EP0145808B1 - Dust separator with a recuperator, particularly a cyclone - Google Patents

Dust separator with a recuperator, particularly a cyclone Download PDF

Info

Publication number
EP0145808B1
EP0145808B1 EP83112777A EP83112777A EP0145808B1 EP 0145808 B1 EP0145808 B1 EP 0145808B1 EP 83112777 A EP83112777 A EP 83112777A EP 83112777 A EP83112777 A EP 83112777A EP 0145808 B1 EP0145808 B1 EP 0145808B1
Authority
EP
European Patent Office
Prior art keywords
dust
vortex
cyclone
vortex chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112777A
Other languages
German (de)
French (fr)
Other versions
EP0145808A1 (en
Inventor
Miklos Kühne
Dezsö Dr. Riba
Lászlo Peterffy
Ferenc Sikter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tuezelestechnikai Kutato- Es Fejleszto Vallalat
Original Assignee
Tuezelestechnikai Kutato- Es Fejleszto Vallalat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tuezelestechnikai Kutato- Es Fejleszto Vallalat filed Critical Tuezelestechnikai Kutato- Es Fejleszto Vallalat
Priority to AT83112777T priority Critical patent/ATE28802T1/en
Priority to EP83112777A priority patent/EP0145808B1/en
Priority to DE8383112777T priority patent/DE3372932D1/en
Publication of EP0145808A1 publication Critical patent/EP0145808A1/en
Application granted granted Critical
Publication of EP0145808B1 publication Critical patent/EP0145808B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/20Apparatus in which the axial direction of the vortex is reversed with heating or cooling, e.g. quenching, means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/027Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using cyclone separators

