EP0145189B1 - Rauchanzeigegerät - Google Patents

Rauchanzeigegerät Download PDF

Info

Publication number
EP0145189B1
EP0145189B1 EP19840307232 EP84307232A EP0145189B1 EP 0145189 B1 EP0145189 B1 EP 0145189B1 EP 19840307232 EP19840307232 EP 19840307232 EP 84307232 A EP84307232 A EP 84307232A EP 0145189 B1 EP0145189 B1 EP 0145189B1
Authority
EP
European Patent Office
Prior art keywords
pollution
measurement apparatus
signal
detector
pollution measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840307232
Other languages
English (en)
French (fr)
Other versions
EP0145189A1 (de
Inventor
Martin Terence Cole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COLE, MARTIN TERENCE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT84307232T priority Critical patent/ATE55503T1/de
Priority to EP89121615A priority patent/EP0365047B1/de
Priority claimed from AU34537/84A external-priority patent/AU577551B2/en
Publication of EP0145189A1 publication Critical patent/EP0145189A1/de
Application granted granted Critical
Publication of EP0145189B1 publication Critical patent/EP0145189B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke

Definitions

  • the present invention relates to optical air pollution monitoring apparatus and more specifically an early warning fire detection apparatus incorporating a light scatter detection technique.
  • the present invention has as its objective to provide apparatus for detection of air pollution and fires and the initiation of control measures at the earliest possible moment whilst minimising false alarms.
  • Smoke detectors of the general type to which the present invention relates are disclosed in Australian Patent Specification Nos. 412479, 415158, 465213 and 482860.
  • Spefication No. 415158 utilises an intermittently operating light source whilst No. 412479 discloses the use of a pair of light carrying rods.
  • Specification No. 465213 discloses the removal of air samples from an air space under surveillance to detect the presence of carbon monoxide.
  • Specification No. 482860 discloses the use of a pair of air sampling chambers coupled to a light source and photomultiplier tubes.
  • U.S. Patent No. 4317113 to Honma granted February 23,1982 discloses a photoelectric smoke sensor. The sensor relies on a single detector. It has thus only one output, and no means responsive to two output signals to produce a measurement signal which indicates the pollution level.
  • Swiss Patent No. 560434 to Chubb Fire Security Limited discloses a fire detector which relies on alterations of the refractive index of air when heated to activate an alarm. It is not a pollution or smoke detector.
  • German Patent Specification No. 2632876 to General Signal Corporation discloses a photodiode smoke detector having a single light emitting diode light source and a photo detector. It does not disclose the use of separate signals to produce a measurement signal which indicates the amount of pollution present.
  • Photomultiplier tube designs have incorporated two sampling chambers in order to provide two channels of operation, the outputs of which are balanced in an attempt to counteract the effects of ageing and temperature drift, and also to overcome flash tube light intensity variations. This is attempted by means of a summing amplifier, where one channel is connected to the inverting input, the other to the non-inverting input. The resultant output signal is the difference between the two channels.
  • this mechanism in fact does nothing to reduce the problems, being based upon a fallacy:
  • EP-A-140502 (84305512.0, filed 10 August 1984), EP-A--135361 (84305513.8, filed 13 August 1984) and EP-A-135362, (84305514.6, filed 13 August 1984) respectively.
  • the present invention relates to the provision of improved electronic circuitry for use in air pollution detection.
  • Patent No. 482,860 utilized a photomultiplier tube to detect the extremely low levels of light scattered off low concentrations of airborne smoke. Solid-state detection was considered impossible at room temperatures and at economical cost. As a result of considerable research, solid-state circuitry has been developed which appears to have overcome the problems inherent in photomultiplier tube technology. For example, such problems as an extraordinary (10:1) spread in sensitivity from device to device, fragility, ageing, degradation when exposed to bright light, and the need for a special high-voltage power supply of high stability have been met.
  • a solid-state detector cell requires a preamplifier of extremly low noise, requiring development of a state-of-the-art design. Therefore detector cell and Xenon flash noise became the dominant, though insignificant source of noise. Temperature compensation is also required, to provide calibration accuracy spanning at least zero to fifty degrees Celsius.
  • the detector cell should be small to minimise capacitance. This, however, reduces the 'photon capture area' compared with the photomultiplier tube and a focussing lens is employed, with associated mounting hardware. Close attention to the preamplifier design using pulse-amplifier techniques is partly responsible for the noise reduction in the detector of the present invention. Earthing is of course another critical factor, together with a suitable interference-shielding container. In addition, immunity to power supply variations has required special attention.
  • the preamplifier, detector cell, optics and housing is preferably supplied as a self-contained separately tested plug-in module.
  • a pollution measurement apparatus of the type comprising:
