result in an aluminium-lithium alloy having an ultimate strength on the order of 448 to 483 MPa.
  • the fracture toughness of the material will be on the order of 1.5 to 2 times greater than that of similar aluminium-lithium alloys subjected to conventional aging treatments, which are normally conducted at temperatures greater than 149°C.
  • the superior strength and toughness combination achieved by the low temperature underaging techniques in accordance with the present invention also surprisingly causes some aluminium-lithium alloys to exhibit an improvement in stress corrosion resistance when contrasted with the same alloy aged with standard aging practices. Examples of these improved characteristics will be set forth in more detail in conjunction with the ensuing example.
  • An aluminium alloy containing 2.4% lithium, 0.6% magnesium, 1.8% copper, 0.15% zirconium with the balance being aluminium was formulated.
  • the trace elements present in the formulation constituted less than 0.25% of the total.
  • the iron and silicon present in the formulation each constituted less than 0.07% of the formulation.
  • the alloy was cast and homogenized at about 524°C. Thereafter, the alloy was hot rolled to a thickness of 0.5 cm. The resulting sheet was then solution treated at about 524°C for about 1 hour. It was then quenched in water maintained at about 21°C. Thereafter, the sheet was subjected to a stretch of 1.5% of its initial length and then cut into specimens.
  • the specimens were cut to a size of 1.27 cm by 6.35 cm by 0.5 cm for the precrack Charpy impact tests, one method of measuring fracture toughness.
  • the specimens prepared for the tensile strength tests were 2.5 cm by 10.2 cm by 0.5 cm.
  • a plurality of specimens were then aged for 16 and 40 hours at 135°C and 121°C for 40 and 72 hours.
  • Each of the specimens aged at each of the temperatures and times were then subjected to the tensile strength and precrack Sharpy impact tests in accordance with standard testing procedures.
  • the specimens underaged at 135°C had ultimate strengths ranging from about 448 MPa to about 483 MPa with a toughness on the order of 0.114to 0.131 J/mm 2 .
  • the specimens at 121°C exhibit an ultimate strength ranging from 427 to 448 MPa ksi, while their toughness was in the range of 0.131 to 0.149 J/mm 2 . These values compare with toughness values less than about 0.079 J/mm 2 for similar materials aged attemperatures over 149°C, yet having similar ultimate strengths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Claims (10)

1. Verfahren zur Herstellung von Produkten aus einer Aluminiumlegierung, die zusammen mit Magnesium und Kupfer Lithium als Hauptlegierungselemente aufweist, gekennzeichnet durch die Stufen
a) Herstellung eines Barrens einer Legierung mit folgender Zusammensetzung:
Figure imgb0004
b) Homogenisierung des Barrens;
c) Formung eines Gegenstands;
d) Unterwerfung des Gegenstands einer Lösungsglühungsbehandlung;
e) Abschrecken des Gegenstands in einem Abschreckungsmedium;
f) Alterung des Gegenstands bei einer Temperatur im Bereich von etwa 93°C (200°F) bis etwa 149°C (300°F).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Zirkonium in einer Menge von 0,1 bis 0,15 Gew.-% vorhanden ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Legierung eine nominale Zusammensetzung von 2,45 Gew.-% Lithium, 0,6 Gew.-% Magnesium, 1,8 Gew.-% Kupfer und 0,12 Gew.-% Zirconium, Rest Aluminium und Spurenelemente aufweist.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Legierung bei einer Temperatur im Bereich von etwa 121°C (250°F) bis etwa 135°C (275°F) gealtert wird.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Legierung über einen Zeitraum von 1 bis 80 Stunden gealtert wird.
6. Gegenstand aus einer Aluminiumlegierung, gekennzeichnet durch eine Legierung der folgenden Zusammensetzung:
Figure imgb0005
hat und eine Zerreißfestigkeit von etwa 427 bis etwa 483 MPa (62 bis 70 ksi) in Kombination mit einer Bruchzähigkeit von etwa 114 bis etwa 149x103 J/m2 (650 bis 850 in-lbslin2) hat.
7. Gegenstand aus einer Aluminiumlegierung nach Anspruch 6, dadurch gekennzeichnet, daß' Zirkonium in einer Menge von 0,1 bis 0,15 Gew.- % vorhanden ist.
8. Gegenstand aus einer Aluminiumlegierung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Legierung eine Nominalzusammensetzung von 2,45 Gew.-% Lithium, 0,6 Gew.-% Magnesium, 1,8 Gew.-% Kupfer und 0,12 Gew.-% Zirconium, Rest Aluminium und Spurenelemente hat.
9. Gegenstand aus einer Aluminiumlegierung nach den Ansprüchen 6 bis 8, dadurch gekennzeichnet, daß er eine Zerreißfestigkeit von etwa 448 bis etwa 483 MPa (65 bis 70 ksi) in Kombination mit einer Bruchzähigkeit von etwa 114 bis etwa 131 x103 J/m2 (650 bis 750 in-lbs/in2) hat.
10. Gegenstand aus einer Aluminiumlegierung nach den Ansprüchen 6 bis 8, dadurch gekennzeichnet, daß er eine Zerreißfestigkeit von etwa 472 bis etwa 448 MPa (62 bis 65 ksi) in Kombination mit einer Bruchzähigkeit von etwa 131 bis etwa 149x103 J/m2 (750 bis 850 in-lbs/in2) hat.
EP84115927A 1983-12-30 1984-12-20 Aluminium-Lithium-Legierung Expired EP0151301B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56709783A 1983-12-30 1983-12-30
US567097 1983-12-30