Definitions

  • the invention relates to a vortex dust separator according to the preamble of the claim, in particular a cyclone which is suitable for intensive dedusting of gases of high temperature, in particular exhaust gases, for removing the heat content and thereby for lowering the gas temperature.
  • the cooling effect of the air acting on the outer jacket of the cyclone is generally sufficient for cooling gases of higher temperature.
  • GB-A-1 397 892 describes a dust separator based on the cyclone principle which is used in cement plants and in which the hot cement is cooled by the intensive cooling of the conical collecting space of the cyclone.
  • a container for the cooling water is provided on the outside of the conical space, in which a constant pressure is ensured.
  • the water, which is under constant pressure, is sprayed onto the surface to be cooled using nozzles.
  • the nozzles are placed at a distance from the surface that allows the formation of a continuous curtain of water from the water jets. The distance between the nozzles and the surface can be changed.
  • a vortex dust separator with the features from the introductory part of the claim is known.
  • the tubes forming the second heat exchanger element are arranged around the immersion tube within the vortex chamber and have a U-shaped course, the U-apex being arranged in the upper region of the vortex chamber.
  • Such a design is intended to create a heat exchanger in which the dust carried by the hot gas is separated at the same time, so that the heat exchange is not impaired by the dust accumulating on the heat exchange surfaces.
  • the aim of the invention is to create a vortex dust separator whose effectiveness for dust separation is as high as possible - partly by lowering the temperature, partly by the structural design - but without increasing the internal resistance of the dust separator.
  • the dust separator consists of the cylindrical housing 1, from which the vortex chamber 2 serving for dust separation is surrounded, the dust collecting chamber 4 enclosed by the conical jacket 3, the heat exchanger 5 and the device serving to remove the dust.
  • the heat exchanger 5 forms the immersion tube 8 which borders the gas discharge space 10 and projects into the swirl space 2.
  • the heat exchanger 5 is dimensioned and arranged in such a way that it lies in the vortex space 2 generated and determined by the downward movement of the dust-containing gas and the upward movement of the dedusted gas and quasi as a separating profile reduces the vortex losses.
  • the heat exchanger 5 plunges so deep into the swirl chamber 2 that its dimensions enable it to ensure the prescribed temperature reduction or the removal of the amount of heat.
  • care must be taken to ensure that the increase in the dedusting efficiency resulting from the cooling, resulting from the increased ability to remove dust, does not, or only to a small extent, through an increased resistance caused by the heat exchanger 5 is reduced.
  • the heat exchanger 5 is designed as a double recuperative heat exchanger and consists of the outer 6 and the inner heat exchanger element 7.
  • the outer heat exchanger element 6 is formed by the cylindrical double-walled jacket of the immersion tube 8 containing a coolant.
  • the inner heat exchanger element 7 consists of the bent tubes 9 which extend to ensure an intensive heat exchange and an increase in the degree of dedusting along the surface lines of an imaginary, rotationally symmetrical envelope surface which delimits a continuously converging and again diverging channel, the tubes 9 in the converging part and in the diverging part of the channel and in the narrowest channel cross-section at a distance from each other.
  • the tubes 9 are connected to the cylindrical double-walled inlet body 11 located at the top, and with their lower end to the cylindrical collecting body 12.
  • the cylindrical collecting body 12 is connected to the double-walled jacket of the dip tube 8, so that there is a flow connection between the outer 6 and the inner heat exchanger element 7.
  • the inlet connection 13 is connected to the inlet body 11 of the inner heat exchanger element 7, and the outlet connection 14 is connected to the double-walled dip tube 8 forming the outer heat exchanger element 6.
  • the dust-laden hot gas e.g. B. exhaust gas, passes through the tangential gas inlet 15 into the swirl chamber 2, while the cleaned gas exits via the central gas outlet 16 upwards.
  • the hot exhaust gas gives off part of the heat content to the coolant (water, air) flowing in the outer heat exchanger element 6 .
  • Most of the dust content of the gas is separated in the swirl chamber 2 and settles on the inner surface of the conical shell 3.
  • the dedusting efficiency of the cyclone but still very hot gas flows axially from the bottom upwards, enters the gas extraction space 10 and releases part of its heat content between the bent tubes 9.
  • the cooled and dedusted gas leaves the system via the gas outlet 16.
  • the coolant flows through. the inlet connector 13, the inlet body 11, the tubes 9, the cylindrical collecting body 12, the double-walled jacket of the dip tube 8 and the outlet connector 14 and heats up in the heat exchanger 5 operating in countercurrent in this manner.
  • the heat exchanger can also work in direct current; in this case, the terms have to be interpreted accordingly (instead of inlet connection outlet connection etc.).
  • the solution according to the invention can advantageously be used wherever the gas to be cleaned has a significant heat and dust content and simultaneous heat recovery and dedusting are required. Waste incineration and certain industrial processes, e.g. B. ore sintering or cleaning of the exhaust gases from coal-fired boilers may be mentioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cyclones (AREA)

Abstract

1. Vortex dust separator, especially a cyclone, having a vortex chamber (2) serving for dust separation, with a tangential gas inlet (15) arranged at the upper end of the vortex chamber (2), a central immersion tube (8) that projects into the vortex chamber from above and surrounds a gas discharge chamber (10), the immersion tube (8) being of double-walled construction in the form of a first heat exchange element (6) through which coolant flows, and a second heat exchange element (7) through which coolant flows and which comprises tubes (9) distributed around the axis of the vortex chamber (2) at a distance from one another, characterised in that the tubes (9) are arranged inside the gas discharge chamber (10) and extend along the generatrices of an imaginary convergent/divergent envelope surface.

Description

Die Erfindung betrifft einen Wirbel-Staubabscheider gemäß dem Oberbegriff des Anspruchs, insbesondere einen Zyklon, der zurintensiven Entstaubung von Gasen hoher Temperatur, insbesondere Abga-Sen, zum Entzug des Wärmeinhalts und dadurch zur Senkung der Gastemperatur geeignet ist.The invention relates to a vortex dust separator according to the preamble of the claim, in particular a cyclone which is suitable for intensive dedusting of gases of high temperature, in particular exhaust gases, for removing the heat content and thereby for lowering the gas temperature.

Aus der technischen Literatur und aus der Praxis ist es wohlbekannt, daß die meisten Staubabscheider auf dem Zyklonprinzip beruhen oder aus Wirbelrohren aufgebaut sind. Die Zyklone werden so betrieben, daß das staubhaltige Gas tangential in den zylindrischen Behälter geblasen wird, in dem es mit einem Drall weiterströmt. Die Staubkörnchen scheiden sich unter der Wirkung der Fliehkraft an der Wand ab und fallen in den unteren kegeligen Trichter. Aus dem Trichter kann der Staub dann abgeleitet werden. Das gereinigte Gas verläßt das System über das in der Achse des zylindrischen Teiles angeordnete Auslaßrohr. Eine allgemeine Beschreibung der Zyklone kann dem 27. Abschnitt des Buches "Entstaubung und Staubabscheidung" (Verfasser: Dr. Istvän Koncz, Technischer Verlag,Budapest 1970) entnommen werden. In der Figur 230 der erwähnten Publikation sind die Ergebnisse von durchgeführten Messungen dargestellt, die die Anderungen der tangentialen, radialen und axialen Geschwlindigkeiten, sowie des Gesamtdruckes und des statischen Druckes des Gases in verschiedenen Schnittebenen des Zyklons zeigen. Die tangentiale Geschwindigkeit ist entlang der Wand des zylindrischen Teiles des Zyklons am niedrigsten und weicht dort nur geringfügig von der Eintrittsgeschwindigkeit ab. In dem kegeligen Teil nimmt die Geschwindigkeit entlang der Wand proportional zu der Abnahme des Radius zu und erreicht den höchsten Wert in der Nähe der Staubauslaßöffnung. Dem Potential-Wirbelstrom in der auf der Achse senkrechten Ebene ist ein axialer Nebenstrom superponiert. Entlang der Wand strömt das Gas abwärts und in der Nähe der Achse aufwärts. Es kann angenommen werden, daß auch ein innerer Wirbelraum vorhanden ist, dessen Eigenschaften jedoch bisher ungeklärt sind. Durch die Sogwirkung des im Bereich der Achse nach oben strömenden Wirbels wird Staub aberhalb der Staubauslaßöffnung mitgenommen, dessen größter Teil jedoch infolge der Fliehkraft wieder in den äußeren Wirbelstrom geschleudert wird. Sollte das Abführrohr tief in den Zyklon hineinragen, kann sich auch ein Doppelwirbel bilden.It is well known from technical literature and from practice that most dust separators are based on the cyclone principle or are made up of vortex tubes. The cyclones are operated in such a way that the dust-containing gas is blown tangentially into the cylindrical container, in which it continues to flow with a swirl. The particles of dust separate from the wall under the influence of centrifugal force and fall into the lower conical funnel. The dust can then be removed from the funnel. The cleaned gas leaves the system via the outlet pipe arranged in the axis of the cylindrical part. A general description of the cyclones can be found in the 27th section of the book "Dedusting and Dust Separation" (author: Dr. Istvän Koncz, Technischer Verlag, Budapest 1970). FIG. 230 of the publication mentioned shows the results of measurements carried out, which show the changes in the tangential, radial and axial velocities, as well as the total pressure and the static pressure of the gas in various sectional planes of the cyclone. The tangential speed is lowest along the wall of the cylindrical part of the cyclone and deviates only slightly from the entry speed there. In the conical part, the speed along the wall increases in proportion to the decrease in the radius and reaches the highest value in the vicinity of the dust outlet opening. An axial secondary current is superposed on the potential eddy current in the plane perpendicular to the axis. The gas flows down the wall and upwards near the axis. It can be assumed that there is also an internal vertebral space, the properties of which have not yet been clarified. Due to the suction effect of the vortex flowing upwards in the area of the axis, dust is taken along outside the dust outlet opening, the majority of which, however, is thrown back into the external eddy current due to the centrifugal force. If the discharge pipe protrudes deep into the cyclone, a double vortex can also form.

Bei einem Teil der aus der Fachliteratur und der Praxis bekannten Zyklone begnügt man sich im allgemeinen zur Kühlung von Gasen höherer Temperatur mit der Kühlwirkung der auf den Außenmantel des Zyklons einwirkenden Luft.In some of the cyclones known from the specialist literature and in practice, the cooling effect of the air acting on the outer jacket of the cyclone is generally sufficient for cooling gases of higher temperature.

In der GB-A-1 397 892 ist ein auf dem Zyklonprinzip beruhender Staubabscheider beschrieben, der in Zementwerken verwendet wird und bei dem die Kühlung des heißen Zements durch die intensive Kühlung des kegeligen Sammelraums des Zyklons vorgenommen wird. An der Außenseite des kegeligen Raums ist ein Behälter für das Kühlwasser vorgesehen, in dem ein konstanter Druck sichergestellt ist. Das unter konstantem Druck stehende Wasser wird mit Hilfe von Düsen auf die zu kühlende Fläche gespritzt. Die Düsen werden in einer Entfernung von der Oberfläche angeordnet, die die Ausbildung eines zusammenhängenden Wasservorhangs aus den Wasserstrahlen ermöglicht. Die Entfernung zwischen den Düsen und der Oberfläche kann geändert werden.GB-A-1 397 892 describes a dust separator based on the cyclone principle which is used in cement plants and in which the hot cement is cooled by the intensive cooling of the conical collecting space of the cyclone. A container for the cooling water is provided on the outside of the conical space, in which a constant pressure is ensured. The water, which is under constant pressure, is sprayed onto the surface to be cooled using nozzles. The nozzles are placed at a distance from the surface that allows the formation of a continuous curtain of water from the water jets. The distance between the nozzles and the surface can be changed.

Der Nachteil dieser Lösung ergibt sich aus der Erfüllung einer speziellen Aufgabe, und zwar der Kühlung des abgeschiedenen Zementes. Das Kühlsystem ist an dem eine kleine Oberfläche aufweisenden kegeligen Teil des Zyklons angeordnet, da nur hier eine Kühlwirkung für den abgeschiedenen Zement möglich ist. Gegenüber der Luftkühlung ist die Kühlwirkung zweifellos besser, aber nicht einmal diese Lösung ist dazu geeignet, die Temperatur der Gase intensiv zu senken, den größten Teil des Wärmeinhaltes zu entziehen.The disadvantage of this solution results from the fulfillment of a special task, namely the cooling of the deposited cement. The cooling system is arranged on the conical part of the cyclone, which has a small surface area, since only here is a cooling effect possible for the deposited cement. Compared to air cooling, the cooling effect is undoubtedly better, but even this solution is not suitable for intensively lowering the temperature of the gases and extracting most of the heat content.

Aus der GB-A-108 710 ist jedoch auch ein Wirbel-Staubabscheider mit den Merkmalen aus dem einleitenden Teil des Patentanspruches bekannt. Die das zweite Wärmetauscherelement bildenden Rohre sind rings des Tauchrohres innerhalb des Wirbelraumes angeordnet und haben einen U-förmigen Verlauf, wobei der U-Scheitel im oberen Bereich des Wirbelraumes angeordnet ist. Durch eine derartige Gestaltung soll ein Wärmetauscher entstehen, in welchem gleichzeitig der von dem heißen Gas mitgeführte Staub abgeschieden wird, damit der Wärmeaustausch nicht durch Anlagern des Staubes an den Wärmeaustauschflächen beeinträchtigt wird.From GB-A-108 710, however, a vortex dust separator with the features from the introductory part of the claim is known. The tubes forming the second heat exchanger element are arranged around the immersion tube within the vortex chamber and have a U-shaped course, the U-apex being arranged in the upper region of the vortex chamber. Such a design is intended to create a heat exchanger in which the dust carried by the hot gas is separated at the same time, so that the heat exchange is not impaired by the dust accumulating on the heat exchange surfaces.

Die Erfindung hat zum Ziel, einen Wirbel-Staubabscheider zu schaffen, dessen Wirksamkeit zur Staubabscheidung - teilweise durch Absenken der Temperatur, teilweise durch die strukturelle Gestaltung - möglichst hoch ist, ohne jedoch den inneren Widerstand des Staubabscheiders zu vergrößern.The aim of the invention is to create a vortex dust separator whose effectiveness for dust separation is as high as possible - partly by lowering the temperature, partly by the structural design - but without increasing the internal resistance of the dust separator.

Dies wird gemäß der Erfindung durch die Merkmale in dem Patentanspruch erreicht.This is achieved according to the invention by the features in the claim.

Die Erfindung wird anhand eines vorteilhaften Ausführungsbeispiels mit Hilfe der Zeichnung näher erläutert. In der Zeichnung zeigt:

  • Fig. 1 die Seitenansicht des Wirbel-Staubabscheiders im Längsschnitt und
  • > Fig. 2 den Schnitt A-A des Staubabscheiders nach Fig. 1.
The invention is explained in more detail using an advantageous embodiment with the aid of the drawing. The drawing shows:
  • Fig. 1 is a side view of the vortex dust collector in longitudinal section and
  • 2 shows the section AA of the dust collector according to FIG. 1.

Der Staubabscheider besteht aus dem zylindrischen Gehäuse 1, von welchem der der Staubabscheidung dienende Wirbelraum 2 umgeben ist, dem von dem kegelförmigen Mantel 3 umschlossenen Staubsammelraum 4, dem Wärmetauscher 5 und der zur Abfuhr des Staubes dienenden Vorrichtung. Von dem Wärmetauscher 5 wird das den Gasabzugsraum 10 umgrenzende Tauchrohr 8 gebildet, das in den Wirbelraum 2 hineinragt. Der Wärmetauscher 5 ist so dimensioniert und angeordnet, daß er in dem durch die nach unten gerichtete Bewegung des staubhaltigen Gases und die nach oben gerichtete Bewegung des entstaubten Gases erzeugten und bestimmten Wirbelraum 2 liegt und quasi als ein Trennprofil die Wirbelverluste herabsetzt.The dust separator consists of the cylindrical housing 1, from which the vortex chamber 2 serving for dust separation is surrounded, the dust collecting chamber 4 enclosed by the conical jacket 3, the heat exchanger 5 and the device serving to remove the dust. Of the The heat exchanger 5 forms the immersion tube 8 which borders the gas discharge space 10 and projects into the swirl space 2. The heat exchanger 5 is dimensioned and arranged in such a way that it lies in the vortex space 2 generated and determined by the downward movement of the dust-containing gas and the upward movement of the dedusted gas and quasi as a separating profile reduces the vortex losses.

Der Wärmetauscher 5 taucht so tief in den Wirbelraum 2 ein, daß er aufgrund seiner Abmessungen die vorgeschriebene Temperaturabsenkung bzw. den Entzug der Wärmemenge gewährleisten kann. Bei der Bestimmung der Abmessungen und hauptsächlich der Eintauchtiefe muß jedoch dafür gesorgt werden, daß die durch die Kühlung eintretende, sich aus der erhöhten Fähigkeit zur Staubabscheidung ergebende Zunahme des Entstaubungswirkungsgrades nicht, oder nur in geringem Maße, durch einen von dem Wärmetauscher 5 hervorgerufenen erhöhten Widerstand vermindert wird.The heat exchanger 5 plunges so deep into the swirl chamber 2 that its dimensions enable it to ensure the prescribed temperature reduction or the removal of the amount of heat. When determining the dimensions and mainly the immersion depth, however, care must be taken to ensure that the increase in the dedusting efficiency resulting from the cooling, resulting from the increased ability to remove dust, does not, or only to a small extent, through an increased resistance caused by the heat exchanger 5 is reduced.

Der Wärmetauscher 5 ist als doppelter rekuperativer Wärmetauscher ausgebildet und besteht aus dem äußeren 6 und dem inneren Wärmetauscherelement 7. Das äußere Wärmetauscherelement 6 wird von dem ein Kühlmittel enthaltenden zylindrischen doppelwandigen Mantel des Tauchrohres 8 gebildet. Das innere Wärmetauscherelement 7 besteht aus den gebogenen Rohren 9, die sich zur Sicherstellung eines intensiven Wärmeaustausches und einer Erhöhung des Entstaubungsgrades entlang den Mantellinien einer gedachten, rotationssymmetrischen Hüllfläche erstrecken, die einen stetig konvergierenden und wieder divergierenden Kanal umgrenzt, wobei die Rohre 9 im konvergierenden Teil und im divergierenden Teil des Kanals und im engsten Kanalquerschnitt im Abstand voneinander verlaufen. Mit ihrem oberen Ende sind die Rohre 9 an den obenliegenden zylindrischen doppelwandigen Zulaufkörper 11, und mit ihrem unteren Ende an den zylindrischen Sammelkörper 12 angeschlossen. Der zylindrische Sammelkörper 12 ist mit dem doppelwandigen Mantel des Tauchrohres 8 verbunden, so daß zwischen dem äußeren 6 und dem inneren Wärmetauscherelement 7 eine Strömungsverbindung besteht. An den Zulaufkörper 11 des inneren Wärmetauscherelementes 7 ist der Einlaßstutzen 13, und an das das äußere Wärmetauscherlement 6 bildende doppelwandige Tauchrohr 8 der Auslaßstutzen 14 angeschlossen. Das staubbeladene heiße Gas, z. B. Abgas, gelangt über den tangentialen Gaseinlaß 15 in den Wirbelraum 2, während das gereinigte Gas über den zentralen Gasauslaß 16 nach oben austritt.The heat exchanger 5 is designed as a double recuperative heat exchanger and consists of the outer 6 and the inner heat exchanger element 7. The outer heat exchanger element 6 is formed by the cylindrical double-walled jacket of the immersion tube 8 containing a coolant. The inner heat exchanger element 7 consists of the bent tubes 9 which extend to ensure an intensive heat exchange and an increase in the degree of dedusting along the surface lines of an imaginary, rotationally symmetrical envelope surface which delimits a continuously converging and again diverging channel, the tubes 9 in the converging part and in the diverging part of the channel and in the narrowest channel cross-section at a distance from each other. With their upper end, the tubes 9 are connected to the cylindrical double-walled inlet body 11 located at the top, and with their lower end to the cylindrical collecting body 12. The cylindrical collecting body 12 is connected to the double-walled jacket of the dip tube 8, so that there is a flow connection between the outer 6 and the inner heat exchanger element 7. The inlet connection 13 is connected to the inlet body 11 of the inner heat exchanger element 7, and the outlet connection 14 is connected to the double-walled dip tube 8 forming the outer heat exchanger element 6. The dust-laden hot gas, e.g. B. exhaust gas, passes through the tangential gas inlet 15 into the swirl chamber 2, while the cleaned gas exits via the central gas outlet 16 upwards.

Das über den Gaseinlaß 15 eintretende heiße und staubbeladene Gas, z. B. Abgas, umströmt mit einer hohen tangentialen Geschwindigkeit die äußere zylindrische Wand des Tauchrohres 8 und strömt abwärts in Richtung zu dem Staubsammelraum 4. Einen Teil des Wärmeinhaltes gibt das heiße Abgas an das in dem äußeren Wärmetauscherelement 6 strömende Kühlmittel (Wasser, Luft) ab. in dem Wirbelraum 2 wird der größte Teil des Staubinhaltes des Gases abge- schieden und setzt sich an der innenfläche des kegeligen Mantels 3 ab. In Abhängigkeit von dem Entstauberwirkungsgrad des Zyklons gereinigtes, aber noch immer recht heißes Gas strömt axial von unten nach oben, tritt in den Gasabzugsraum 10 ein und gibt zwischen den gebogenen Rohren 9 hindurchströmend einen Teil seines Wärmeinhaltes ab. Infolge der geänderten Strömungsgesch windigkeit und der Abkühlung des Gases findet eine weitere Staubabscheidung statt. Das abgekühlte und entstaubte Gas verläßt das System über den Gasauslaß 16.The hot and dust-laden gas entering through the gas inlet 15, e.g. B. exhaust gas, flows around the outer cylindrical wall of the immersion tube 8 at a high tangential speed and flows downwards in the direction of the dust collecting space 4. The hot exhaust gas gives off part of the heat content to the coolant (water, air) flowing in the outer heat exchanger element 6 . Most of the dust content of the gas is separated in the swirl chamber 2 and settles on the inner surface of the conical shell 3. Depending on the dedusting efficiency of the cyclone, but still very hot gas flows axially from the bottom upwards, enters the gas extraction space 10 and releases part of its heat content between the bent tubes 9. As a result of the changed flow speed and the cooling of the gas, further dust separation takes place. The cooled and dedusted gas leaves the system via the gas outlet 16.

Das Kühlmittel strömt durch. den Einlaßstutzen 13, den Zulaufkörper 11, die Rohre 9, den zylindrischen Sammelkörper 12, den doppelwandigen Mantel des Tauchrohres 8 und den Auslaßstutzen 14 und erwärmt sich in dem in dieser Weise im Gegenstrom arbeitenden Wärmetauscher 5.The coolant flows through. the inlet connector 13, the inlet body 11, the tubes 9, the cylindrical collecting body 12, the double-walled jacket of the dip tube 8 and the outlet connector 14 and heats up in the heat exchanger 5 operating in countercurrent in this manner.

Der Wärmetauscher kann auch im Gleichstrom arbeiten; in diesem Fall sind die Benennungen dementsprechend zu interpretieren (anstatt Einlaßstutzen Auslaßstutzen usw.).The heat exchanger can also work in direct current; in this case, the terms have to be interpreted accordingly (instead of inlet connection outlet connection etc.).

Die erfindungsgemäße Lösung kann überall vorteilhaft verwendet werden, wo das zu reinigende Gas über einen bedeutenden Wärme-und Staubinhalt verfügt und eine gleichzeitige Wärmeverwertung und Entstaubung verlangt werden. Als wichtige Anwendungsgebiete sollen die Müllverbrennung und gewisse industrielle Verfahren, wie z. B. die Erzsinterung oder eine Reinigung der Abgase von kohlenbeheizten Kesseln erwähnt werden.The solution according to the invention can advantageously be used wherever the gas to be cleaned has a significant heat and dust content and simultaneous heat recovery and dedusting are required. Waste incineration and certain industrial processes, e.g. B. ore sintering or cleaning of the exhaust gases from coal-fired boilers may be mentioned.

Claims (1)

  1. Vortex dust separator, especially a cyclone, having a vortex chamber (2) serving for dust separation, with a tangential gas inlet (15) arranged at the upper end of the vortex chamber (2), a central immersion tube (8) that projects into the vortex chamber from above and surrounds a gas discharge chamber (10), the immersion tube (8) being of double-walled construction in the form of a first heat exchange element (6) through which coolant flows, and a second heat exchange element (7) through which coolant flows and which comprises tubes (9) distributed around the axis of the vortex chamber (2) at a distance from one another, characterised in that the tubes (9) are arranged inside the gas discharge chamber (10) and extend along the generatrices of an imaginary convergent/divergent envelope surface.
EP83112777A 1983-12-19 1983-12-19 Dust separator with a recuperator, particularly a cyclone Expired EP0145808B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT83112777T ATE28802T1 (en) 1983-12-19 1983-12-19 DUST SEPARATOR WITH RECUPERATOR, ESPECIALLY CYCLONE.
EP83112777A EP0145808B1 (en) 1983-12-19 1983-12-19 Dust separator with a recuperator, particularly a cyclone
DE8383112777T DE3372932D1 (en) 1983-12-19 1983-12-19 Dust separator with a recuperator, particularly a cyclone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83112777A EP0145808B1 (en) 1983-12-19 1983-12-19 Dust separator with a recuperator, particularly a cyclone

Publications (2)

Publication Number Publication Date
EP0145808A1 EP0145808A1 (en) 1985-06-26
EP0145808B1 true EP0145808B1 (en) 1987-08-12

Family

ID=8190891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112777A Expired EP0145808B1 (en) 1983-12-19 1983-12-19 Dust separator with a recuperator, particularly a cyclone

Country Status (3)

Country Link
EP (1) EP0145808B1 (en)
AT (1) ATE28802T1 (en)
DE (1) DE3372932D1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262274A1 (en) * 1986-09-22 1988-04-06 Emile Percevaut Recuperator of heat from flue gases from different furnaces capable of cleaning these gases
US4732113A (en) * 1987-03-09 1988-03-22 A. Ahlstrom Corporation Particle separator
DE3929178A1 (en) * 1989-09-02 1991-03-21 Balcke Duerr Ag FLUIDIZED LAYER REACTOR AND RELATED OPERATING METHOD
FR2654814B1 (en) * 1989-11-23 1995-02-24 France Grignotage Sarl LIQUID-GAS HEAT EXCHANGER.
CN104388706A (en) * 2014-11-11 2015-03-04 宁夏嘉翔自控技术有限公司 Reducing slag collecting box for metallic magnesium smelting and high-pressure slag skimming charging system
CN108411088A (en) * 2018-05-23 2018-08-17 宿迁市通用机械有限公司 A kind of environment-friendly type heat-treatment furnace
CN111334352B (en) * 2020-02-18 2021-05-04 李贵邦 Heat dissipation type gas-solid separation equipment for natural gas supply system
CN112387433B (en) * 2020-09-18 2022-06-14 中石化宁波工程有限公司 Cyclone separator
CN115029500B (en) * 2022-07-28 2023-11-17 南京华电节能环保股份有限公司 Converter gas waste heat recovery device with water-cooled wall heat exchange energy plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB108710A (en) * 1916-08-14 1917-08-14 Arthur Henry Lymn Improvements in and relating to Regenerators or Heat Interchangers in or for use with Gas Producer Plants.
US2519084A (en) * 1945-03-13 1950-08-15 Westinghouse Electric Corp Shell and tube heat exchanger having zig-zag tubes
GB757586A (en) * 1950-11-10 1956-09-19 Chemieban Dr A Lieren G M B H Improvements in or relating to hot gas cyclone dust separators
US3327456A (en) * 1964-04-30 1967-06-27 Exxon Research Engineering Co High temperature cyclone
CH462214A (en) * 1967-05-05 1968-09-15 Von Roll Ag Heat exchange body and process for its manufacture
FR2085164B1 (en) * 1969-12-01 1973-10-19 Gaz De France
FI54436C (en) * 1976-05-14 1978-12-11 Enso Gutzeit Oy HYDROCYCLON

Also Published As

Publication number Publication date
ATE28802T1 (en) 1987-08-15
EP0145808A1 (en) 1985-06-26
DE3372932D1 (en) 1987-09-17

Similar Documents

Publication Publication Date Title
EP0041106B1 (en) Dust separating cyclone, especially with double separating capacity
DE19826002A1 (en) High performance compact cybag filter
EP0145808B1 (en) Dust separator with a recuperator, particularly a cyclone
AT409347B (en) ELECTROSTATIC DUST SEPARATOR
CH642278A5 (en) CYCLONE SEPARATOR FOR SEPARATING HEAVY AND DUST PARTS FROM FIBER MATERIAL.
EP0090335B1 (en) Cyclone separator
DE2832097C2 (en) Process and device for separating materials by means of centrifugal force
DE3048239C2 (en) Cyclone dust separator for dust-laden exhaust air or exhaust gas flows
DD253945A5 (en) RECIRCULATING SWITCHING-LAYER REACTOR AND METHOD FOR SEPARATING SOLID SUBSTANCES FROM EXHAUST GASES
DE1856829U (en) CENTRIFUGAL DUST SEPARATOR FOR GASES, IN PARTICULAR SMOKE GASES.
DE2233437A1 (en) Centrifugal force separation - of particles suspended in a flowing medium
EP0205718A1 (en) Cyclone steam generator
EP0059315B1 (en) Device for the separation of suspended matter such as ash or the like from flue gases
EP0528782A2 (en) Apparatus for dedusting gas
DE2049901A1 (en) Converter waste gas scrubber - with three annular scrubbers in one casing
DE2538213A1 (en) RADIAL FLOW WASHER
DE475436C (en) Dedusting device for flue gases u. like
DE3625547C2 (en)
DE2826808C2 (en) Cyclone dust collector
AT204534B (en) Separation plant
DE2753963C3 (en) Cyclone dust collector
DE4021094A1 (en) Sepn. of dust from air current - involves chamber and fan suction sides are connected to two outlet pipes
DE3023069C2 (en) Cyclone separator for separating heavy and dusty parts from fiber material
DE944726C (en) Separator for liquid droplets or foam from a gaseous medium
DE720168C (en) Chimney with fly ash separator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841217

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 19860319

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 28802

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3372932

Country of ref document: DE

Date of ref document: 19870917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903