  • the detector circuit receives a signal from the solid state detector cell and pulse preamplifier circuit as is described in greater detail in my co-pending European Patent Application No. EP-A-140502 mentioned above.
  • the signal passes to a pulse-amplifier producing an output pulse of high amplitude.
  • Gain adjustment of amplifier 2 provides adjustment of the signal to achieve calibration.
  • the calibration offset allows for offset of the effects of remnant background light (which is a fixed component) in the sampling chamber to the point where the signal is independent of the effects of background light.
  • FIG. 1A there is shown an alternative arrangement wherein the peak detector 3 and sample-and-hold circuit 4 is replaced by a micro-processor 30 programmed to receive and store the peak amplitude of an output pulse from said pulse amplifier.
  • the microprocessor can be used for division of the signal from the monitor amplifier and provides the timing for the flash tube 8.
  • the normal sampling rate of the monitored space is approximately 3 seconds however, D.C. stability is sufficient to allow optional sampling rates up to 30 seconds thus allowing extension of Xenon flash tube life to as long as 20 years (suitable for areas of relatively slow potential fire growth).
  • circuity to permit operation from an unregulated 24V DC supply which can include standby batteries (20-28V tolerance), in conformity with most conventional fire alarm systems.
  • Wide voltage tolerance provides for greater immunity to cabling voltage-drop.
  • circuitry is refined to reduce power consumption to 6 Watts. This further reduces cabling voltage-drop problems.
  • the Xenon flash power supply provides the greatest opportunity for this power reduction, through increased efficiency, of a 400V inverter. To maximise consistency of flash brilliance, this supply is tightly regulated and temperature compensated.
  • the device includes a Xenon flash tube monitor 10 in the sampling chamber to calibrate or adjust for variations in flash intensity that may result from "flash noise", aging, or temperature.
  • divider 12 provides compensation of the signal received from the monitor 10 and amplifier 11 thereby improving the accuracy of the signal in the detector circuit going to the control.
  • the divider 12 includes circuitry adapted to convert signals received from the detector 9 and monitor 10 to logarithins then to subtract said logarithins, reconverting the resultant signal by an anti logarithin circuit to a normal signal.
  • the divider circuit will remove or compensate for flash intensity variation or temperature variations.
  • the alarm threshold of the air flow sensor 7a may be factory preset within the detector. However, it is preferable to provide an analog output of air flow, utilizing an identical output circuit to that used for smoke intensity (another transconductance amplifier).
  • the constant-current output in both cases provides complete immunity to errors introduced by cabling losses, whilst a low impedance load followed by low-pass filtering and over-voltage protection within the control unit, overcomes interference induction.
  • the alarm threshold can then be set conveniently in the control unit, to a flow rate consistent with the response time required for detection.
  • the voltage signal is converted to current by convertor 6 to avoid the effects of losses in the line to the controller which may be at a remote station in the building.
  • the current signal from the detector is received and converted to voltage at 13.
  • the controller includes a housing for up to eight (say) individual control cards 20 ( Figure 3) each associated with a detector.
  • the housing may be of extruded aluminium rail frame and side plate construction whereby it is adaptable to accommodate from one to eight control cards. Thus, where space is at a premium the size of the housing can be reduced by shortening the rails.
  • the control unit provided four output relays namely: Alarm 1, Alarm 2, Alarm 3 and Fail.
  • the Fail relay combined the functions of air flow failure and smoke detection failure. Preferably these two functions are split on the basis that they might require a differing response.
  • a sixth relay is added to indicate that a test is being performed so that operation of any other relay can be ignored until completion of the test. According to the present invention it is proposed to transfer the six relays to a separate relay interface card 23 which can be driven by all controller cards using a ribbon-cable bus in a "daisy-chain" connection.
  • the housing frame accommodates a mixture of ribbon-cable 21 and printed-circuit edge connectors 22.
  • This design also facilitates the replacement of any ribbon-cable for one of a different length or configuration, to suit unexpected situations that may arise in the field.
  • Figures 3, 4 and 5 depict schematically the control card interconnections with the optional data bus and computer or micro processor (not shown) and a relay interface card 23.
  • Calibration and testing of the detector is simplified by adopting a full scale measurement of 5.5 milli-amps.
  • An 0.5 milli-amp offset is used to assist in sensing signal loss caused by lamp failure, cable breakage etc.
  • Each additional 0.5 mA represents an increment of 0.01% pollution e.g. smoke.
  • this is translated to one volt offset with one volt major scale divisions and eleven volt full scale.
  • the inclusion of a summing amplifier permits subtraction of the one volt offset before presentation of the display and chart-recorder output such that 0-10 volts represents 0-0.10% smoke (0-1000 parts/mil- lion).
  • a gold plated programming pin 31 on a roving lead is coupled to each of the three alarm thresholds 32 providing a convenient and easily viewable means for setting the alarm levels.
  • an override circuit ensures that the third alarm threshold automatically defaults to the full-scale smoke level.
  • Timers for delaying the operation of each alarm adjustable by means of potentiometers, are located immediately below their relevant alarm lamp, and are accessible without removing the Controller card. Also located on the front of the Controller card are test buttons for detector sensitivity and detector failure. Timer adjustments and testing facilities are hidden and protected behind an escutcheon to prevent tampering.
  • a feature of the control unit is the provision of a switch-option to designate the first (left most) Controller card and its associated Detector as the Reference channel.
  • This Reference Detector is adapted to measure the incoming air quality at the make-up air register of an air-conditioning system. To ensure that the Controller would respond only to the net gain in smoke from sources within the building, the output from the Reference Detector can be subtracted, partially or wholly. Even for large installations, only one Reference Detector would be required.
  • An additional advantage of the reference channel is the ability to provide a separate "pollution alert" for computer areas and other "clean" environments.
  • the setting of alarm thresholds the operation of time delays and air flow detection can be implemented by a micro-processor by projecting a visual output such as a bargraph or numerical display.
  • a micro-processor is used in substitution for detectors and controller cards it is feasible to use digital signals methods such as those that conform to RS232 Standard for serial data transmission, as distinct from the analogue method of constant current signals.
  • the Controller uses both a red and a green lamp to indicate air flow with the addition of an adjustable timer to allow for short term reductions in air flow, which might result from normal air-handling control functions in the building (for example in the case of in-duct detection).
  • Matched to this is another pair of lamps for the "Fail" detection circuitry, with a similar timer.
  • Particularly large, dual-element rectangular LED lamps have been developed with careful attention to uniform light diffusion, for all displays (17 lamps per Controller). This permitted escutcheon artwork information to be rear-lit by the lamps, for aesthetic appeal and to avoid ambiguity.
  • red LED lamps are used for each segment.
  • the present invention has the adopted philosophy that any alarm condition should be indicated by a red lamp.
  • any red lamp seen from a distance would require attention, whether it proved to be one of the three smoke intensity thresholds, the Detector failure alarm or the air flow failure alarm.
  • these red lamps are made to flash. Operation of any one of these red lamps indicates the operation of its associated relay.
  • Controller card An optional version of the Controller card according to the present invention has been designed. This provides latching of the red alarm lamps and their associated relays, to account for transient conditions which might disappear before any attendant may arrive (especially in a multi-Detector installation).
  • a toggle switch is provided on each Controller card, to mount through the escutcheon. Such a switch is chosen for the obvious nature of its positions. In the "normal” position, all red lamps and their relays would be operable and could latch on. While in the "isolate” position, all red lamps and their relays would reset (unlatch) and would remain isolated (disabled), during which the "test” relay would operate (renamed the "isolate-test” relay). In either switch position the true conditions pertinent to the Detector remain clearly displayed because of the bargraph (with its clearly visible programming pins to indicate the alarm thresholds) and the green lamps (indicating the Detector and air flow were correct).
  • a data-bus "mother-board" is provided within the con- trot unit to facilitate the connection of a computer, such as a separate building services monitoring computer which is enabled to scan each Controller card to obtain readings of smoke intensity and air flow. In this way it can monitor the entire alarm system and initiate appropriate actions.
  • a computer such as a separate building services monitoring computer which is enabled to scan each Controller card to obtain readings of smoke intensity and air flow.
  • Its data-logging function permits the automatic compilation of statistics on typical ambient smoke levels and the result of simulated fires, such that alarm thresholds can be optimised.
  • the alarm thresholds within the computer can be altered at different times, typically selecting greater sensitivity during hours when a building is unoccupied. It can also activate a sensitivity test or a failure test for each Detector, in conformity with some prearranged schedule.
  • Subtraction of the reference signal may also be performed by the computer. This enables the time-related dilution/concentration factors to be taken into account on a zone-by-zone basis.
  • a capability for manual operation in the event of computer malfunction is considered an essential practical requirement, this transition being accomplished on a latching Controller card via the "normallisolate" switch (i.e. manual system isolated while computer functioning).
  • a ribbon-cable connector for all chart-recorder outputs. This facilitates connection to a data-logger, multi-pen recorder or to a selector switch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (11)

1. Ein Verschmutzungsmeßgerät der Art umfassend:
eine Probenkammereinrichtung, innerhalb welcher die Verschmutzung gemessen werden soll; und eine Blinklichteinrichtung (8) zur Erzeugung von Lichtblitzen zwecks Beleuchtung des Innenraums der besagten Probekammereinrichtung;
dadurch gekennzeichnet, daß es des weiteren folgende Einrichtungen umfaßt: eine Überwachungseinrichtung (10) zum Erzeugen erster elektrischer Impulse proportional zu der Stärke der durch besagte Blinklichteinrichtung (8) erzeugten Lichtblitze;
eine Sensoreinrichtung (9) zur Erzeugung zweiter elektrischer Impulse proportional zu der Stärke der die besagte Probekammer verlassenden Lichtblitze;
eine erste Spitzendetektor- und Tastspeichereinrichtung (30), die auf die besagten ersten elektrischen Impulse anspricht, um ein konstantes erstes Ausgangssignal zu liefern, das zu der Spitzenamplitude des zuletzt auftretenden der besagten ersten elektrischen Impulse proportional ist;
eine zweite Spitzendetektor- (3, 30) und Tastspeichereinrichtung (4, 30), die auf die besagten zweiten elektrischen Impulse ansprict, um ein konstantes zweites Ausgangssignal zu liefern, das zu der Spitzenamplitude des zuletzt auftretenden der besagten zweiten elektrischen Impulse proportional ist; und
eine auf die besagten ersten und zweiten Ausgangssignale ansprechende Einrichtung (12, 30) zur Lieferung eines Meßsignals, das die Menge der Verschmutzung innerhalb der besagten Probenkammer genau anzeigt.
2. Das Verschmutzungsmeßgerät nach Anspruch 1, dadurch gekennzeichnet, daß die besagte auf die besagten ersten und zweiten Ausgangssignale ansprechende Einrichtung des weiteren eine Trenneinrichtung (12) umfaßt, wobei die besagte Trenneinrichtung ein Meßsignal liefert, das dem Verhältnis zwischen den besagten ersten und zweiten Ausgangssignal entspricht.
3. Das Verschmutzungsmeßgerät nach Anspruch 2, des weiteren umfassend:
eine algebraische Summiereinrichtung (5) zur Verbindung der besagten Ausgangssignale mit einem einstellbaren Eich-Verschiebungssignal, um ein Meßsignal zu liefern, das durch Einstellung des besagten einstellbaren Eich-Verschiebungssignal zusätzlich im Hinblick auf die Nullpunktverschiebung ausgeglichen ist.
4. Das Verschmutzungsmeßgerät nach Anspruch 1 oder 2, wobei die besagte erste und zweite Spitzendetektor- und Tastspeichereinrichtung
eine Analog/Digital-Unform- und Mikroprozessoreinrichtung (30) umfaßt, die auf die besagten Sensor- und die besagten Überwachungseinrichtungen anspricht, um das besagte Meßsignal zu erzeugen.
5. Das Verschmutzungsmeßgerät nach Anspruch 1 oder 2 umfassend:
eine Mehrphasenuhr,
eine Vorrichtung (30) zum Steuern des Blinkens der besagten Lichteinrichtung der besagten ersten und zweiten Spitzendetektor- und Tastspeichereinrichtungen im Einklang mit der durch die besagte Mehrphasenuhr bedingten zeitlichen Steuerung.
6. Das Verschmutzungsmeßgerät nach einem der vorstehenden Ansprüche umfassend:
eine Anzeigeeinrichtung (40) für visuelle Darstellung des Wertes des besagten Meßsignals in inkrementellen Stufen an einem Säulendiagramm;
eine Programmiereinrichtung (31) zum Abgreifen ausgewählter Säulendiagrammsegmente zwecks Auslösung entsprechender Alarmeinrichtungen, wobei jede Alarmeinrichtung so eingestellt ist, daß sie an dem angezeigten Schwellwert durch das betreffende abgegriffene Segment aktiviert wird.
7. Das Verschmutzungsmeßgerät nach Anspruch 6, bei dem die besagte Programmiereinrichtung
vergoldete Programmier-Anschlußstifte (31) an individuellen flexiblen freien Leitungen zum Anschluß an betreffende der besagten ausgewählten Säulendiagrammsegmente umfaßt, um dadurch eine zur Betrachtung geeignete Anzeige der Pegeleinstellung der betreffenden besagten Alarmeinrichtung zu bedingen.
8. Das Verschmutzungsmeßgerät nach Anspruch 7, wobei dieses zusätzlich eine Übersteuerungs-Schalteinrichtung zur . Einstellung eines Alarms im Falle der Trennung des Schaltkreises eines Programmierstiftes umfaßt.
9. Das Verschmutzungsmeßgerät nach Anspruch 6, wobei dieses zusätzlich
eine einstellbare Einrichtung zur Verzögerung der Alarmauslösung um eine vorbestimmte Zeitspanne umfaßt.
10. Verschmutzungsmeßsystem umfassend eine Mehrzahl von Verschmutzungsmeßgeräten nach Anspruch 6, wobei jedes der besagten Verschmutzungsmeßgeräte mit einer entsprechenden Steuerkarte (20) in Verbindung steht, wobei eine ausgewählte Steuerkarte in einem Bezugsbereich mit einem bezugsweisen Verschmutzungsmeßgerät zwecks Messung der Beschaffenheit der einem überwachten Bereich zugeführten Luft verbunden ist, wobei das von dem besagten bezugsweisen Verschmutzungsmeßgerät abgegebene Meßsignal mindestens teilweise von dem Meßsignal jedes anderen Verschmutzungsmeßgeräts abgezogen wird, so daß jedes der besagten Verschmutzungsmeßgeräte einen Meßsignalwert anzeigt, der einer Nettozunahme der durch Quellen innerhalb des Überwachungsbereiches bedingten Verschmutzung entspricht.
EP19840307232 1983-10-21 1984-10-19 Rauchanzeigegerät Expired EP0145189B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT84307232T ATE55503T1 (de) 1983-10-21 1984-10-19 Rauchanzeigegeraet.
EP89121615A EP0365047B1 (de) 1983-10-21 1984-10-19 Optische Luftpollutions- oder Rauchdetektionsvorrichtung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU1975/83 1983-10-21
AUPG197583 1983-10-21
AU34537/84A AU577551B2 (en) 1983-10-21 1984-10-19 Improvements relating to smoke detection apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP89121615.2 Division-Into 1984-10-19

Publications (2)

Publication Number Publication Date
EP0145189A1 EP0145189A1 (de) 1985-06-19
EP0145189B1 true EP0145189B1 (de) 1990-08-08

Family

ID=25622926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840307232 Expired EP0145189B1 (de) 1983-10-21 1984-10-19 Rauchanzeigegerät

Country Status (1)

Country Link
EP (1) EP0145189B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8913773D0 (en) * 1989-06-15 1989-08-02 Fire Fighting Enterprises Uk L Particle detectors
CN113990023B (zh) * 2021-10-26 2023-01-24 无锡商业职业技术学院 一种用于光电式烟雾探测器的自校准、补偿电路和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278205A (en) * 1970-02-11 1972-06-21 Shorrock Develpoments Ltd Smoke detecting device
GB1405615A (en) * 1972-08-11 1975-09-10 Chubb Fire Security Ltd Fire alarms
IL45331A (en) * 1973-11-26 1977-12-30 Chloride Batterijen Bv Photoelectric smoke detector
ZA763862B (en) * 1975-07-21 1977-05-25 Gen Signal Corp Photodiode smoke detector
US4266220A (en) * 1979-07-27 1981-05-05 Malinowski William J Self-calibrating smoke detector and method
JPS5631625A (en) * 1979-08-24 1981-03-31 Hochiki Corp Smoke detector of photoelectronic type

Also Published As

Publication number Publication date
EP0145189A1 (de) 1985-06-19

Similar Documents

Publication Publication Date Title
EP0365047B1 (de) Optische Luftpollutions- oder Rauchdetektionsvorrichtung
CN100390827C (zh) 火灾及烟雾检测与控制方法
US3874795A (en) Smoke detector
US7825817B2 (en) Hardwired alarm system with power-on sequence
EP0145189B1 (de) Rauchanzeigegerät
CN115459448A (zh) 一种开关柜潜伏性故障诊断预警检测系统及方法
CN113252525A (zh) 一种基于β射线和光散射法的颗粒物在线监测系统
CZ61794A3 (en) Fire-alarm box
CN216283970U (zh) 一种三红外波段的快速防误报火焰探测器
CN113362581A (zh) 火灾自动报警触发装置及其监管方法
CN208969207U (zh) 电控板检测系统
JPH03188596A (ja) 煙濃度監視方式
JPH02227800A (ja) 光電式煙感知器
JP2000132762A (ja) 受光量表示ユニット付き光電式分離型感知器及び波形確認端子ユニット付き光電式分離型感知器
CN211855397U (zh) 一种可见光、温湿度和有毒气体的多传感器智能监控系统
JPS6026173B2 (ja) 煙感知器
KR19980068601A (ko) 화재감지센서 및 이를 이용한 화재감지기의 점검장치
CN211668071U (zh) 一种新型药厂微型保障系统
CN212847115U (zh) 一种智能语音门铃系统
JPH04599A (ja) 感知器試験装置
CN212208486U (zh) 一种智能消防逃生系统
Russell Jr et al. DESCRIPTION OF FACILITY RADIATION AND CONTAMINATION ALARM SYSTEMS INSTALLED IN RADIOCHEMICAL PROCESSING PILOT PLANT BUILDING 3019
JP2816632B2 (ja) 住宅用火災報知設備
JPS60221897A (ja) 火災の状態および場所報知方法
Russell Jr et al. DESCRIPTION OF FACILITY RADIATION AND CONTAMINATION ALARM SYSTEMS INSTALLED IN THE BULK SHIELDING FACILITY, BUILDING 3010.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851216

17Q First examination report despatched

Effective date: 19880405

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COLE, MARTIN TERENCE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19900808

Ref country code: NL

Effective date: 19900808

Ref country code: LI

Effective date: 19900808

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19900808

Ref country code: CH

Effective date: 19900808

Ref country code: BE

Effective date: 19900808

Ref country code: AT

Effective date: 19900808

REF Corresponds to:

Ref document number: 55503

Country of ref document: AT

Date of ref document: 19900815

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 89121615.2 EINGEREICHT AM 19/10/84.

REF Corresponds to:

Ref document number: 3482945

Country of ref document: DE

Date of ref document: 19900913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19901031

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960730

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961107

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011009

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021019