Publications (2)

Publication Number Publication Date
EP0151301A1 EP0151301A1 (de) 1985-08-14
EP0151301B1 true EP0151301B1 (de) 1989-06-07

Family

ID=24265702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84115927A Expired EP0151301B1 (de) 1983-12-30 1984-12-20 Aluminium-Lithium-Legierung

Country Status (3)

Country Link
EP (1) EP0151301B1 (de)
JP (1) JPS60211034A (de)
DE (1) DE3478616D1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3613224A1 (de) * 1985-08-20 1987-02-26 Boeing Co Aluminium-lithium-legierung
JPS62175935A (ja) * 1986-01-30 1987-08-01 Canon Inc 光学系駆動装置
EP0250656A1 (de) * 1986-07-03 1988-01-07 The Boeing Company Unvollständige Aushärtung von lithiumhaltigen Legierungen bei niedriger Temperatur
JP2017110266A (ja) * 2015-12-17 2017-06-22 株式会社神戸製鋼所 ろう付け後の強度に優れたアルミニウム合金製ブレージングシート

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090583A2 (de) * 1982-03-31 1983-10-05 Alcan International Limited Wärmebehandlung von Aluminiumlegierungen
EP0124286A1 (de) * 1983-03-31 1984-11-07 Alcan International Limited Aluminiumlegierungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB787665A (en) * 1955-04-05 1957-12-11 Stone & Company Charlton Ltd J Improvements relating to aluminium-base alloys
ZA83954B (en) * 1982-02-26 1984-01-25 Secr Defence Brit Aluminium alloys
ZA842381B (en) * 1983-03-31 1984-11-28 Alcan Int Ltd Aluminium alloys
GB2137227B (en) * 1983-03-31 1986-04-09 Alcan Int Ltd Aluminium-lithium alloys
DE3483607D1 (de) * 1983-12-30 1990-12-20 Boeing Co Alterung bei relativ niedrigen temperaturen von lithium enthaltenden aluminiumlegierungen.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090583A2 (de) * 1982-03-31 1983-10-05 Alcan International Limited Wärmebehandlung von Aluminiumlegierungen
EP0124286A1 (de) * 1983-03-31 1984-11-07 Alcan International Limited Aluminiumlegierungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1982 National Powder Metallurgy Conference Proceedings, Progress in Powder Metallurgy Vol. 38 D.J. Chellman, G.G. Wald, p. 361-381 *
4th International Aluminium-Lithium Conference "Alcar" Paris 10-12. June 1987 Contribution of Miller, White and Lloyd and of White and Miller. *

Also Published As

Publication number Publication date
DE3478616D1 (en) 1989-07-13
EP0151301A1 (de) 1985-08-14
JPS60211034A (ja) 1985-10-23

Similar Documents

Publication Publication Date Title
EP0546103B1 (de) Verbessertes al-li-legierungssystem
EP0150456B1 (de) Alterung bei relativ niedrigen Temperaturen von Lithium enthaltenden Aluminiumlegierungen
EP0157600B1 (de) Aluminium-Lithium-Legierungen
EP0584271B1 (de) Hochfeste al-ci-legierung mit niedriger dichte
EP2558564B1 (de) Aluminium-lithium-legierungen der serie 2xxx mit geringem stärkeunterschied
EP0149193B1 (de) Aluminium-Lithiumlegierung
US5389165A (en) Low density, high strength Al-Li alloy having high toughness at elevated temperatures
EP1359232B2 (de) Verfahren zur Erhöhung der Bruchzähigkeit in Aluminium-Lithium-Legierungen
US4603029A (en) Aluminum-lithium alloy
JPH09111385A (ja) 実質的にPbを含まないねじ加工材用Al合金
EP3521467B1 (de) Kostengünstige, im wesentlichen ag-freie und zn-freie aluminium-lithium-plattenlegierung mit niedriger dichte für die luft- und raumfahrtanwendung
US4961792A (en) Aluminum-lithium alloys having improved corrosion resistance containing Mg and Zn
EP0188762A1 (de) Aluminium-Lithiumlegierungen mit erhöhter Korrosionsbeständigkeit
EP0156995B1 (de) Aluminium-Lithium-Legierung
EP0151301B1 (de) Aluminium-Lithium-Legierung
US4999061A (en) Low temperature underaging of lithium bearing alloys and method thereof
US5116572A (en) Aluminum-lithium alloy
US5160555A (en) Aluminum-lithium alloy article
EP0250656A1 (de) Unvollständige Aushärtung von lithiumhaltigen Legierungen bei niedriger Temperatur
US3510295A (en) Titanium base alloy
US3720550A (en) Method of making malleable zinc-alloy bodies
US5133930A (en) Aluminum-lithium alloy
CA1267798A (en) Aluminum-lithium alloy (4)
CA1267797A (en) Aluminum-lithium alloy
EP0149194A2 (de) Aluminium-Lithiumlegierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19860214

17Q First examination report despatched

Effective date: 19860218

R17C First examination report despatched (corrected)

Effective date: 19870218

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3478616

Country of ref document: DE

Date of ref document: 19890713

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 10

Ref country code: DE

Payment date: 19931231

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941220

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST